
ON A FITTING LENGTH CONJECTURE
WITHOUT THE COPRIMENESS CONDITION

GÜLİN ERCAN

Abstract. Let A be a finite nilpotent group acting fixed point freely by

automorphisms on the finite solvable group G. It is conjectured that the
Fitting length of G is bounded by the number of primes dividing the order

of A, counted with multiplicities. The main result of this paper shows that

the conjecture is true in the case where A is cyclic of order pnq, for prime
numbers p and q coprime to 6 and G has abelian Sylow 2-subgroups.

1. Introduction

Let A be a finite group that acts on the finite solvable group G by
automorphisms in such a way that CG(A) is trivial. A long-standing conjecture
in the coprime case (|G|, |A|) = 1 states that the Fitting length f(G) of G is
bounded above by the length `(A) of the longest chain of subgroups of A. This
problem has been studied for various cases of A (see [10], [1]) and finally Turull
settled the conjecture for almost all A in a sequence of papers. A complete list of
the results related to this conjecture is given in [12].

The case that |G| and |A| are not necessarily coprime has also been studied. By
a result due to Bell and Hartley [2], if A is any nonnilpotent finite group, then
there exists a finite group G of arbitrarily large Fitting length on which A acts
fixed point freely and noncoprimely. This led to a new Fitting length conjecture
without the coprimeness condition which asserts that if A is a finite nilpotent
group acting fixed point freely on a finite solvable group G by automorphisms
then f(G) ≤ `(A). It should be noted that if A is solvable, `(A) coincides with
the number of primes dividing the order of A, counted with multiplicities. A special
case of this conjecture has been treated firstly by K.N. Cheng [3] where A is cyclic
of order a product of two primes. Later we proved that the conjecture is true in the
case where A is cyclic of order a product of three distinct primes [5]. According
to Dade’s fundamental paper [4], a more appropriate way of studying the Fitting
length of G is to consider the action of A, not on G, but on a sequence of sections
of G which is called an A-Fitting chain of G. By pursuing the ideas of both [4]
and [11], under the additional assumption that the Sylow 2-subgroups of G are
abelian we settled two special cases of this conjecture in the first of which A is
abelian of squarefree exponent coprime to 6 ([6], [7]) and in the second A is abelian

Date: April 2009 DRAFT.
Key words and phrases. Automorphisms of solvable groups and Noncoprime action and Fixed

point free action.

1
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of order a product of three odd primes [7]. The proof of these results is based on
Theorem 3 of [6] assuring the existence of a sufficiently long A-Fitting subchain
with sections centralized by a subgroup B of A of prime order. In the present
article, we extend Theorem 3 of [6] to the case where B is cyclic of prime power
order (see Theorem 3.3) and as an application we obtain our main result Theorem
4.2 :

Let A be a cyclic group of order pnq, for prime numbers p and q coprime to
6, acting by automorphisms on a finite solvable group G whose Sylow 2-subgroups
are abelian. If A acts fixed point freely on G, then f(G) ≤ `(A).

Throughout the article, all groups are finite. The notation and terminology are
mostly standard with the following exceptions taken from [6] and [7]:

Let G be a group.
(i) We write G̃ for the Frattini factor group of G.
(ii) If H and K are subgroups of G, then for all n ∈ N, we set

[H,K]n = [H,K, ...,K] where the last expression contains n-copies of K.
(iii) We write (S on G) whenever a group S acts on G. Suppose that G is solvable

and S acts also on another solvable group H. We say (S on G) and (S on H) are
weakly equivalent and write (S on G) ≡w (S on H), if each nontrivial irreducible
component of (S on G) is S-isomorphic to an irreducible component of (S on H)
and vice versa.

2. Lemmas

In this section we establish the results that we need to prove our major
theorems Theorem 3.1, Theorem 3.2, Theorem 3.3, and Theorem 3.4.

The following lemma contains the essential part of Theorem 3.1. It is obtained
by combining Proposition 3.10 in [4] and Lemma 1.3 in [8].

Lemma 2.1. Let S C S〈α〉 where S is an s-group for some prime s, Φ(S) ≤
Z(S), and 〈α〉 is cyclic of order pn for an odd prime p. Suppose that V is a
kS〈α〉-module for a field k of characteristic different from s. Then CV (α) 6= 0 if
one of the following is satisfied for z = αp

n−1
:

(i) [Z(S), z] is nontrivial on V .

(ii) [S, z]p−1 is nontrivial on V and p = s.

Furthermore, if S〈α〉 acts irreducibly on V or the characteristic of k is different
from p, then we also have (C on CV (α)) ≡w (C on V ) where

C = CD(α) for D =

{
S , when (i) holds

[S, z]p−1 , when (ii) holds
.

Proof. We may assume that V is an irreducible S〈α〉-module. We suppose first
that (i) holds. Since [Z(S), z] is nontrivial on V and V is an irreducible
S〈α〉-module, the stabilizer of any homogeneous component of V |Z(S) is S, whence



ON A FITTING LENGTH CONJECTURE WITHOUT THE COPRIMENESS CONDITION 3

V is induced from an irreducible S-module W . It follows from Mackey’s theorem
that V |C×〈α〉 and W |C ⊗ k〈α〉 are C × 〈α〉-isomorphic. Hence CV (α) and
W |C ⊗ Ck〈α〉(α) are also C × 〈α〉-isomorphic. Thus as
Ck〈α〉(α) 6= 0, we have CV (α) 6= 0. Moreover (C on V ) ≡w (C on CV (α)), since
both V and CV (α) are multiples of the same C-module W |C . This proves the
claim when (i) holds.

