

EE 445 Computer Architecture I

Schedule

Week 1 INTRO-EE 348 Review

> Week 1-3 ASM-RTL

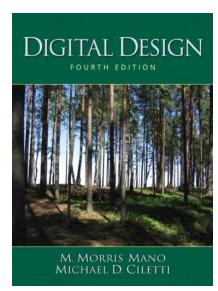
Week 4 HDL

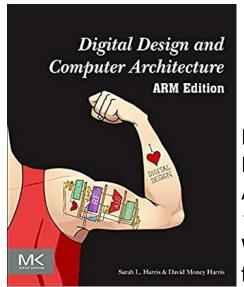
Week 5-7
Basic Computer

Week 8-9
Microprogramming

Week 10-11 Arithmetic Processor

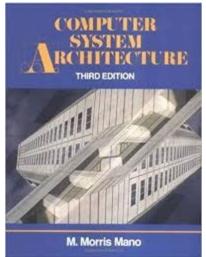
> Week 12-14 ARM ISA





Copyright notice: Lecture
Note Slides are compiled
from the teaching material
of these books, previous
lecture notes of EE445 and
additional resources. Part
of the slides are entirely
created by the instructors.

Text Books

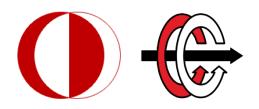

Digital Design (4th Edition)
M. Morris Mano, Michael D. Ciletti
Published by Prentice Hall, 2006

Computer System Architecture 3rd Ed., M. Morris Mano Prentice Hall, 1992 Computer System Architecture 2nd Ed., M. Morris Mano Prentice Hall, 1982

Harris & Harris, "Digital Design and Computer Architecture. ARM Edition", 1st Ed., Kaufmann, 2015. We go on with this text book for EE446

Course Objective (Why should you take this course?)

- A smooth extension of EE348
- Describes how a computer works at EE348 level of detail on a simple fictitious Basic Computer
- Preparation for the advanced topics: pipelining, memory and I/O organization that are covered in EE446



Course Outline

- Introduction to Computer Architecture
- EE348 review
- Algorithmic State Machine
- Register Transfer Language
- HDL
- Basic Computer Architecture
- Computer Organization and Microprogramming
- Arithmetic Processor Design
- ARM Instruction Set Architecture

Introduction to Computer Architecture

Resources:

http://www.csl.cornell.edu/courses/ece4750 https://safari.ethz.ch/digitaltechnik/spring2020/doku.php

Computer Architecture A Quantitative Approach, Sixth Edition

- abstraction/implementation layers
 - to execute information processing applications
 - efficiently using available manufacturing technologies

https://www.csl.cornell.edu/courses/ece475 0/handouts/ece4750_overview.pdf

Application
Algorithm
Programming Language
Operating System
Instruction Set Architecture
Microarchitecture
Register-Transfer Level
Gate Level
Circuits
Devices
Technology

Somputer Architecture

https://www.csl.cornell.edu/courses/ece4750/handouts/ece4750_overview.pdf

Sort an array of numbers

2,6,3,8,4,5 -> 2,3,4,5,6,8

Out-of-place selection sort algorithm

- 1. Find minimum number in array
- 2. Move minimum number into output array
- 3. Repeat steps 1 and 2 until finished

C implementation of selection sort

```
void sort( int b[], int a[], int n ) {
  for ( int idx, k = 0; k < n; k++ ) {
    int min = 100;
    for ( int i = 0; i < n; i++ ) {
        if ( a[i] < min ) {
            min = a[i];
            idx = i;
        }
     }
    b[k] = min;
    a[idx] = 100;
}</pre>
```


Application
Algorithm
Programming Language
Operating System
Instruction Set Architecture
Microarchitecture
Register-Transfer Level
Gate Level
Circuits
Devices
Technology

Mac OS X, Windows, Linux Handles low-level hardware management

Application Algorithm Computer Architecture Programming Language Operating System Instruction Set Architecture Microarchitecture Register-Transfer Level Gate Level Circuits Devices Technology

- Instruction Set Architecture (ISA):
 - Structure and behavior of the computer as seen by the programmer
 - There can be many implementations of the same ISA

MIPS32 Instruction Set

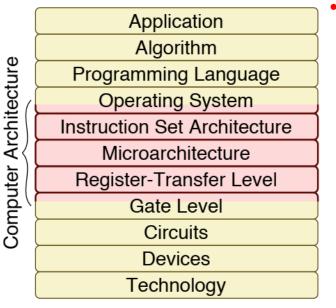
Instructions that machine executes

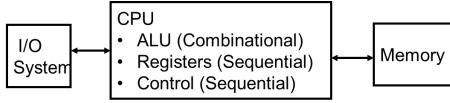
```
blez
     $a2, done
move $a7, $zero
li
     $t4, 99
move $a4, $a1
     $v1, $zero
move
li
     $a3, 99
     $a5, 0($a4)
addiu $a4, $a4, 4
slt
     $a6, $a5, $a3
     $v0, $v1, $a6
movn
addiu $v1, $v1, 1
      $a3, $a5, $a6
movn
```


