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Abstract. A finite group FH is said to be Frobenius-like if it has a nontrivial nilpotent
normal subgroup F with a nontrivial complement H such that FH/[F, F ] is a Frobenius
group with Frobenius kernel F/[F, F ]. Suppose that a finite group G admits a Frobenius-like
group of automorphisms FH of coprime order with certain additional restrictions (which
are satisfied, in particular, if either |FH| is odd or |H| = 2). In the case where G is a finite
p-group such that G = [G,F ] it is proved that the rank of G is bounded above in terms
of |H| and the rank of the fixed-point subgroup CG(H), and that |G| is bounded above
in terms of |H| and |CG(H)|. As a corollary, in the case where G is an arbitrary finite
group estimates are obtained of the form |G| 6 |CG(F )| · f(|H|, |CG(H)|) for the order, and
r(G) 6 r(CG(F )) + g(|H|, r(CG(H))) for the rank, where f and g are some functions of two
variables.

1. Introduction

In several recent papers [1, 2, 3, 4, 5, 6, 7, 8], finite groups G admitting a Frobenius group
of automorphisms FH with kernel F and complement H were considered in the case where
the kernel F acts fixed-point-freely: CG(F ) = 1. In these papers bounds were obtained for
the order, rank, Fitting height, nilpotency class, and exponent of the group G in terms of
the corresponding properties and parameters of CG(H) and |H| (for nilpotency class and
exponent under certain additional conditions). Similar restrictions for the order, rank, and
Fitting height of G were later obtained in [9, 10] under weaker assumptions on the action
of a Frobenius group of automorphisms FH of coprime order, without assuming that the
action of F is fixed-point-free.

In the present paper we obtain estimates for the rank and order of a finite group G
admitting a so-called Frobenius-like group of automorphisms FH of coprime order with
certain additional restrictions (which are satisfied, in particular, if either |FH| is odd or
|H| = 2) also without assuming that the action of F is fixed-point-free. A finite group
FH is said to be Frobenius-like if it has a nontrivial nilpotent normal subgroup F called
kernel which has a nontrivial complement H such that FH/[F, F ] is a Frobenius group
with Frobenius kernel F/[F, F ]. The results of the present paper use a theorem of the first
two authors [11, Theorem A] on linear representations of Frobenius-like groups, which is
in turn based on their generalization [11, Theorem B] of the well-known Hall–Higman type
Satz 17.13 in [12] (attributed to Dade) about representations of a cyclic extension of an
extraspecial group to a more general situation.

As in [9] the proofs are essentially reduced to studying Sylow p-subgroups of G, for various
primes p. Since in the case where G is a p-group satisfying G = [G,F ] the results are most
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strong, it is convenient to state a separate theorem for p-groups. The rank of a finite group
is the minimum number r such that every subgroup can be generated by r elements.

Theorem 1. Let FH be a Frobenius-like group with kernel F and complement H such that
a Sylow 2-subgroup of H is cyclic and normal and F has no extraspecial sections of order
p2m+1, where pm + 1 = |H1| for some subgroup H1 6 H . If a finite p-group P admits FH as
a group of automorphisms of coprime order such that P = [P, F ], then

(a) the nilpotency class of P is at most 2 logp |CP (H)|;
(b) the order of P is bounded above in terms of |H| and |CP (H)|;
(c) the rank of P is bounded above in terms of |H| and the rank of CP (H).

Note that the condition that F has no extraspecial sections of order p2m+1, where pm+1 =
|H1| for some subgroup H1 6 H, is satisfied, for example, if |FH| is odd, or if the orders of F
and |H| satisfy well-known restrictions related to powers of 2 and Fermat or/and Mersenne
primes, or simply if |H| = 2. As a corollary we obtain a result on the rank and order of an
arbitrary finite group with a Frobenius-like group of automorphisms. Let r(K) denote the
rank of a finite group K.