We suppose next that (ii) holds, and that [Z(S), z] is trivial on V . Now
D = [S, z]p−1. For S1 = [S, z]p−2, Lemma 5.37 of [4] implies that

[D,S1] ≤ [φ(S), z]p−2 ≤ [φ(S), z].

Then D is contained in Z(S1) modulo [Z(S), z]. Next, we notice that there is
a collection {V1, ..., Vl} of irreducible S1〈α〉-submodules such that V = ⊕li=1Vi
since V |S1〈α〉 is completely reducible. Pick i ∈ {1, ..., l} and let S1 = S1/Ker(S1

on Vi). We have D ≤ Z(S1) and hence C ≤ Z(S1〈α〉). It follows that Vi|C
is homogeneous. If D is trivial on Vi, then so is C and hence the equivalence
(C on CVi

(α)) ≡w (C on Vi) holds. Suppose now that D is not trivial on Vi.
We then have CVi

(α) 6= 0 by Lemma 1.3 of [8] applied to the action of S1〈α〉
on Vi. It follows that (C on CVi(α)) ≡w (C on Vi) since Vi|C is homogeneous.
Thus as i is arbitrary in {1, ..., l} and V = ⊕li=1Vi, we have the equivalence (C on
CV (α)) ≡w (C on V ). This completes the proof. �

Next we describe a slightly modified version of Lemma 5.30 in [4].

Lemma 2.2. Let S C SA and let V be an irreducible kSA-module for a field k.
If E is an A-invariant subgroup of Z(S) and U is a nonzero EA-submodule of
V , then Ker(E on V ) = Ker(E on U).

Proof. The module V is a direct sum of homogeneous S-modules permuted by A as
V |S is completely reducible. Since E ≤ Z(S) it follows that W |E is homogeneous
for each S-homogeneous component W in this decomposition. It should be
noted that U |E is a submodule of V |E and that V |E is completely reducible as
E C SA.

Let now {X1, ..., Xr} be a complete set of nonisomorphic irreducible
E-submodules of V , and let the W1, ...,Wr be E-homogeneous components of
V |E containing modules isomorphic to X1, ..., Xr, respectively. Then U |E =
⊕ri=1U ∩ Wi. We may assume that U ∩ W1 6= 0. Since the module Xa

1 is
an irreducible submodule of U |E for each a ∈ A and the E-modules, U ∩
W1, ..., U ∩Wr are permuted by A, we have U ∩Wi 6= 0 for each i = 1, ..., r.
Consequently, the only irreducible E-constituents of U are precisely the elements
of {X1, ..., Xr} and Ker(E on U) = Ker(E on V ) as desired. �

The following lemma is crucial in proving Theorem 3.1.

Lemma 2.3. Let S C S〈α〉 where 〈α〉 is cyclic of prime power order pn. Let V be
a kS〈α〉-module for a field k of characteristic different from p, and let Ω be an
S〈α〉-stable subset of V ∗. Set V0 =

⋂
{ Ker f | f ∈ Ω− CΩ(z) }
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for z = αp
n−1

. If there exists a nonzero f in Ω and x ∈ S such that f(V0) 6= 0
and [x, a, z] 6∈ CS(f) for each 1 6= a ∈ 〈α〉, then CV (α) 6⊆ V0.

Proof. The assumption f(V0) 6= 0 implies that f ∈ CΩ(z) and hence CS(f) is
normalized by 〈z〉. As [x, a, z] 6∈ CS(f) for each 1 6= a ∈ 〈α〉, we have [x, a] 6∈
CS(f) for each 1 6= a ∈ 〈z〉. In particular, bxf 6∈ CΩ(z) for each b ∈ 〈z〉. Pick an
element a ∈ 〈α〉. If axf 6∈ CΩ(z), then xf ∈ CΩ(z), which is a contradiction. So
it must be true that axf 6∈ CΩ(z), for any a ∈ 〈α〉. It is now straightforward to
verify that g =

∑
a∈〈α〉 axf ∈ CΩ(α) and therefore [V, α] ⊆ Kerg. On the other

hand V = [V, α] ⊕ CV (α) and hence either g = 0 or CV (α) 6⊆ Kerg. If the
latter holds, that is, V0 ⊆ Ker(axf) for each a ∈ 〈α〉, we then have CV (α) 6⊆ V0

as claimed. If the former holds, then x−1g = 0 and hence f = −
∑

16=a∈〈α〉 x
−1axf .

Since [x, a, z] ∈ CS(f), x−1axf 6∈ CΩ(z) for each 1 6= a ∈ 〈α〉. This forces that
f(V0) = 0, contrary to our assumption. So the lemma is established. �

We now restate Theorem 4.1 of [10] in the most appropriate form for our pur-
poses.

