.
\‘.
)
Y.
_A

EE 446 Computer Architecture |l

Course Coverage: EE445

In EE-445 we studied:
- Computer System components
- Instruction Set Architecture (ISA) design and tradeoffs

- Hardwired and microprogrammed control for basic
multi-cycle machines

- Arithmetic algorithms and implementation in hardware

O . EE446 2025 Ece SCHMIDT _@ 2

Course Coverage: EE446

* Will complete the missing theoretical pieces to obtain a
solid Computer Architecture/Organization background:
— Single-Cycle datapath/controller design
— Multi-cyle datapath/controller design
— Pipelining, superscalar operation, and parallel processing
— Advanced memory hierarchies, and multiprocessor buses
— Software interactions

* In addition you will get some practical experience in the
lab by applying what you learnt in EE-445/446 sequence.

O . EE446 2025 Ece SCHMIDT _@ 3

Course Outline

Introduction to Computer Architecture

Part |. Implementations of ARM Microarchitecture: Single
cycle, multi cycle, pipelined. A more comprehensive
coverage of pipelining, branch prediction

Part |I: Memory Hierarchy: Memory, Virtual Memory,
Cache

Part Ill: Advanced Topics: Superscalar Processors,
possibly more topics

O . EE446 2025 Ece SCHMIDT _@ 4

Copyright notice: Lecture
Note Slides are compiled !

from the teaching material TeXt BOO kS

of these books, previous COMPUTER
lecture notes of EE446 and Computer Architecture, A ARCHITECTURE
additional resources. Part Quantitative Approach,
of the slides are entirely 6th Edition, John
created by the Instructors Hennessy, David

Patterson

Digital Design and
Comp "terAm;:;’f::;‘i:i Computer Organization and
Design ARM Edition: The
Hardware Software Interface (The OR GCAONI\/ll; AEJTTEﬁ
Morgan Kaufmann Series in A IGN

Computer Architecture and
Design) 1st Edition

by David A. Patterson, John L.
Hennessy

Harris & Harris, “Digital Design and
Computer Architecture. ARM Edition”, 1st
Ed., Kaufmann, 2015.

DAVID A PATTERSON
JOHN L HENNESSY

O . EE446 2025 Ece SCHMIDT _@ 5

Grading

Laboratory Work+ Class Project: 40%
3 Short Exams: 30%

Final exam: 30%

5% bonus for attendance >=80%.

Getting 0 from LAB 2 AND LAB3 AND LAB4=» NA from the
course

O . EE446 2025 Ece SCHMIDT _@

LAB 2 Single Cycle Processor

0xA000 LDR R2, RO, #40

0xA004 AND R3, R9, R10

——\ PCSrc
Control

Unit MemtoReg
31:28 MemWrite

Cond
ALUControl
Op

25:20 Funct ALUSrc

15:12 Rd ImmSrc
RegWrite

27:26

ALUFlags

s
CLK CLK
CLK ° 5.;) | I
3

19:16 v v
WE3 [~~~ WE
RA1 Al RD1 SrcA

30 o >3 ALUResult ReadData

: 0] rRA2
Instruction A2 RD2 PC SrcB | < Data
Memory r 1 1 Memo
15:42 A3 Register Wiite Data v

wp3 File WD
4-DPCP|USS R15
[

230 [Extend Extlmm

IJJSU|

A RD

-

Result

EE446 2025 Ece SCHMIDT

LAB 3 Multi Cycle Processor

CLK
PCWrite
AdrSrc Control
MemWrite| Unit
IRWTrite ResultSrc
31:28 Cond ALUControl
27:26 op ALUSrcB
25:20 Funct ALUSrcA
15:12 Rd ImmSrc
RegWrite
Flags
r ALUFlags
CLK | |§ CLK CLK
| CLK P % | -
WE =0 RA1 WE3 A SrcA [~ CLK
RD st 445 {1 Al RO . M
Adi} A EN _ 5| ALUResuit ALUOUt =
3:0 "'ﬁ-- RA2 - | 0
Instr / Data 1 A2 RD2 00] SrcB j I—I 01
Memory Py 51 |_/ A3 _ g o1 10
WD R Register 2 4 =10
v WD3 File Y
3 R15 &
o — et |
23:0 Xten
Data i Extlmm
o Result
EE446 2025 Ece SCHMIDT 8