Theorem 2. Let FH be a Frobenius-like group with kernel F and complement H such that
a Sylow 2-subgroup of H is cyclic and normal, and F has no extraspecial sections of order
p2m+1, where pm + 1 = |H1| for some subgroup H1 6 H . If a finite group G admits FH as
a group of automorphisms of coprime order, then

(a) |G| 6 |CG(F )| · f(|H|, |CG(H)|) for some function f of two variables ;
(b) r(G) 6 r(CG(F )) + g(|H|, r(CG(H))) for some function g of two variables.

Compared to the results in [9], replacing the condition of FH being a Frobenius group
by being a Frobenius-like group is a very significant relaxation of the hypotheses, while the
additional conditions on the structure of FH are unavoidable in view of well-known examples
related to so-called exceptional Hall–Higman–type situations.

All the functions mentioned in the theorems can be easily given explicit upper estimates.

2. Preliminaries

The induced group of automorphisms of an invariant section is often denoted by the same
letter. We use the abbreviation, say, “(m,n)-bounded” for “bounded above by a function
depending only on m and n”.

Recall that if a group A is acting by automorphisms on a finite group G of coprime order,
(|A|, |G|) = 1, then the fixed points of the induced action of A on the quotient G/N by an
A-invariant normal subgroup are covered by fixed points of A in G:

CG/N(A) = CG(A)N/N.

In particular, [[G,A], A] = [G,A]. For every prime p, the group G has an A-invariant Sylow
p-subgroup. We shall use these well-known properties of coprime action without special
references.

We now reproduce the statement of a theorem in [11].

Theorem 3 ([11, Theorem B]). Let H be a finite group in which each Sylow subgroup is
cyclic and H/F (H) is not a nontrivial 2-group. Let P be an extraspecial group of order
p2m+1 for some prime p not dividing |H|. Suppose that H acts on P in such a way that H
centralizes Z(P ) and [P, h] = P for any nonidentity element h ∈ H . Let k be an algebraically
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closed field of characteristic not dividing the order of G = PH and let V be a kG-module on
which Z(P ) acts nontrivially and P acts irreducibly. Let χ be the character of G afforded by
V . Then |H| divides pm − δ and

χH =
pm − δ
|H|

ρ+ δµ,

where ρ is the regular character of H , µ is a linear character of H , and δ ∈ {−1, 1}.

The following corollary was stated in [11] as Theorem A in the case of FH of odd order.
Henceforth we use commutator notation [U,G] for the submodule generated by all elements
−u + ug, u ∈ U , g ∈ G, of a kG-module U . We also use the centralizer notation for the
fixed-point subspace CV (A) = {v ∈ V | va = v for all a ∈ A}. It is convenient to introduce
the following condition on a Frobenius-like group FH with kernel F and complement H in
the hypotheses of Theorems 1 and 2:

(∗)


a Sylow 2-subgroup of H is cyclic and normal,

and F has no extraspecial sections of order p2m+1

such that pm + 1 = |H1| for some subgroup H1 6 H.

Corollary 1. Let FH be a Frobenius-like group with kernel F and complement H satisfying
condition (∗). If FH acts by linear transformations on a vector space over an algebraically
closed field k of characteristic coprime to |FH| so that [V, F ] 6= 0, then VH has an H-regular
direct summand ; in particular, then CV (H) 6= 0.

Proof. Note that all Sylow p-subgroups of H are cyclic for p 6= 2 since H is Frobenius
complement in FH/[F, F ], and for p = 2 by hypothesis. We can repeat word-for-word the
proof of [11, Theorem A]; it is clear that any subgroups of H arising in all the inductive
arguments will satisfy the hypotheses of Theorem 3. �

Note that a result like Corollary 1 cannot hold without additional conditions on FH: in
the smallest example F = Q8 is the quaternion group of order 8 and H is generated by its
automorphism of order 3; then the Frobenius-like group FH has a faithful representation in
coprime characteristic in which H acts without nontrivial fixed points.