Lemma 2.4. Let S C SA where A is an abelian group and S is an s-group for
some prime s which is coprime to |A|. Assume that S is abelian when s = 2.
Let V be an irreducible kSA-module where k is a splitting field for all subgroups
of SA and is of characteristic not dividing |SA|. Suppose that S acts nontrivially
and A acts fixed point freely on V . Then there is a nontrivial subgroup D of A
such that [S,D] acts trivially on V .

3. Proofs of Major Theorems

We are now ready to prove the results that are indispensable for the proof of
the main result Theorem 4.2 of this paper.

The next theorem generalizes Theorem 2.1.A in [11], Theorem 2.1 in [7] (see also
Theorem 2 in [6]).

Theorem 3.1. Let SCS〈α〉 where S is an s-group with φ(φ(S)) = 1, φ(S) ≤ Z(S)
and 〈α〉 is cyclic of order pn for primes s and p. Assume that either s = p ≥ 5
or s 6= p and p is odd. Assume further that if s = 2, either S is abelian or p is
not a Fermat prime.

Let V be a kS〈α〉-module such that [S, z]p−1 acts nontrivially on each irreducible
submodule of V |S where z = αp

n−1
, for a field k of characteristic not dividing ps,

and let Ω be an S〈α〉-stable subset of V ∗ spanning V ∗.
Set V0 =

⋂
{ Ker f | f ∈ Ω− CΩ(z) }. Then

CV (α) 6⊆ V0 and (CD(α) on CV (α)/CV0(α)) ≡w (CD(α) on V )

where D =

{
[S, z]p−1 , when s = p

S , otherwise
.



ON A FITTING LENGTH CONJECTURE WITHOUT THE COPRIMENESS CONDITION 5

Proof. Assume that the theorem is false and choose a counter-example with mini-
mum dimV + |S〈α〉|. We shall proceed in several steps. To simplify the notation
we set X = CV (α)/CV0(α) and C = CD(α).

Claim 1. We may assume that S acts faithfully, S〈α〉 acts irreducibly on V

and that k is a splitting field for all subgroups of S〈α〉.

By induction applied to the action of S〈α〉 on V , we get CV (α) 6⊆ V0 and
(CD(α) on X) ≡w (CD(α) on V ) for S = S/Ker(S on V ). We then have (C on
X) ≡w (C on V ) as C ≤ CD(α). This contradiction shows that S is faithful on
V .

Since V is completely reducible as an S〈α〉-module, we have a collection {V1, ..., Vl}
of irreducible S〈α〉-submodules of V such that V = ⊕li=1Vi. By hypothesis
[S, z]p−1 acts nontrivially on each irreducible constituent of Vi|S , and hence it
acts nontrivially on each Vi, for i = 1, ..., l. It is easy to observe that Ωi = Ω|Vi

is an S〈α〉-stable subset of V ∗i and 〈Ωi〉 = V ∗i . We define (Vi)0 similar to
V0 as (Vi)0 =

⋂
{ Kerh | h ∈ Ωi − CΩi(z) }. If V is not irreducible as an

S〈α〉-module, it follows by induction that CVi
(α) 6⊆ (Vi)0 and that (C on

CV (α)/C(Vi)0(α)) ≡w (C on Vi) for i = 1, ..., l. Notice that (Vi)0 ⊇ Vi ∩ V0. Thus
we have (C on Xi) ≡w (C on Vi) for Xi = CVi

(α)/CVi∩V0(α). Since V = ⊕li=1Vi
and X ∼= ⊕li=1Xi, we conclude that (C on X) ≡w (C on V ), a contradiction.
Therefore we can regard V as an irreducible S〈α〉-module.

Claim 2. For each x ∈ Z(S), there is a nontrivial element a in 〈α〉 such that
[x, a, z] = 1. In particular, [Z(S), z, z] = 1.

Assume the claim to be false. Note that S1 = Z(S)C is an 〈α〉-invariant
subgroup of S, C C S1〈α〉 and V |S1〈α〉 is completely reducible. Let Vi be an
irreducible S1〈α〉-submodule of V and let W be a C-homogeneous component of
Vi. Since Z(S)〈α〉 ≤ CS1〈α〉(C) ≤ NS1〈α〉(W ), Vi|C is homogeneous. Moreover,
by Lemma 2.2 applied to the action of S〈α〉 on V , we get Ker(Z(S) on Vi) =
Ker(Z(S) on V ) = 1.

We observe next that CZ(S)(f) = 1 for each 0 6= f ∈ CΩ(α) : To see this,
consider 〈f〉 = {cf | c ∈ k}, as a CZ(S)(f)〈α〉-submodule of V ∗.
By applying Lemma 2.2 to the action of S〈α〉 on V ∗ we conclude that
CZ(S)(f) = Ker(CZ(S)(f) on V ∗) = 1, as desired.

