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Course Coverage: EE445  

In EE-445 we studied:
- Computer System components
- Instruction Set Architecture (ISA) design and tradeoffs
- Hardwired and microprogrammed control for basic
multi-cycle machines
- Arithmetic algorithms and implementation in hardware
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Course Coverage: EE446 

• Will complete the missing theoretical pieces to obtain a
solid Computer Architecture/Organization background:
– Single-Cycle datapath/controller design
– Multi-cyle datapath/controller design
– Pipelining, superscalar operation, and parallel processing
– Advanced memory hierarchies, and multiprocessor buses
– Software interactions

• In addition you will get some practical experience in the
lab by applying what you learnt in EE-445/446 sequence.
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Course Outline

• Introduction to Computer Architecture
• Part I: Implementations of ARM Microarchitecture: Single 

cycle, multi cycle, pipelined. A more comprehensive 
coverage of pipelining, branch prediction 

• Part II: Memory Hierarchy: Memory, Virtual Memory, 
Cache 

• Part III: Advanced Topics: Superscalar Processors, 
possibly more topics
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Text Books
Copyright notice: Lecture 
Note Slides are compiled 
from the teaching material 
of these books, previous 
lecture notes of EE446 and 
additional resources. Part 
of the slides are entirely 
created by the Instructors

Harris & Harris, “Digital Design and
Computer Architecture. ARM Edition”, 1st
Ed., Kaufmann, 2015.

Computer Architecture, A
Quantitative Approach,
6th Edition, John
Hennessy, David
Patterson

Computer Organization and 
Design ARM Edition: The 
Hardware Software Interface (The 
Morgan Kaufmann Series in 
Computer Architecture and 
Design) 1st Edition
by David A. Patterson, John L. 
Hennessy
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Grading
• Laboratory Work+ Class Project: 40%
• 3 Short Exams: 30% 
• Final exam: 30%
• 5% bonus for attendance >=80%.
• Getting 0 from LAB 2 AND LAB3 AND LAB4 NA from the 

course



LAB 2 Single Cycle Processor
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LAB 3 Multi Cycle Processor
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LAB 4 Pipelined 
Processor



An Overview of Computer 
Architecture



Basic Computer Organization

11

Multi-core Computer
Simple Single Processor Computer
(μProgram controlled)

Computer Organization 
and Architecture
Designing for 
Performance
William Stallings, 2019
Eleventh Edition
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Basic Computer Organization
• Core: An individual processing unit on a 

processor chip. 
– Equivalent in functionality to a CPU on a 

single-CPU system. 
– Other specialized processing units, such 

as one optimized for vector and matrix 
operations, are also referred to as cores.

12

Multi-core Computer

Computer 
Organization 
and 
Architecture
Designing for 
Performance
William 
Stallings, 2019
Eleventh 
Edition

• Cache memory: multiple layers of memory 
between the processor and main memory.

– smaller and faster than main memory
– used to speed up memory access, by placing in the 

cache data from main memory, that is likely to be 
used in the near future. 

– Multiple levels of cache, with level 1 (L1) closest to 
the core and additional levels (L2, L3, and so on) 
progressively farther from the core.

– instruction cache (I-cache) that is used for the 
transfer of instructions to and from main memory, 

– data cache, for the transfer of operands and 
results. 
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Performance Overview
• Microscopically: a window of a few instructions

13

• Latency: Time required to execute 
an instruction from start to finish

• Throughput:  the rate at which 
instructions are finished. 

• Even if it takes several clock cycles 
to execute an instruction, the 
processor may still be able to finish 
one instruction per cycle

• Execution time
• Wall clock time:  includes all 

system overheads
• CPU time:  only computation time

• Speedup of X relative to Y
• Execution timeY / Execution timeX

simple pipeline diagram that shows the 
execution of several instructions
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Performance Overview

• Peak performance:
– instruction throughput proceeds at its maximum rate 
– all processor resources are fully utilized.

• Average performance: generally measured by executing a set of 
benchmarks on sample data 

– Kernels (e.g. matrix multiply)
– Toy programs (e.g. sorting)
– Synthetic benchmarks (e.g. Dhrystone)
– Benchmark suites (e.g. SPEC06fp, TPC-C)

• Worst case performance: 
– embedded system metric
– determined for a particular program running on a given processor. 
– generally determined by analysis because of the difficulty of determining an 

input set that can be used to cause the worst-case execution. 

14

• Macroscopically: over large programs
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Taxonomy of Computer 
Architecture

15

• Two flavors of computer architectures 
• Based on if “data” and “instructions” 

should be mixed. 

http://www.csbio.unc.edu/mc
millan/index.py?run=Courses
.Comp411F17
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Taxonomy of Processors: Focus on 
Parallelism

• Flynn's taxonomy 
• Instruction stream (executed code), 

Data stream, Multiple processors
• Possible cases:

– Each processor has the same 
instruction stream, execute the 
same code.

– Each processor has a distinct 
instruction stream, each can 
execute a different code.

