
EE 446 Computer Architecture II

EE446 2025 Ece SCHMIDT 2

Course Coverage: EE445

In EE-445 we studied:
- Computer System components
- Instruction Set Architecture (ISA) design and tradeoffs
- Hardwired and microprogrammed control for basic
multi-cycle machines
- Arithmetic algorithms and implementation in hardware

EE446 2025 Ece SCHMIDT 3

Course Coverage: EE446

• Will complete the missing theoretical pieces to obtain a
solid Computer Architecture/Organization background:
– Single-Cycle datapath/controller design
– Multi-cyle datapath/controller design
– Pipelining, superscalar operation, and parallel processing
– Advanced memory hierarchies, and multiprocessor buses
– Software interactions

• In addition you will get some practical experience in the
lab by applying what you learnt in EE-445/446 sequence.

EE446 2025 Ece SCHMIDT 4

Course Outline

• Introduction to Computer Architecture
• Part I: Implementations of ARM Microarchitecture: Single

cycle, multi cycle, pipelined. A more comprehensive
coverage of pipelining, branch prediction

• Part II: Memory Hierarchy: Memory, Virtual Memory,
Cache

• Part III: Advanced Topics: Superscalar Processors,
possibly more topics

EE446 2025 Ece SCHMIDT 5

Text Books
Copyright notice: Lecture
Note Slides are compiled
from the teaching material
of these books, previous
lecture notes of EE446 and
additional resources. Part
of the slides are entirely
created by the Instructors

Harris & Harris, “Digital Design and
Computer Architecture. ARM Edition”, 1st
Ed., Kaufmann, 2015.

Computer Architecture, A
Quantitative Approach,
6th Edition, John
Hennessy, David
Patterson

Computer Organization and
Design ARM Edition: The
Hardware Software Interface (The
Morgan Kaufmann Series in
Computer Architecture and
Design) 1st Edition
by David A. Patterson, John L.
Hennessy

EE446 2025 Ece SCHMIDT 6

Grading
• Laboratory Work+ Class Project: 40%
• 3 Short Exams: 30%
• Final exam: 30%
• 5% bonus for attendance >=80%.
• Getting 0 from LAB 2 AND LAB3 AND LAB4 NA from the

course

LAB 2 Single Cycle Processor

EE446 2025 Ece SCHMIDT 7

ExtImm

CLK

A RD

Instruction
Memory

+

4

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Register
File

0
1

A RD
Data

Memory
WD

WE

1
0

PC1
0

PC'

Instr

19:16

15:12

23:0

25:20

SrcB

ALUResult ReadData

WriteData

SrcA

PCPlus4

Result

27:26

ImmSrc

PCSrc

MemWrite
MemtoReg

ALUSrc

RegWrite

Op
Funct

Control
Unit

ALUFlags

CLK

ALUControl

AL
U

PCPlus8 R15

3:0

Cond31:28

Flags

15:12 Rd

+

4

15
RA1

RA2

0 1

Extend

0
1

0
1

R
egSrc

LAB 3 Multi Cycle Processor

EE446 2025 Ece SCHMIDT 8

EE446 2025 Ece SCHMIDT 9

LAB 4 Pipelined
Processor

An Overview of Computer
Architecture

Basic Computer Organization

11

Multi-core Computer
Simple Single Processor Computer
(μProgram controlled)

Computer Organization
and Architecture
Designing for
Performance
William Stallings, 2019
Eleventh Edition

EE446 2025 Ece SCHMIDT

Basic Computer Organization
• Core: An individual processing unit on a

processor chip.
– Equivalent in functionality to a CPU on a

single-CPU system.
– Other specialized processing units, such

as one optimized for vector and matrix
operations, are also referred to as cores.

12

Multi-core Computer

Computer
Organization
and
Architecture
Designing for
Performance
William
Stallings, 2019
Eleventh
Edition

• Cache memory: multiple layers of memory
between the processor and main memory.

– smaller and faster than main memory
– used to speed up memory access, by placing in the

cache data from main memory, that is likely to be
used in the near future.

– Multiple levels of cache, with level 1 (L1) closest to
the core and additional levels (L2, L3, and so on)
progressively farther from the core.

– instruction cache (I-cache) that is used for the
transfer of instructions to and from main memory,

– data cache, for the transfer of operands and
results.

EE446 2025 Ece SCHMIDT

Performance Overview
• Microscopically: a window of a few instructions

13

• Latency: Time required to execute
an instruction from start to finish

• Throughput: the rate at which
instructions are finished.