Since [Z(S), z] 6= 1, [Z(S1), z] is nontrivial on Vi. Then Lemma 2.1 implies that
CVi(α) 6= 0. If CVi(α) 6⊆ V0 holds, as Vi|C is homogeneous we have
(C on CVi

(α)/CVi∩V0(α)) ≡w (C on Vi). Hence there is at least one irreducible
S1〈α〉-submodule Vi of the completely reducible module V |S1〈α〉 such that CVi(α) ⊆
V0. Notice that CVi

(α) 6= 0 implies Vi ∩ V0 6= 0. We define (Vi)0 similar to V0

as (Vi)0 =
⋂
{ Kerh | h ∈ Ωi − CΩi

(z) } for Ωi = Ω|Vi
. Since Vi ∩ V0 ⊆ (Vi)0

we have (Vi)0 6= 0. We can choose f ∈ Ω such that f((Vi)0) 6= 0 with fi =
f |Vi

∈ CΩi
(z). Since Vi is completely reducible as an S1〈z〉-module, we have a

collection {Ui1, ..., Uit} of irreducible S1〈z〉-submodules such that Vi = ⊕tj=1Uij ,
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and thus V ?i = ⊕tj=1U
∗
ij . Set fij = fi|Uij

and consider 〈fij〉 = {cfij | c ∈ k}
as a CZ(S)(fij)〈z〉-submodule of U∗ij . An application of Lemma 2.2 gives that
CZ(S)(fij) = Ker(CZ(S)(fij) on U∗ij) for each j = 1, ..., t. In fact, we have

CZ(S)(fi) =
t⋂

j=1

Ker(CZ(S)(fij) on U∗ij) ≤ Ker(CZ(S)(fi) on V ∗i ) = 1.

Note also that, by our assumption, for each 1 6= a ∈ 〈α〉 there exists x ∈ Z(S)
with [x, a, z] 6= 1. By Lemma 2.3 applied to the action of S1〈α〉 on Vi with fi
and Ωi, it follows that CVi

(α) 6⊆ (Vi)0. On the other hand CVi
(α) ⊆ V0 as

Vi ∩ V0 ⊆ (Vi)0. This contradiction completes the proof.

Claim 3. s 6= p.

Suppose that this claim is false. Then obviously D = [S, z]p−1 6= 1, and hence
C = CD(α) 6= 1. To simplify the notation we set S1 = [S, z]p−3[φ(S), z]. We observe
by Lemma 5.37 in [4] that [[S, z]p−3, D] ≤ [φ(S), z]p−3 = 1 as [Z(S), z, z] = 1.
Therefore D ≤ Z(S1).

We have a collection {V1, ..., Vl} of irreducible S1〈α〉-modules such that V =
⊕li=1Vi. It should be noted that CCS1〈α〉 and hence V |C is completely reducible.
In particular, Vi|C is homogeneous for each i ∈ {1, ..., l} by the fact that C ≤
Z(S1〈α〉).

We choose i ∈ {1, ..., l} such that C acts nontrivially on Vi and set Xi =
CVi(α)/CVi∩V0(α). Now (C on Xi) ≡w (C on CVi(α)), as Vi|C is homogeneous.
Then Vi ∩V0 6= 0, and hence there exists f ∈ CΩ(z) such that f(Vi ∩V0) 6= 0. By
the fact that Vi|S1〈z〉 is completely reducible, there is
a collection {Ui1, ..., Uit} of irreducible S1〈z〉-submodules such that
Vi = ⊕tj=1Uij . Note that V ∗i = ⊕tj=1U

∗
ij . Let f |Vi

= fi and fij = fi|Uij
for

some j such that D is nontrivial on Uij . We consider 〈fij〉 = {cfij | c ∈ k} as
a (CDN (fij))〈z〉-submodule of U∗ij for N = [φ(S), z]. By Lemma 2.2, it follows
that CDN (fij) = Ker(CDN (fij) on U∗ij). Then CDN (fij) is properly contained
in DN . We set S = S/N , and take y ∈ D−CDN (fij). This implies the existence

of x ∈ [S, z]p−3 = [S, z]p−3 = S1 with y = [x, z, z]. By Lemma 5.37 in [4],

[[S, z]p−2, S1] = [[S, z]p−2, [S, z]p−3] ≤ [φ(S), z]p−4 ≤ N = 1

and hence CDN (fij)C S1.
Let x = xN for x ∈ [S, z]p−3. We claim that for any 1 6= b ∈ 〈α〉, [x, b, z] 6∈

CS(fij) : Towards a contradiction, we assume that there exists 1 6= b ∈ 〈α〉 such
that [x, b, z] ∈ CS(fij). Now y ∈ CT (fij), for T = [S, z]p−2. Since

CT (fij)N ∩DN = CTN (fij) ∩DN = CDN (fij)

we have y ∈ CDN (fij), which is not possible. Thus [x, b, z] 6∈ CS(fij) for any
1 6= b ∈ 〈α〉.
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After this preparation we apply Lemma 2.3 to the action of S1〈α〉 on Vi with
Ωi = Ω|Vi

and fi, and obtain CVi
(α) 6⊆ V0. This gives

CV (α) 6⊆ V0 and (C on CV (α)/CV0(α)) ≡w (C on CV (α))

by using the fact that (C on Xi) ≡w (C on CVi
(α)) holds. Applying Lemma

2.1 to the action of S〈α〉 on V , we see that (C on CV (α)) ≡w (C on V ),
whence the equivalence (C on V ) ≡w (C on CV (α)/CV0(α)) holds. So the claim
is established.

Claim 4. The theorem follows.