– Each processor receives the same 
data stream

– Each process receives data from a 
distinct data stream

16

Combinations
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Taxonomy of Processors

17

• Single instruction, single 
data (SISD).
– A serial (non-parallel) computer
– Single Instruction: Only one 

instruction stream is being 
acted on by the CPU during 
any one clock cycle

– Single Data: Only one data 
stream is being used as input 
during any one clock cycle

– Deterministic execution
– This is the oldest type of 

computer

EE446 2025 Ece SCHMIDT



Taxonomy of Processors: ISA

18

CISC
Complex Instruction Set Computer 

RISC
Reduced Instruction Set Computer 

Emphasis on hardware Emphasis on software

Includes multi-clock
complex instructions

Single-clock,
reduced instruction only

Small code sizes,
high cycles per second

Low cycles per second,
large code sizes
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• Multiplying Two Numbers in Memory locations 2:3 and 5:2, storing in 
location 2:3

– CISC : MULT 2:3, 5:2
– RISC:
LOAD A, 2:3

LOAD B, 5:2

PROD A, B

STORE 2:3, A



Example RISC vs CISC
• Multiplying Two Numbers in 

Memory locations 2:3 and 5:2, 
storing in location 2:3

• CISC : MULT 2:3, 5:2
• RISC:
LOAD A, 2:3

LOAD B, 5:2

PROD A, B

STORE 2:3, A
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Instruction Level Parallelism (ILP): Pipelining

• Overlapping the execution of multiple instructions
• An instruction is partitioned into a number of functional stages

20

Pipelined processor by 
subdividing the single-cycle 
processor into five pipeline 
stages. 
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Instruction Level Parallelism (ILP): Superscalarity

• Pipelining is a case of temporal parallelism.
• Multiple execution units is a case of spatial parallelism. 
• Superscalar processors exploit both forms of parallelism

21EE446 2025 Ece SCHMIDT



Designing for Performance

• Pipelining: The processor moves data or 
instructions into a conceptual pipe with all 
stages of the pipe processing 
simultaneously

• Superscalar execution: The ability to issue 
more than one instruction in every 
processor clock cycle with multiple parallel 
pipelines.
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Principle of Locality
• Programs tend to reuse data and 

instructions they have used recently.
– Temporal locality:  recently accessed 

items are likely to be accessed soon. 
– Spatial locality:  items whose 

addresses are near one another tend 
to be referenced close together in 
time. 
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• Results:
– Prediction of what instructions and data a program will use in the 

near future based on its accesses in the recent past. 
– Memory Hierarchy 
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Processor Design with Locality

• Branch prediction: 
– Look ahead in the instruction code fetched from memory
– Predict which branches, or groups of instructions, are likely to be 

processed next

• Data flow analysis: 
– Analyze which instructions are dependent on each other’s results, or 

data, to create an optimized schedule of instructions

• Speculative Execution: 
– Using branch prediction and data flow analysis
– Speculatively execute instructions ahead of their actual appearance in 

the program execution
– holding the results in temporary locations, keeping execution engines as 

busy as possible
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Memory Hierarchy Design with 
Locality 

• Programmers want unlimited amounts of memory with low 
latency

• Fast memory technology is more expensive per bit than 
slower memory

• Solution:  organize memory system into a hierarchy
– Entire addressable memory space available in largest, slowest 

memory
– Incrementally smaller and faster memories getting closer to the 

processor
– Each memory contains a subset of the memory below 

• Temporal and spatial locality insures that nearly all 
references can be found in smaller memories
– Gives the allusion of a large, fast memory being presented to the 

processor
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Memory Hierarchy

26

• Cost per byte decreases
• Average access time 

increases
• Average data transfer 

rate decreases
• Total memory size

increases
• Frequency of access 

decreases Principle 
of locality

• Data contained in a 
lower level are a 
superset of the next 
higher level  Inclusion 
property 
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Memory Hierarchy: Two level example

• If a word to be accessed is in level 1, 
then the processor accesses it 
directly. 

• If it is in level 2, then the word is first 
transferred to level 1 and then 
accessed by the processor. 

• If the accessed word is found in the 
faster memory, that is defined as a 
hit. 

• A miss occurs if the accessed word is 
not found in the faster memory. 

• Ignore the time required for the 
processor to determine whether the 
word is in level 1 or level 2. 

27

Level 1: Access time =T1 μs
Level 2: Access time= T2 μs. 
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Quantitative Principles of Computer 
Design 

• Take Advantage of Locality
– Branch prediction
– Data flow analysis
– Speculative Execution
– Memory hierarchy, average memory access time with cache

• Focus on the common case
– Impact of the improvement is higher if the improved case occurs 

frequently
– Amdahl’s law 
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Application of Amdahl’s Law
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• Hardware Accelerators
• Specialized hardware instead of general-purpose hardware
• Performance and energy-efficiency improvements
• FPGA, GPU
• See: https://www.xilinx.com/developer/articles/acceleration-basics.html

• Example: A processor spends 40% of its time on computing Conjugate 
Gradient Algorithm. We employ an FPGA hardware accelerator which has a 
speed-up of 2 to run this algorithm,

• This speed-up of 2 is a real benchmark result: 
https://xilinx.github.io/Vitis_Libraries/hpc/2021.2/benchmark.html

• Execution time increases 25%

𝐸𝐸𝐸𝐸
𝐸𝐸𝐸𝐸𝑛𝑛𝑛𝑛𝑛𝑛

=
1

(1 − 𝐹𝐹𝑝𝑝) + 𝐹𝐹𝑝𝑝/𝑆𝑆𝑆𝑆𝑝𝑝
=

1
(1 − 0.4) + 0.4/2 = 1.25

https://xilinx.github.io/Vitis_Libraries/hpc/2021.2/benchmark.html


An Overview of Computer 
Architecture
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