Instruction Set Architecture (ISA)

Represents

- all the information necessary to write a machine language program that will run correctly on the machine
- the conceptual structure and functional behavior
- Abstracts away
 - the organization of the data flows and controls
 - the logic design
 - the physical implementation.
- Enables implementations of varying cost and performance to run identical software
- Includes
 - Addressing modes
 - Operand specifications
 - Operation specifications
 - Control flow instructions



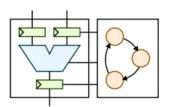


Microarchitecture

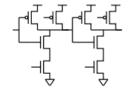
 Microarchitecture/Organization: The specific arrangement of registers, ALUs, finite state machines (FSMs), memories, and other logic building blocks needed to implement an ISA.

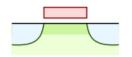
Example: AMD Opteron and the Intel Core i7 implement the 80x86 instruction set with very different pipeline and cache organizations

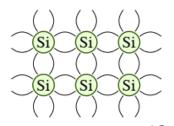
Application Algorithm Computer Architecture Programming Language Operating System Instruction Set Architecture Microarchitecture Register-Transfer Level Gate Level Circuits Devices Technology


How data flows through system

Boolean logic gates and functions

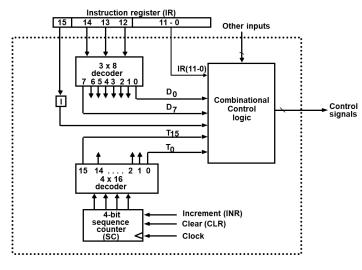

Combining devices to do useful work


Transistors and wires


Silicon process technology

EE445 Coverage

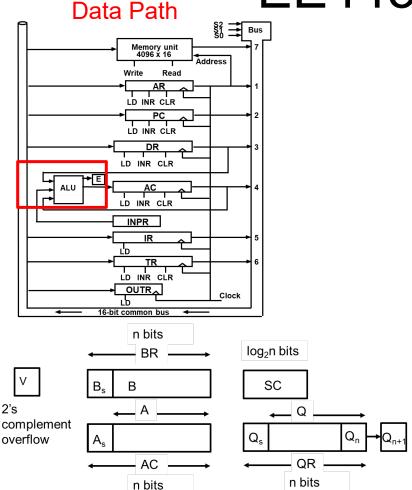
Application
Algorithm
Programming Language
Operating System
Instruction Set Architecture
Microarchitecture
Register-Transfer Level
Gate Level
Circuits
Devices
Technology

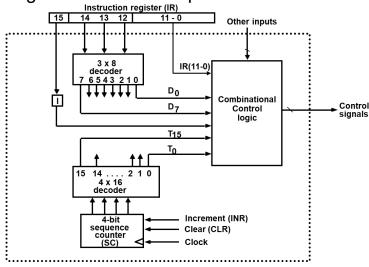

EE445 focuses on these layers using a fictitious Basic Computer

Instruction Set

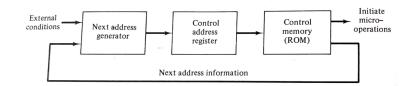
	Hex Code		
Symbol	1 = 0	l = 1	Description
AND ADD LDA STA BUN BSA ISZ	0xxx 1xxx 2xxx 3xxx 4xxx 5xxx 6xxx	8xxx 9xxx Axxx Bxxx Cxxx Dxxx Exxx	AND memory word to AC Add memory word to AC Load AC from memory Store content of AC into memory Branch unconditionally Branch and save return address Increment and skip if zero
CLA CLE CMA CME CIR CIL INC SPA SNA SZA SZE HLT	7800 7400 7200 7100 7080 7040 7020 7010 7008 7004 7002 7001		Clear AC Clear E Complement AC Complement E Circulate right AC and E Circulate left AC and E Increment AC Skip next instr. if AC is positive Skip next instr. if AC is negative Skip next instr. if AC is zero Skip next instr. if AC is zero Halt computer
INP OUT SKI SKO ION IOF	F800 F400 F200 F100 F080 F040		Input character to AC Output character from AC Skip on input flag Skip on output flag Interrupt on Interrupt off

Memory unit 4096 x 16 AR LD INR CLR DR LD INR CLR DR LD INR CLR INPR IR LD INR CLR OUTR Clock 16-bit common bus


Controller


EE445 Coverage

ALU implementation, hardware algorithms for multiplication and division → Needs EE348 refresher ☺