We observed that s 6= p and [Z(S), z] = [Z(S), z, z] = 1. Thus S is a nonabelian
group which is a central product of the subgroups [S, z] and CS(z).

Our next goal is to show that [φ(S), α] = 1 : Assume otherwise. Every φ(S)-
homogeneous component of V is stabilized by S〈z〉. If V |φ(S) is homogeneous,
then φ(S) acts by scalars on V , and hence [φ(S), α] = 1. Thus there is a proper
subgroup B of 〈α〉 which is the stabilizer of every φ(S)-homogeneous component
of V . By induction applied to the action of SB on V , we obtain

(CS(B) on CV (B)/CV0(B)) ≡w (CS(B) on V ) and CV (B) 6⊆ V0.

This gives the equivalence (C on CV (B)/CV0(B)) ≡w (C on V ), as we have
C = CD(α) = CS(α) ⊆ CS(B). Since V = WS〈α〉 for some irreducible SB-
module W , the C×〈α〉-modules V |C×〈α〉 and W |CB⊗k(〈α〉/B) are isomorphic.
It is straightforward to verify that

CV (B) ∼= CW (B)⊗ k(〈α〉/B) and CV (α) ∼= CW (B)⊗ Ck(〈α〉/B)(α).

Then

(C onCV (B)) ≡w (C onCV (α)) and hence (C onV ) ≡w (C onCV (α)/CV0(α)).

This forces that CV (α) ⊆ V0. Pick an element v1 ∈ CV (B) − V0 . Then there

exists f ∈ Ω − CΩ(z) such that f(v1) 6= 0 . Let 〈α〉 =
m⋃
i=1

Bai be a coset decom-

position of 〈α〉 with respect to B, and set v =
m∑
i=1

vai
1 . It is straightforward to

verify that v ∈ CV (α) and hence v ∈ V0 . Let {W1, . . . ,Wm} be the collection of
Φ(S)-homogeneous components of V and λi be the irreducible character of Φ(S)
corresponding to Wi for i = 1, . . . ,m. Then, for each x ∈ Φ(S), we have

0 = (xf)(v) = f(x−1v) =
m∑
i=1

f(x−1vi) =
m∑
i=1

λi(x−1)f(vi)

where λi, i = 1, . . . ,m, are linear characters with λi(x)vi = xvi . Since
λi, i = 1, . . . ,m , are linearly independent, we get f(vi) = 0 for all i, a contradiction
as f(v1) 6= 0 . This shows that [φ(S), α] = 1.

Set S1 = [S, z]. Then as Z(S) ≤ CS(z) and [S1, CS(z)] = 1, we have [Z(S1), z] =
1. Note that S1 is nonabelian and 1 6= S′1 ≤ φ(S1) ≤ φ(S). Since V =
〈CV (x) | 1 6= x ∈ φ(S)〉, it is easy to verify that φ(S) is cyclic of order s and hence
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S′1 = φ(S1). We also have Z(S1) = φ(S1), because otherwise 1 6= Z(S1)/φ(S1) ≤
CS1/φ(S1)(z) = 1, a contradiction. Thus S1 is extraspecial.

Applying Lemma 2.4 to the action of S1〈α〉 on V , we get CV (α) 6= 0.
We claim next that CV (α) 6⊆ V0 : Since V0 6= 0, there exists 0 6= f ∈ CΩ(z)
with f(V0) 6= 0. We define C∗(f) = {y ∈ S1 | yf = cf for some c ∈ k}. Let
y1, y2 ∈ C∗(f). Now [y1, y2] has eigenvalue 1 on V ∗. Since [y1, y2] ∈ φ(S1) is
cyclic of order s and since φ(S1) acts faithfully and by scalars on V , we have
[y1, y2] = 1. That is, C∗(f) is abelian. So C∗(f) is contained in a maximal
abelian subgroup of S1. If |S1| = s2t+1, a maximal abelian subgroup of S1 has
order st+1. Now, |N | ≤ st for N = C∗(f)/φ(S1). We define the map αb : S̃1 → S̃1

by αb(x̃) = [x̃, b] for each 1 6= b ∈ 〈α〉. Since CS̃1
(z) = 1, the map αb is injective.

For any irreducible 〈α〉-submodule U1 of S̃1, we have S̃1 = U1 ⊥ U2 ⊥ ... ⊥ Ul
; an orthogonal sum of irreducible 〈α〉-modules each of which is a symplectic
space of dimension 2m for some positive integer m on which α acts regularly and
faithfully. We see that |α| divides sm+1 and hence |α|−1 = pn−1 ≤ st. Since αb
is injective, we have the equality

⋃
16=b∈〈α〉 α

−1
b (N−{1})∪{1} =

⋃
1 6=b∈(α) α

−1
b (N).

Obviously this set contains at most (|α| − 1)(|N | − 1) + 1 < s2t = |S̃1| elements
and hence there exists x̃ = xφ(S1) ∈ S̃1 with [x̃, b] 6∈ N , that is, x̃ 6∈ α−1

b (N) for
each 1 6= b ∈ 〈α〉. Now [x, b] 6∈ C∗(f) for each 1 6= b ∈ 〈α〉. On the other hand
[S1, z] = S1 implies Z(S1) = CS1(z) = φ(S1) ≤ C∗(f), that is CS1/C∗(f)(z) = 1. It
follows that [x, b, z] 6∈ CS(f) for each 1 6= b ∈ 〈α〉, because otherwise [x, b]C∗(f)
is centralized by z. After this preparation
we apply Lemma 2.3 and conclude that CV (α) 6⊆ V0, as desired.