LAB 4 Pipelined

Processor

CLK CLK CLK
—
PCSreD PCOnE
PCSrcM PCSrcW
BranchD |Branche
7z], [l RegWiiteE | e RegWriteW
MemWriteD MemWriteE
2520 ™ MemWiriteM
[—1 Funct _‘_/
12 | o [MemtoRegD |[MemtoRegE = MemtoRegM MemtoRegW
ALUControlD ALUCOntrolE 5
ALUSTcD ALUSICE 8
FlagWriteD Ll |HasE 1 cﬂndmon]
FlagWriteE Check
ImmSreD
_J
2128 RegSrcD
o CondE
CLK OLK 0 1
CLK - — —
I E] 2 2 é CiK s
1] s
1k § E 5§ Rnyg.1g) 1 ol £l WE s
HH ¢ g2 RAID a1 RO H = 79
- m o 8
] = . . o) | SIcAE 2 o |% %
> LPCE_{a RD) B 2 ol _QT = 3| (g
B [~ SO ALUResulte 5 2
é, Instruction 3 2 RO ; '.(.).' 2 = 3 A Ri 3
i) Memory Register 1 D
— Rdts 12 Fle Mermor
[PCPlusdF 3 Y
—A'O —pvo3 D ReadDataW
PCPlus8D uél WriteDataE N
LL Jris £
= ALUOUtM ALUOUtW
WA3D WA3E WA3M
WA3W
Insty3.o
WA3IW
ResultW
Fetch Decode Execute Memory Write Back

EE446 2025 Ece SCHMIDT

.
\‘.
)
Y.
_A

An Overview of Computer
Architecture

Basic Computer Organization

COMPUTER

/ MOTHERBOARD N
Main memory chips

D Processor -l -
VO chips EETE Teell

ece— T

\
\\ 4 PROCESSOR CHIP
\
\ Core Core Core Core
Y
AY
\
A L3 cache L3 cache
\
A -
- L -~
=TT Core | | Core | | Core | [Core
- \
- \
- 1
- I
= !
/ CORE \ !J'
7 T !
Instruction Anlhme.tlc Load/ !
logic and logic " logi ""
— unit (ALU)| | S07¢081C /
Lllcache | | L1data cache | !

Computer Organization

L2 instruction L2 data and Architecture
cache cache ! .
]] /’De3|gn|ng for
Simple Single Processor Computer - Performance
. William Stallings, 2019
(nProgram controlled) Multi-core Computer Eleventh Edition

O . EE446 2025 Ece SCHMIDT _@ 11

Basic Computer Organization

Core: An individual processing unit on a
processor chip.

— Equivalent in functionality to a CPU on a
single-CPU system.

— Other specialized processing units, such
as one optimized for vector and matrix
operations, are also referred to as cores.

Cache memory: multiple layers of memory

/

O Processor T~
T/O chips il
\
\

MOTHERBOARD
Main memory chips

DDD

e

\

between the processor and main memory.

smaller and faster than main memory

used to speed up memory access, by placing in the.—=

CORE

cache data from main memory, that is likely to be
used in the near future.

Arithmetic

Instruction and logic

logic

unit (ALU)

Load/
store logic

| L1 I-cache | | L1 data cache

Multiple levels of cache, with level 1 (L1) closest to

L2 instruction
cache

the core and additional levels (L2, L3, and so on)

L2 data
cache

PROCESSOR CHIP

Core Core

Core Core

L3 cache

L3 cache

Core

Core

Core

/

progressively farther from the core.