We make use of the following theorem of Hartley and Isaacs [13].

Theorem 4 ([13, Theorem B]). Let A be an arbitrary finite group. Then there exists a
number δ = δ(A) depending only on A with the following property. Let A act on G, where G
is a finite soluble group such that (|G|, |A|) = 1, and let k be any field of characteristic not
dividing |A|. Let V be any irreducible kAG-module and let S be any kA-module that appears
as a component of the restriction VA. Then dimk V 6 δmS , where mS is the multiplicity of
S in VA.

Combining the Hartley–Isaacs Theorem 4 with Corollary 1 we obtain the following.

Corollary 2. Let FH be a Frobenius-like group satisfying condition (∗). If FH acts by
linear transformations on a vector space over a field k of characteristic coprime to |FH| so
that V = [V, F ], then dimV 6 δ(H) dimCV (H), where δ(H) is a number depending only on
H given by the Hartley–Isaacs Theorem 4.

Proof. We may assume that the ground field is algebraically closed, since neither the hy-
pothesis nor the conclusion is affected by field extensions. Let V =

⊕
Vi, where the Vi are
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irreducible kFH-submodules. Clearly, [Vi, F ] = Vi for every i. By Corollary 1, the triv-
ial kH-module appears as a component of ViH ; its multiplicity is exactly dimCVi(H). By
Theorem 4, dimVi 6 δ(H) dimCVi(H), whence dimV =

∑
dimVi 6 δ(H)

∑
dimCVi(H) =

δ(H) dimCV (H). �

A finite p-group P is said to be powerful if [P, P ] 6 P p for p 6= 2, or [P, P ] 6 P 4 for p = 2.
(Here, An = 〈an | a ∈ A〉.) We recall the important connections of powerful p-groups with
ranks of finite p-groups.

Lemma 2.1 ([14]). (a) If a powerful p-group P is generated by d elements, then the rank
of P is at most d and P is a product of d cyclic subgroups.

(b) If P is a finite p-group of rank r, then P contains a characteristic powerful subgroup
of index at most pr(log2 r+2).

Lemma 2.2. If a finite p-group P has rank r and exponent pn, then |P | 6 pnf(r) for some
r-bounded number f(r).

Proof. The group P can be assumed to be powerful by Lemma 2.1(b); Lemma 2.1(a) com-
pletes the proof. �

The following result was obtained by Kovács [15] for soluble groups on the basis of Hall–
Higman type theorems and extended, with the use of the classification, to arbitrary finite
groups by Longobardi and Maj [16] (with the bound 2d) and Guralnik [17].

Lemma 2.3. If d is the maximum of the ranks of the Sylow p-subgroups of a finite group
(over all primes p), then the rank of this group is at most d+ 1.

We shall also need the following well-known fact about nilpotent groups.

Lemma 2.4. Let G be a nilpotent group of nilpotency class c.
(a) The order of G is bounded in terms of c and the order of G/[G,G].
(b) The rank of G is bounded in terms of c and the rank of G/[G,G].

Proof. If γi = γi(G) are terms of the lower central series of G, then there are homomorphisms

γ1/γ2 ⊗ · · · ⊗ γ1/γ2︸ ︷︷ ︸
k

→ γk/γk+1

from the tensor power on the left onto γk/γk+1. Both parts of the lemma follow. �

3. Finite p-groups

Proof of Theorem 1. (a) Recall that P is a finite p-group admitting a Frobenius-like group
FH of automorphisms of coprime order with kernel F and complement H satisfying condi-
tion (∗). Let γi = γi(P ) denote terms of the lower central series of P . Let |CP (H)| = pn. If
V is an FH-invariant elementary abelian section such that [V, F ] 6= 1, then CV (H) 6= 1 by
Corollary 1. Hence the group F can act nontrivially on at most n factors of the lower central
series of P . Consequently, for some i 6 2n the group F acts trivially on the two consecutive
factors γi/γi+1 and γi+1/γi+2. Then [F, γi, P ] 6 [γi+1, P ] = γi+2 and [γi, P, F ] = [γi+1, F ] 6
γi+2. By the Three Subgroup Lemma we obtain [[P, F ], γi] = [P, γi] = γi+1 6 γi+2. It follows
that γi+1 = 1, since P is a nilpotent group, so that P is nilpotent of class at most 2n, as
required.