Since [φ(S), α] = 1, the group S is a central product of C and [S, α].
Notice next that C 6= 1, because otherwise (C on V ) ≡w (C on CV (α)/CV0(α)),
a contradiction. On the other hand, as [C, [S, α]〈α〉] = 1, the C-module V |C is
homogeneous and hence the equivalence (C on CV (α)/CV0(α)) ≡w (C on V ) holds
as CV (α) 6⊆ V0. This final contradiction completes the proof of claim 4. �

The next theorem is a generalization of Theorem 2.1 in [7] (see also Theorem 2
in [6]).

Theorem 3.2. Let S C S〈α〉, where S is an s-group, 〈α〉 is cyclic of order
pn for distinct primes s and p, Φ(Φ(S)) = 1 and Φ(S) ≤ Z(S). Assume that
if s = 2, either S is abelian or p is not a Fermat prime. Let V be an irreducible
kS〈α〉-module on which [S, z] acts nontrivially, where k is a field of characteristic
different from s for z = αp

n−1
. Then

[V, z]p−1 6= 0 and (CS(α) on V ) ≡w (CS(α) on C[V,z]p−1(α)).

Proof. We use induction on dim V + |S〈α〉|. Then we may assume that k is a
splitting field for all subgroups of S〈α〉 and that S acts faithfully on V .
To simplify the notation we set C = CS(α) and U = [V, z]p−1.

Claim 1. [Z(S), z] = 1.
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Assume the contrary. The stabilizer of any Z(S)-homogeneous component of
V |Z(S) is S, whence V is induced from an irreducible S-module W . By Mackey’s
theorem, the C×〈α〉-modules V |C×〈α〉 and W |C⊗k〈α〉 are isomorphic.It follows
that the modules U and W |C ⊗ [k〈α〉, z]p−1 are also C×〈α〉-isomorphic. Then
as [k〈α〉, z]p−1 6= 0, we have U 6= 0. It is also clear that CU (α) is C × 〈α〉-
isomorphic to W |C ⊗ C[k〈α〉,z]p−1(α). Thus as both V and CU (α) are multiples
of the same C-module W |C , we conclude that the equivalence (C on V ) ≡w (C
on CU (α)) holds. This contradiction proves the claim.

Claim 2. [Z(S), α] = 1.

Assume this claim is false. By hypothesis [S, z] 6= 1 and hence S is nonabelian.
Let Ω be the set of all homogeneous components of V |Z(S). Note that for any
W ∈ Ω, NS〈α〉(W ) = SN〈α〉(W ). Now the group B = N〈α〉(W ) stabilizes each
member of Ω. Furthermore 1 6= B 6= 〈α〉 as [Z(S), z] = 1, but [Z(S), α] 6= 1. We
observe that [S, z] is nontrivial on each W ∈ Ω, because otherwise it is trivial on
each member of Ω. Applying induction to the action of SB on W , we obtain

[W, z]p−1 6= 0 and (CS(B) on W ) ≡w (CS(B) on C[W,z]p−1(B)).

It follows that (C on W ) ≡w (C on C[W,z]p−1(B)). Since W is arbitrary in Ω, the
equivalence (C on V ) ≡w (C on CU (B)) holds.

By Mackey’s theorem, the C × 〈α〉-modules V |C×〈α〉 and W |CB ⊗ k(〈α〉/B) are
isomorphic. We then have U ∼= [W, z]p−1 ⊗ k(〈α〉/B) which yields that
CU (B) ∼= C[W,z]p−1(B) ⊗ k(〈α〉/B) and CU (α) ∼= C[W,z]p−1(B) ⊗ Ck(〈α〉/B)(α).
It is now easy to verify that (C on CU (B)) ≡w (C on CU (α)), which leads to
the equivalence (C on V ) ≡w (C on CU (α)), a contradiction.

Claim 3. U = [V, z]p−1 = 0 and α = z.

Since [Z(S), α] = 1, we have C 6= 1 and the group S is a central product of
the subgroups [S, α] and C. In particular C C S〈α〉 and V |C is homogeneous.
Then, if U 6= 0, we have CU (α) 6= 0 and (C on V ) ≡w (C on CU (α)), which is a
contradiction. Therefore, U = 0.

Assume now that α 6= z. Let M be an irreducible S〈z〉-component of V on
which [S, z] acts nontrivially. By induction applied to the action of S〈z〉 on M ,
we obtain [M, z]p−1 6= 0, which is contrary to the fact that U = 0. Thus α = z.

Claim 4. The theorem follows.

Recall that the group S is nonabelian and 1 6= φ(S) ≤ Z(S〈α〉), as [Z(S), α] = 1.
It is also clear that φ(S) is cyclic of order s, since V is an irreducible kS〈α〉-
module on which S acts faithfully. As the group S is a central product of S1

and C for S1 = [S1, α], we observe that S′1 = Z(S1) = φ(S1) = CS1(α) is cyclic of
order s, that is, S1 is extraspecial.