/ Computer
/ Organization
] and
Architecture
Designing for

Performance
— instruction cache (l-cache) that is used for the William
transfer of instructions to and from main memory, Multi-core Computer Elt:\'jgrﬂi 2019
— data cache, for the transfer of operands and Edition
results
12

O . EE446 2025 Ece SCHMIDT _@

Add r1,r2, r3

Sub r4, r5, r6

Add r2, r5, r8

Add r3 rd, r8

simple pipeline diagram that shows the

Performance Overview

* Microscopically: a window of a few instructions

Latency

-

]

EX

-

IF

EX

Throughput

EX

execution of several instructions

EX

Latency: Time required to execute
an instruction from start to finish
Throughput: the rate at which
instructions are finished.

Even if it takes several clock cycles
to execute an instruction, the
processor may still be able to finish

one instruction per cycle
Execution time
- Wall clock time: includes all
system overheads
« CPU time: only computation time
Speedup of X relative to Y
« Execution timey / Execution timey

O . EE446 2025 Ece SCHMIDT _@ 13

Performance Overview

» Macroscopically: over large programs

 Peak performance:
— Instruction throughput proceeds at its maximum rate
— all processor resources are fully utilized.
« Average performance: generally measured by executing a set of
benchmarks on sample data
— Kernels (e.g. matrix multiply)
— Toy programs (e.g. sorting)
— Synthetic benchmarks (e.g. Dhrystone)
— Benchmark suites (e.g. SPECO06fp, TPC-C)
* Worst case performance:
— embedded system metric
— determined for a particular program running on a given processor.

— generally determined by analysis because of the difficulty of determining an
input set that can be used to cause the worst-case execution.

O . EE446 2025 Ece SCHMIDT _@ 14

should be mixed.

Taxonomy of Computer
Architecture

* Two flavors of computer architectures
« Based on if “data” and “instructions”

Harvard
Architecture
<: Program
o Memory
{Input/Output) ﬁ cPU
@ Data
Memory
Von Neumann
Architecture
Vo — ifi
Unified
(Input/Qutput) cPU <]]:> Memory

http://www.csbio.unc.edu/mc
millan/index.py?run=Courses
.Comp411F17

O . EE446 2025 Ece SCHMIDT _@ 15

Taxonomy of Processors: Focus on
Parallelism

Flynn's taxonomy

Instruction stream (executed code),
Data stream, Multiple processors

Possible cases:

Each processor has the same
instruction stream, execute the
same code.

Each processor has a distinct
instruction stream, each can
execute a different code.

Each processor receives the same
data stream

Each process receives data from a
distinct data stream

Combinations

SISD

Single Instruction stream
Single Data stream

SIMD

Single Instruction stream
Multiple Data stream

MISD

Multiple Instruction stream
Single Data stream

MIMD

Multiple Instruction stream
Multiple Data stream

O . EE446 2025 Ece SCHMIDT _@

16

Taxonomy of Processors

 Single instruction, single
data (SISD).

A serial (non-parallel) computer

Single Instruction: Only one
instruction stream is being
acted on by the CPU during
any one clock cycle

Single Data: Only one data
stream is being used as input
during any one clock cycle

Deterministic execution

This is the oldest type of
computer

Data Input &

Instruction
Stream

il
- E s ':"
| w
g

Processor

1 Data Qutput

load A

load B

C=A+B

store C

aw|j)

A=B*2

store A

O . EE446 2025 Ece SCHMIDT _@

17

Taxonomy of Processors: ISA

CISC
Complex Instruction Set Computer

RISC
Reduced Instruction Set Computer

Emphasis on hardware

Emphasis on software

Includes multi-clock
complex instructions

Single-clock,
reduced instruction only

Small code sizes,
high cycles per second

Low cycles per second,
large code sizes

* Multiplying Two Numbers in Memory locations 2:3 and 5:2, storing in

location 2:3

— CISC:MULT 2:3, 5:2
— RISC:
LOAD A, 2
LOAD B, 5
PROD A, B
STORE 2:3

O . EE446 2025 Ece SCHMIDT _@ 18

Example RISC vs CISC

* Multiplying Two Numbers in 12 3 4
Memory locations 2:3 and 5:2,
storing in location 2:3