(b) Given a bound for the nilpotency class obtained in (a), a bound for the order will
follow by Lemma 2.4(a) if we obtain a bound for the order of P/γ2. Since P = [P, F ],
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we also have P/γ2 =
[
P/γ2, F

]
, whence CP/γ2(F ) = 1, so that also U = [U, F ] for every

elementary abelian FH-invariant section of P/γ2. Regarding U as an FpFH-module, we
see that dimU 6 δ(H) dimCU(H) by Corollary 2, whence |U | 6 |CU(H)|δ(H). Since the
order of P/γ2 is equal to the product of the orders of such suctions U , we obtain |P/γ2| 6
|CP/γ2(H)|δ(H) 6 |CP (H)|δ(H), since the action is coprime. By part (a) the nilpotency class
of P is at most 2 logp |CP (H)| 6 2 log2 |CP (H)|. Therefore the order |P | is indeed bounded
in terms of |CP (H)| and |H| only.

(c) We now obtain a bound for the rank of P . The crucial step is to show that P has a
powerful p-subgroup of bounded rank and ‘co-rank’. The construction of a powerful subgroup
is similar to how it was done in [9], [18], and [19]. First we need an estimate for the number
of generators of P . Let r = r(CP (H)) denote the rank of CP (H) for brevity.

Lemma 3.1. The group P is generated by at most rδ(H) elements.

Proof. Consider the action of FH on the Frattini quotient V = P/Φ(P ). We have already
shown in part (b) that dimU 6 δ(H) dimCU(H) by Corollary 2. The result follows, since
dimCU(H) 6 r. �

Let M be a normal FH-invariant subgroup of P , which will be specified later. Consider
the quotient P = P/Mp (or P/M4 if p = 2); let the bar denote the images. Since M = M/Mp

(or M = M/M4) has exponent p (or 4), the order of CM(H) is at most pf for some r-bounded
number f = f(r) by Lemma 2.2.

We denote terms of the upper central series by ζi, starting from the centre ζ1.

Lemma 3.2. We have M 6 ζ2f+1(P ).

Proof. Consider the following central series of P :

M1 = M > M2 > M3 > · · · > 1, where Mi = [...[M,P ], . . . ,P︸ ︷︷ ︸
i−1

].

All the Mi are normal FH-invariant subgroups of P . Let Vi = Mi/Mi+1 and consider the
action of FH on these sections.

Whenever [Vi, F ] 6= 1 we have CVi(H) 6= 1 by Corollary 1. Since |CM(H)| 6 pf , there
can be at most f factors Vi with [Vi, F ] 6= 1. Therefore for some k 6 2f + 1 we must have
both [Vk, F ] = 1 and [Vk+1, F ] = 1. In other words, we have [[F,Mk],P ] 6 [Mk+1,P ] = Mk+2

and [[Mk,P ], F ] = [Mk+1, F ] 6 Mk+2. Hence [[P , F ],Mk] = [P ,Mk] = Mk+1 6 Mk+2 by the
Three Subgroup Lemma.