• Even if it takes several clock cycles
to execute an instruction, the
processor may still be able to finish
one instruction per cycle

• Execution time
• Wall clock time: includes all

system overheads
• CPU time: only computation time

• Speedup of X relative to Y
• Execution timeY / Execution timeX

simple pipeline diagram that shows the
execution of several instructions

EE446 2025 Ece SCHMIDT

Performance Overview

• Peak performance:
– instruction throughput proceeds at its maximum rate
– all processor resources are fully utilized.

• Average performance: generally measured by executing a set of
benchmarks on sample data

– Kernels (e.g. matrix multiply)
– Toy programs (e.g. sorting)
– Synthetic benchmarks (e.g. Dhrystone)
– Benchmark suites (e.g. SPEC06fp, TPC-C)

• Worst case performance:
– embedded system metric
– determined for a particular program running on a given processor.
– generally determined by analysis because of the difficulty of determining an

input set that can be used to cause the worst-case execution.

14

• Macroscopically: over large programs

EE446 2025 Ece SCHMIDT

Taxonomy of Computer
Architecture

15

• Two flavors of computer architectures
• Based on if “data” and “instructions”

should be mixed.

http://www.csbio.unc.edu/mc
millan/index.py?run=Courses
.Comp411F17

EE446 2025 Ece SCHMIDT

Taxonomy of Processors: Focus on
Parallelism

• Flynn's taxonomy
• Instruction stream (executed code),

Data stream, Multiple processors
• Possible cases:

– Each processor has the same
instruction stream, execute the
same code.

– Each processor has a distinct
instruction stream, each can
execute a different code.

– Each processor receives the same
data stream

– Each process receives data from a
distinct data stream

16

Combinations

EE446 2025 Ece SCHMIDT

Taxonomy of Processors

17

• Single instruction, single
data (SISD).
– A serial (non-parallel) computer
– Single Instruction: Only one

instruction stream is being
acted on by the CPU during
any one clock cycle

– Single Data: Only one data
stream is being used as input
during any one clock cycle

– Deterministic execution
– This is the oldest type of

computer

EE446 2025 Ece SCHMIDT

Taxonomy of Processors: ISA

18

CISC
Complex Instruction Set Computer

RISC
Reduced Instruction Set Computer

Emphasis on hardware Emphasis on software

Includes multi-clock
complex instructions

Single-clock,
reduced instruction only

Small code sizes,
high cycles per second

Low cycles per second,
large code sizes

EE446 2025 Ece SCHMIDT

• Multiplying Two Numbers in Memory locations 2:3 and 5:2, storing in
location 2:3

– CISC : MULT 2:3, 5:2
– RISC:
LOAD A, 2:3

LOAD B, 5:2

PROD A, B

STORE 2:3, A

Example RISC vs CISC
• Multiplying Two Numbers in

Memory locations 2:3 and 5:2,
storing in location 2:3

• CISC : MULT 2:3, 5:2
• RISC:
LOAD A, 2:3

LOAD B, 5:2

PROD A, B

STORE 2:3, A

19EE446 2025 Ece SCHMIDT

Instruction Level Parallelism (ILP): Pipelining

• Overlapping the execution of multiple instructions
• An instruction is partitioned into a number of functional stages

20

Pipelined processor by
subdividing the single-cycle
processor into five pipeline
stages.

EE446 2025 Ece SCHMIDT

Instruction Level Parallelism (ILP): Superscalarity

• Pipelining is a case of temporal parallelism.
• Multiple execution units is a case of spatial parallelism.
• Superscalar processors exploit both forms of parallelism

21EE446 2025 Ece SCHMIDT

Designing for Performance

• Pipelining: The processor moves data or
instructions into a conceptual pipe with all
stages of the pipe processing
simultaneously

• Superscalar execution: The ability to issue
more than one instruction in every
processor clock cycle with multiple parallel
pipelines.

22EE446 2025 Ece SCHMIDT

Principle of Locality
• Programs tend to reuse data and

instructions they have used recently.
– Temporal locality: recently accessed

items are likely to be accessed soon.
– Spatial locality: items whose

addresses are near one another tend
to be referenced close together in
time.