« CISC:MULT 2:3, 5:2
 RISC:

LOAD A, 2:3

LOAD B, 5:2

PROD A, B

STORE 2:3, A

Main Memory

o B W R e

O\l EE446 2025 Ece SCHMIDT _@ 19
/)

Instruction Level Parallelism (ILP): Pipelining

6 7 8 10

=

Time (cycles)

Pipelined processor by
subdividing the single-cycle
processor into five pipeline
stages.

ILDR R2Z,

ADD R3,

SUB R4, R1, R5 @ﬁ

AND R5, R1Z, RI3

Rl & 7 R4
(e { T

STR R6, [R1, #20]

ORR R7, R11, #42

« Overlapping the execution of multiple instructions
* An instruction is partitioned into a number of functional stages

O . EE446 2025 Ece SCHMIDT _@ 20

Instruction Level Parallelism (ILP): Superscalarity

LDR R8, [RO,#40]

ADD R9, R1,R2

SUB R10, R1, R3

AND R11, R3, R4

ORR R12, R1, R5

STR R5, [RO, #80]

1 2 i 3 | 4 5 | 6 7 8
: ; : : >
5 H : i Time (cycles)
B RO R : N : :
LDE]: H Y R8 !
: 40 [} E:l— :
IM : RI | : il o IR :
ADD| jj : HE :
! RZ |: H H
?3‘_0

=

RF [&3 |

ORE[}

STR|:

/

et

DM il |RF
|R11

-]
[R SR

?:E:P___' r12
[=8 . e B
— A {om] |

RF |

» Pipelining is a case of temporal parallelism.

« Multiple execution units is a case of spatial parallelism.

» Superscalar processors exploit both forms of parallelism

O . EE446 2025 Ece SCHMIDT _@

21

Designing for Performance

* Pipelining: The processor moves data or
Instructions into a conceptual pipe with all
stages of the pipe processing
simultaneously

* Superscalar execution: The ability to issue
more than one instruction in every
processor clock cycle with multiple parallel
pipelines.

O . EE446 2025 Ece SCHMIDT _@ 22

Principle of Locality
-

Programs tend to reuse data and
instructions they have used recently.

- recently accessed
items are likely to be accessed soon.

— items whose
addresses are near one another tend
to be referenced close together in

.Working set

Addresses that are accessed

time.
Time

e Results:

— Prediction of what instructions and data a program will use in the
near future based on its accesses in the recent past.

— Memory Hierarchy

O . EE446 2025 Ece SCHMIDT _@ 23

Processor Design with Locality

» Branch prediction:
— Look ahead in the instruction code fetched from memory

— Predict which branches, or groups of instructions, are likely to be
processed next

« Data flow analysis:
— Analyze which instructions are dependent on each other’s results, or
data, to create an optimized schedule of instructions
« Speculative Execution:

— Using branch prediction and data flow analysis

— Speculatively execute instructions ahead of their actual appearance in
the program execution

— holding the results in temporary locations, keeping execution engines as
busy as possible

O . EE446 2025 Ece SCHMIDT _@ 24

Memory Hierarchy Design with
Locality

Programmers want unlimited amounts of memory with low
latency

Fast memory technology is more expensive per bit than
slower memory

Solution: organize memory system into a hierarchy

— Entire addressable memory space available in largest, slowest
memory

— Incrementally smaller and faster memories getting closer to the
processor

— Each memory contains a subset of the memory below

Temporal and spatial locality insures that nearly all
references can be found in smaller memories

— Gives the allusion of a large, fast memory being presented to the

O . EE446 2025 Ece SCHMIDT _@ 25

Memory

A A

Registers

Cache

Multiple cache levels Y
(SRAM, eDRAM)

Main Memory Inboard

storage

On-chip
storage

DRAM, SDRAM, DDR-SDRAM, etc.