Then Mk+1 = 1, sinceP is nilpotent: Mk+1 6Mk+2 implies [Mk+1,P ] 6 [Mk+2,P ], that is,
Mk+2 6Mk+3, and so on, which becomes eventually the trivial subgroup, sinceP is nilpotent.
The equation Mk+1 = 1 obtained above means precisely that M 6 ζk(P ) 6 ζ2f+1(P ). �

We continue proving that P has (r, |H|)-bounded rank. We put M = γ2f+1 = γ2f+1(P ).
It is convenient to introduce the unified notation p∗ = p if p 6= 2, and p∗ = 4 if p = 2. Then
by Lemma 3.2 we have [M,M ] 6 [γ2f+1(P ), ζ2f+1(P )] = 1, that is, [M,M ] 6 Mp∗ . This
means precisely that M = γ2f+1(P ) is a powerful p-subgroup of P .

The quotient P/γp∗2f+1 is nilpotent of class 4f + 1, since γ2f+1/γ
p∗
2f+1 6 ζ2f+1(P/γ

p∗
2f+1) by

Lemma 3.2 and by the choice of M . Since P is generated by at most rδ(H) elements by
Lemma 3.1 and P/γp∗2f+1 is nilpotent of class 4f + 1, the rank of P/γp∗2f+1 is (|H|, r)-bounded
by Lemma 2.4(b).

5



In particular, the rank of γ2f+1/γ
p∗
2f+1 is (|H|, r)-bounded. Since γp∗2f+1 6 Φ(γ2f+1), we

obtain that the number of generators of γ2f+1 is (|H|, r)-bounded. But in a powerful p-
group the number of generators is equal to its rank (Lemma 2.1(a)), so that the rank of
γ2f+1 is (|H|, r)-bounded.

Thus, both the rank of P/γ2f+1 and the rank of γ2f+1 are (|H|, r)-bounded, whence the
rank of P is (|H|, r)-bounded, as required. �

Remark. The functions in parts (b) and (c) of Theorem 1 can be assumed to be non-
decreasing in each of their arguments. Actually, any function f(x, y) of two positive integer
variables can be replaced by the function f̄(x, y) = sup{f(u, v) | u 6 x, v 6 y}, which
satisfies the required property.

4. General case

Proof of Theorem 2. Recall that G is a finite group admitting a Frobenius-like group of auto-
morphisms FH of coprime order with kernel F and complement H satisfying condition (∗).
We need to bound the order and rank of G.

For each prime p, let Sp be an FH-invariant Sylow p-subgroup of G (one for each p). We
have Sp = CSp(F )[Sp, F ].

(a) By Theorem 1(b) we have |[Sp, F ]| 6 f1(|H|, |C[Sp,F ](H)|) for some function f1 that is
non-decreasing in each argument. Hence, |Sp| 6 |CSp(F )| · f1(|H|, |C[Sp,F ](H)|). Note also
that Sp = CSp(F ) if [Sp, F ] = 1. Since |G| =

∏
p |Sp| and |CG(F )| =

∏
p |CSp(F )|, we obtain

|G| 6
∏
p

|CSp(F )| ·
∏

[Sp,F ] 6=1

f1(|H|, |C[Sp,F ](H)|) = |CG(F )| ·
∏

[Sp,F ] 6=1

f1(|H|, |C[Sp,F ](H)|).

But C[Sp,F ](H) 6= 1 whenever [Sp, F ] 6= 1 by Corollary 1. Hence in the product on the right-
hand side the primes p divide |CG(H)|. As a rough estimate, there are at most log2 |CG(H)|
such primes. Therefore,

|G| 6 |CG(F )| · f1(|H|, |CG(H)|)log2 |CG(H)|,

which is a required upper estimate for the order with the function f(|H|, |CG(H)|) =
f1(|H|, |CG(H)|)log2 |CG(H)|.

(b) For each prime p, by Theorem 1(c) we have r([Sp, F ]) 6 f2(|H|, r(C[Sp,F ](H))) for
some function f2 that is non-decreasing in each argument. Hence,

r(Sp) 6 r(CSp(F )) + f2(|H|, r(C[Sp,F ](H))) 6 r(CG(F )) + f2(|H|, r(CG(H))).

By Lemma 2.3, an upper estimate for the rank of G is obtained by adding 1 to the right-hand
side. �
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