Now V = U1 ⊗k U2 where U1 is an irreducible S1〈α〉-module on which S1

acts faithfully and U2 is an irreducible C-module. Since [U1, α]p−1 ≤ U = 0, by
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Theorem IX.3.2 in [9] applied to the action of S1〈α〉 on U1, we get s = 2, contrary
to the fact that S1 is nonabelian. �

0,2cm
We now can strengthen Theorem 2.3 in [7](see also Theorem 3 in [6]).

Theorem 3.3. Let G C GA, let 〈α〉 E A be of prime power order pn, and let
P1, ..., Pt be an A-Fitting chain of G such that [P1, z] 6= 1 where z = αp

n−1
, Pi

is a pi-group for a prime pi, and t ≥ 3. Assume that p ≥ 5 whenever pi = p

for some i ∈ {1, ..., t}. Assume further that if pi = 2, either Pi is abelian or p is
not a Fermat prime. Then there are sections Di0 , ..., Dt of Pi0 , ..., Pt, respectively,
forming an A-Fitting chain of G such that α centralizes each Dj

for j = i0, ..., t where i0 =
{

2 , if p1 6= p
3 , if p1 = p

.

Proof. The procedure of Theorem 3 in [6] is adopted again with the modifications
that Lemma 2.1, Theorem 3.1 and Theorem 3.2 in [6] are replaced with Lemma
2.1, Theorem 3.1 and Theorem 3.2 of this paper, respectively, and the subgroups
Fi of Ei for i = 1, ..., t+ 1, are now defined as follows:

F1 = {1}
Fi = CEi

(α) , if pi 6= p and i ≥ 2

F2 = C[E2,z]p−1(α) , if p2 = p

Fi = [C[Ei,z]p−1(α), Fi−1] , if pi = p and i ≥ 3

�

The next theorem is a slightly modified version of Lemma 4.5 in [7].

Theorem 3.4. Let S C SA where S is a q-group for an odd prime q, Φ(S) ≤
Z(S), and A is cyclic of order pnq for some prime p. Suppose that [S,Aq]q−1 6≤
Φ(S) and [S,Ap] = S where Ap and Aq denote the Sylow p-and q-subgroups of
A respectively. Let V be a kSA-module for a field k which is a splitting field
for all subgroups of SA with characteristic not dividing |SA|. If [S,Aq]q−1 acts
nontrivially on V then CV (A) 6= 0.

Proof. Assume this claim to be false. To simplify the notation we set
S = S/Ker(S on V ) and D = [S,Aq]q−1. By Lemma 2.1 applied to the action of
SAq on V , we see that

CV (Aq) 6= 0 and Ker(CD(Aq) on CV (Aq)) = Ker(CD(Aq) on V ).

Moreover we have

Ker( [CD(Aq), Ap ] on CV (Aq)) = Ker( [CD(Aq), Ap ] on V ).

Lemma 2.4 applied to the action of [CD(Aq), Ap ]Ap on CV (Aq) yields that
[CD(Aq), Ap ] = 1. Then [D,Ap ] = 1 by Thompson A × B Lemma and hence
D ≤ Φ(S) = Φ(S), which is contrary to our assumption. �
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4. An Application

In this section we prove the main result of this paper as an application of the
major theorems proved in Section 3.

Throughout the section, a sequence P1, ..., Pt of groups is called an F-chain of
length t if the following are satisfied:

(a) Each Pi, i = 1, ..., t, is a nontrivial pi-group for some prime pi.
(b) [Pi+1, Pi] = Pi+1, for i = 1, ..., t− 1.
(c) pi 6= pi+1, for i = 1, ..., t− 1.

It is easy to verify that the Fitting length of a finite solvable group G is the
maximum of the lengths of all such F-chains whose terms are sections of G.

Let A act on G by automorphisms. We call an F-chain whose terms are all
A-invariant sections of G, an F(A)-chain.

Remark 4.1. When A normalizes a Sylow system of G, by a slight modification of
Lemma 8.2 in [4], one can show the existence of an F(A)-chain P1, ..., Pf of length
f = f(G), where Pi = Si/Ti is an A-invariant section of G, for each i = 1, ..., f ,
satisfying the following conditions:

(a) Pi is a nontrivial pi-group for some prime pi where Φ(Pi) ≤ Z(Pi),
Φ(Φ(Pi)) = 1 and Pi has exponent pi when pi is odd, for i = 1, ..., f .
(b) pi 6= pi+1, for i = 1, ..., f − 1.
(c) Ti = Ker(Si on Pi+1) for i = 1, ..., f − 1, and Tf = 1 and Sf ≤ F (G).
(d) [ Φ(Pi+1), Si] = 1 for i = 1, ..., f − 1.
(e) (

∏
1≤j<i Sj)A acts irreducibly on P̃i.

Finally, we are ready to prove our main result.

Theorem 4.2. Let A be a cyclic group of order pnq, for prime numbers p and q

coprime to 6, acting by automorphisms on a finite solvable group G whose Sylow
2-subgroups are abelian. If A acts fixed point freely on G, then f(G) ≤ `(A).