23EE446 2025 Ece SCHMIDT

• Results:
– Prediction of what instructions and data a program will use in the

near future based on its accesses in the recent past.
– Memory Hierarchy

TimeAd
dr

es
se

s
th

at
 a

re
 a

cc
es

se
d

Processor Design with Locality

• Branch prediction:
– Look ahead in the instruction code fetched from memory
– Predict which branches, or groups of instructions, are likely to be

processed next

• Data flow analysis:
– Analyze which instructions are dependent on each other’s results, or

data, to create an optimized schedule of instructions

• Speculative Execution:
– Using branch prediction and data flow analysis
– Speculatively execute instructions ahead of their actual appearance in

the program execution
– holding the results in temporary locations, keeping execution engines as

busy as possible

24EE446 2025 Ece SCHMIDT

Memory Hierarchy Design with
Locality

• Programmers want unlimited amounts of memory with low
latency

• Fast memory technology is more expensive per bit than
slower memory

• Solution: organize memory system into a hierarchy
– Entire addressable memory space available in largest, slowest

memory
– Incrementally smaller and faster memories getting closer to the

processor
– Each memory contains a subset of the memory below

• Temporal and spatial locality insures that nearly all
references can be found in smaller memories
– Gives the allusion of a large, fast memory being presented to the

processor
25EE446 2025 Ece SCHMIDT

Memory Hierarchy

26

• Cost per byte decreases
• Average access time

increases
• Average data transfer

rate decreases
• Total memory size

increases
• Frequency of access

decreases Principle
of locality

• Data contained in a
lower level are a
superset of the next
higher level  Inclusion
property

EE446 2025 Ece SCHMIDT

Memory Hierarchy: Two level example

• If a word to be accessed is in level 1,
then the processor accesses it
directly.

• If it is in level 2, then the word is first
transferred to level 1 and then
accessed by the processor.

• If the accessed word is found in the
faster memory, that is defined as a
hit.

• A miss occurs if the accessed word is
not found in the faster memory.

• Ignore the time required for the
processor to determine whether the
word is in level 1 or level 2.

27

Level 1: Access time =T1 μs
Level 2: Access time= T2 μs.

EE446 2025 Ece SCHMIDT

Quantitative Principles of Computer
Design

• Take Advantage of Locality
– Branch prediction
– Data flow analysis
– Speculative Execution
– Memory hierarchy, average memory access time with cache

• Focus on the common case
– Impact of the improvement is higher if the improved case occurs

frequently
– Amdahl’s law

28EE446 2025 Ece SCHMIDT

Application of Amdahl’s Law

EE446 2025 Ece SCHMIDT 29

• Hardware Accelerators
• Specialized hardware instead of general-purpose hardware
• Performance and energy-efficiency improvements
• FPGA, GPU
• See: https://www.xilinx.com/developer/articles/acceleration-basics.html

• Example: A processor spends 40% of its time on computing Conjugate
Gradient Algorithm. We employ an FPGA hardware accelerator which has a
speed-up of 2 to run this algorithm,

• This speed-up of 2 is a real benchmark result:
https://xilinx.github.io/Vitis_Libraries/hpc/2021.2/benchmark.html

• Execution time increases 25%

𝐸𝐸𝐸𝐸
𝐸𝐸𝐸𝐸𝑛𝑛𝑛𝑛𝑛𝑛

=
1

(1 − 𝐹𝐹𝑝𝑝) + 𝐹𝐹𝑝𝑝/𝑆𝑆𝑆𝑆𝑝𝑝
=

1
(1 − 0.4) + 0.4/2 = 1.25

https://xilinx.github.io/Vitis_Libraries/hpc/2021.2/benchmark.html

An Overview of Computer
Architecture

EE 446 Computer Architecture II

	EE 446 Computer Architecture II
	Course Coverage: EE445
	Course Coverage: EE446
	Course Outline
	Text Books
	Grading
	LAB 2 Single Cycle Processor
	LAB 3 Multi Cycle Processor
	LAB 4 Pipelined Processor
	An Overview of Computer Architecture
	Basic Computer Organization
	Basic Computer Organization
	Performance Overview
	Performance Overview
	Taxonomy of Computer Architecture
	Taxonomy of Processors: Focus on Parallelism
	Taxonomy of Processors
	Taxonomy of Processors: ISA
	Example RISC vs CISC
	Instruction Level Parallelism (ILP): Pipelining
	Instruction Level Parallelism (ILP): Superscalarity
	Designing for Performance
	Principle of Locality
	Processor Design with Locality
	Memory Hierarchy Design with Locality
	Memory Hierarchy
	Memory Hierarchy: Two level example
	Quantitative Principles of Computer Design
	Application of Amdahl’s Law
	An Overview of Computer Architecture
	EE 446 Computer Architecture II