Solid-State Memory

Flash Memory (SSD, flash drive)

Virtual Memory and File/Database Memory

Magnetic Disk

Offline Bulk Memory

Magnetic Tape

Hierarchy

Outhoard

storage

|

Offline

stnragcv

Cost per byte decreases
Average access time
increases

Average data transfer
rate decreases

Total memory size
increases

Frequency of access
decreases =»Principle
of locality

Data contained in a
lower level are a
superset of the next
higher level =» Inclusion
property

O . EE446 2025 Ece SCHMIDT _@ 26

Memory Hierarchy: Two level example

If a word to be accessed is in level 1,
then the processor accesses it

directly. s
If it is in level 2, then the word is first 3
transferred to level 1 and then
accessed by the processor.

If the accessed word is found in the

faster memory, that is defined as a il

hit. |
A miss occurs if the accessed word is " racton of ccesses imvaling only level 1 (it ratioy
not found in the faster memory.

Ignore the time required for the Level 1: Access time =T1 s

processor to determine whether the Level 2: Access time= T2 ps.

word is in level 1 or level 2.

O . EE446 2025 Ece SCHMIDT _@ 27

Quantitative Principles of Computer
Design
- Take Advantage of Locality

— Branch prediction

— Data flow analysis

— Speculative Execution

— Memory hierarchy, average memory access time with cache

* Focus on the common case

— Impact of the improvement is higher if the improved case occurs
frequently

— Amdahl’s law

O . EE446 2025 Ece SCHMIDT _@ 28

Application of Amdahl’'s Law

Hardware Accelerators

« Specialized hardware instead of general-purpose hardware
- Performance and energy-efficiency improvements
- FPGA, GPU

« See: https://www.xilinx.com/developer/articles/acceleration-basics.html

Example: A processor spends 40% of its time on computing Conjugate
Gradient Algorithm. We employ an FPGA hardware accelerator which has a
speed-up of 2 to run this algorithm,

This speed-up of 2 is a real benchmark result:

https://xilinx.github.io/Vitis Libraries/hpc/2021.2/benchmark.html

Execution time increases 25%

ET 1 1

ETpew (1— E)+FE,/SU, (1— 0.4)+ 0.4/2

O . EE446 2025 Ece SCHMIDT _@ 29

https://xilinx.github.io/Vitis_Libraries/hpc/2021.2/benchmark.html

.
\‘.
)
Y.
_A

An Overview of Computer
Architecture

.
\‘.
)
Y.
_A

EE 446 Computer Architecture |l

	EE 446 Computer Architecture II
	Course Coverage: EE445
	Course Coverage: EE446
	Course Outline
	Text Books
	Grading
	LAB 2 Single Cycle Processor
	LAB 3 Multi Cycle Processor
	LAB 4 Pipelined Processor
	An Overview of Computer Architecture
	Basic Computer Organization
	Basic Computer Organization
	Performance Overview
	Performance Overview
	Taxonomy of Computer Architecture
	Taxonomy of Processors: Focus on Parallelism
	Taxonomy of Processors
	Taxonomy of Processors: ISA
	Example RISC vs CISC
	Instruction Level Parallelism (ILP): Pipelining
	Instruction Level Parallelism (ILP): Superscalarity
	Designing for Performance
	Principle of Locality
	Processor Design with Locality
	Memory Hierarchy Design with Locality
	Memory Hierarchy
	Memory Hierarchy: Two level example
	Quantitative Principles of Computer Design
	Application of Amdahl’s Law
	An Overview of Computer Architecture
	EE 446 Computer Architecture II