Hardwired control

Control signals are circuit outputs

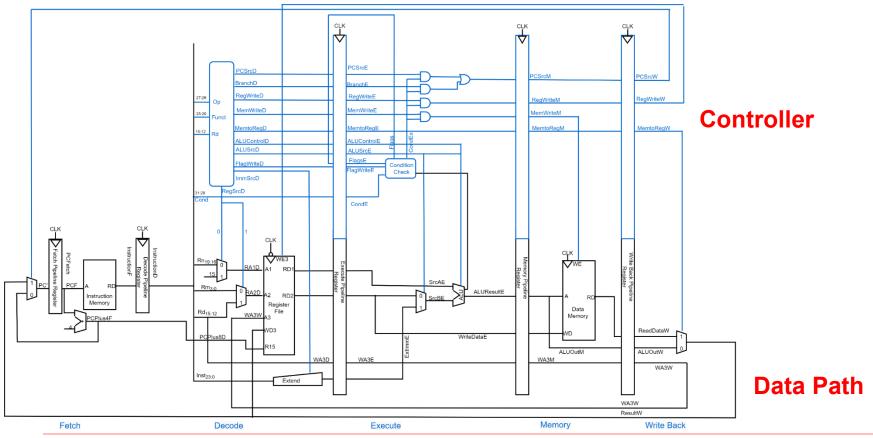
Microprogrammed Control

Control signals are the control memory word contents

A Sneak Peek into EE446 ©

A Pipelined

for a

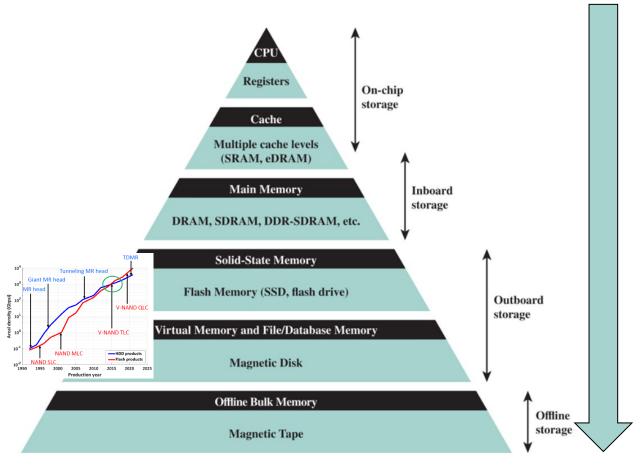

Microarchitecture

LDR Rd, [Rn, imm12]

STR Rd, [Rn, imm12] Instruction Set

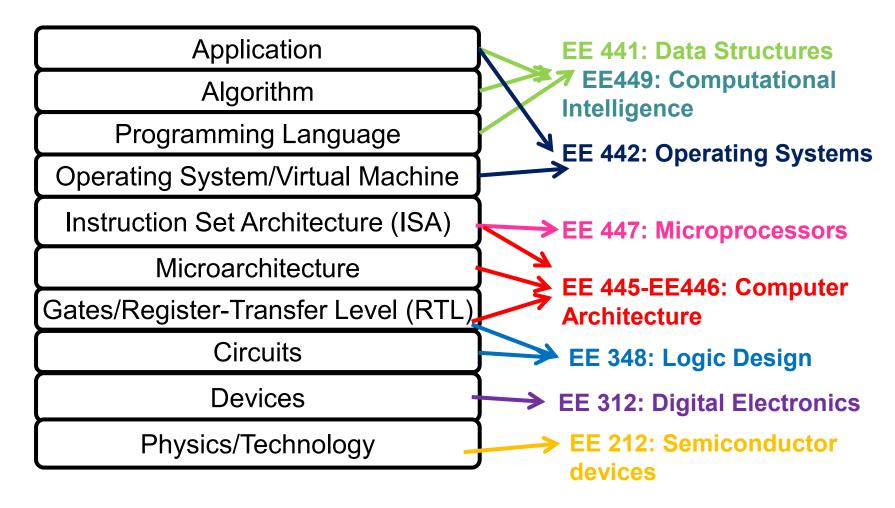
ADD Rd, Rn, imm8 representative

в вта subset of ARM ISA



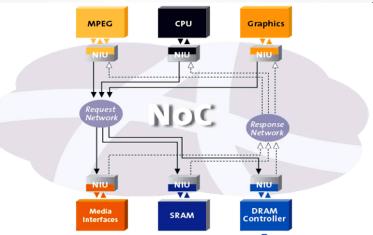
A Sneak Peek into EE446 ©

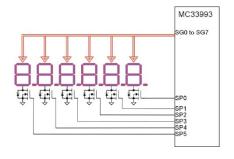
Memory Hierarchy



- Cost per byte decreases
- Average access time increases
- Average data transfer rate decreases
- Total memory size increases
- Frequency of access decreases → Principle of locality
- Data contained in a lower level are a superset of the next higher level → Inclusion property

Computer Architecture in METU EE

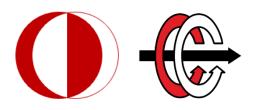




Computers/Computer Architecture in METU EE

EE 447: Microprocessors: I/O device interfacing

Many computing Devices



Grading

- 4 Short Exams: 52% (13% each)
- Final exam: 36%
- HDL Homeworks: 12%
- 5% bonus for attendance >=80%

Introduction to Computer Architecture