Proof. By Theorem C in [7] we may assume that n ≥ 2. Let ` = `(A) and
f = f(G). As indicated in Remark 4.1, there is an F(A)-chain of length f in G.
Since A is nilpotent, it is a Carter subgroup of the semidirect product of G by
A. Therefore it is a Carter subgroup of any semidirect product of any A-invariant
section of G by itself. This tells us that A acts fixed point freely on each section
of this chain and hence it is sufficient to prove the following assertion which refers
only to F(A)-chains:

Let A be a cyclic group of order pnq where p and q are prime numbers coprime
to 6, and let P1, ..., Pf be an F(A)-chain of a finite solvable group G such that A
acts fixed point freely on Pi for each i = 1, ..., f . Assume that Pi is abelian when
pi = 2. Then f ≤ `.

Set A = Ap×Aq where Ap = 〈α〉 and Aq are Sylow p- and q-subgroups of A.
We proceed by induction on ` and deduce a contradiction over a series of steps. We
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may assume that P1, ..., Pf with Pi = Si/Ti satisfy the conditions (a)-(e) stated
in Remark 4.1.

Notice that [Pf−1, zp] 6= 1, because otherwise P1, ..., Pf−2, Pf−1 is an
F(A/〈zp〉)-chain such that A/〈zp〉 acts fixed point freely on each of its terms, and
hence f − 1 ≤ `− 1 by induction.

Step 1. [Pi, zp] = 1, for i = 1, ..., f − 2, where zp = αp
n−1

.

If [Pf−3, zp] 6= 1, then Theorem 3.3 gives an A-subchain Df−1, Df of Pf−1, Pf
where Df−1 and Df are sections centralized by Ap. The fixed point free action of
Aq on the semidirect product DfDf−1 leads to a contradiction. Then [Pf−3, zp] =
1 and hence [Pi, zp] = 1, for i = 1, ..., f − 2. It remains to prove that [Pf−2, zp] = 1:
Assume otherwise. A similar argument using Theorem 3.3 shows that pf−2 = p.
Then CPf−2(Aq) = 1.

We shall observe next that [Pf−3, Aq] = 1. If pf−3 6= q, an application of The-
orem 3.1 to the action of Pf−3Aq on P̃f−2 yields that [Pf−3, Aq] = 1. Hence we
may assume that pf−3 = q. Then we have f > 4, because otherwise [Pf−3, Aq] = 1,
as desired, by the irreducibility of Pf−3 = P1 as an A-module.

If [Pf−3, Aq]q−1 6= 1, then we consider the action of Pf−3Aq on P̃f−2 again
and get a contradiction by Lemma 2.1. We apply now Theorem 3.2 to the action
of Pf−4Aq on P̃f−3 and get [Pf−4, Aq] = 1. Thus we have [Pi, Aq] = 1 for
i = 1, ..., f − 4. Since Pi, i = 1, ..., f − 3, is a p′-group, we may assume that∏f−3
i=1 Si is centralized by zp. It follows by the irreducibility of P̃f−2 as a

(
∏f−3
i=1 Si) A-module that [P̃f−2, zp] = 1. We then have [Pf−2, zp] = 1 by the

three-subgroups lemma as [φ(Pf−2), Sf−3] = 1. Consequently, [Pi, zp] = 1, for
i = 1, ..., f − 2.

Step 2. pf−1 6∈ {p, q}.

We suppose that this claim is false and that pf−1 = p. Then Thompson’s
A × B lemma gives [CPf−1(zp), Pf−2] 6= 1 . It is now easy to verify that the se-
quence P1, ..., Pf−2, [CPf−1(zp), Pf−2] forms an F(A/〈zp〉)-chain such that A/〈zp〉
acts fixed point freely on each of its terms. By induction we get f − 1 ≤ ` − 1,
which is a contradiction.

We now have to handle the case pf−1 = q, which is a little more trouble-
some. Obviously, CPf−1(Ap) = 1. Notice that [Pf−2, Aq] 6= 1, because otherwise
[Pi, 〈zp〉Aq] = 1, for i = 1, ..., f−2, and hence f−2 ≤ `−2 by induction. Theorem
3.2 applied to the action of Pf−2Aq on [P̃f−1, zp] yields that [Pf−1, zp, αq]q−1 6= 1.
Applying now Theorem 3.4 to the action of [Pf−1, zp]A on Pf , we get CPf

(A) 6= 1,
a contradiction. Consequently, we observe that Pf−1 is a {p, q}′-group.

Step 3. Final contradiction.

Let now X = [Pf−1, zp]. It is known that X 6= 1. Applying Lemma 2.4 to
the action of XA on Pf , we obtain [X,Aq] = 1. Then by the three-subgroups
lemma we have [Aq, Pf−2, X] = 1. However, Pf−1 = [Pf−1, zp]CPf−1(zp) and hence
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[CPf−1(zp), [Pf−2, Aq]] 6= 1. In fact [CPf−1(zp), Pf−2] 6= 1. It is now straightfor-
ward to verify that P1, ...Pf−2, [CPf−1(zp), Pf−2] is an F(A/〈zp〉)-chain such that
(A/〈zp〉) acts fixed point freely on each of its terms. Finally, we obtain f−1 ≤ `−1
by induction. This completes the proof. �
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