

EE 348 Introduction to Logic Design

Course Content

Textbook

Morris Mano and Michael Ciletti, Digital Design, Prentice-Hall Fourth Edition, 2007 or Fifth Edition, 2013

Chapters	Topic
1	Introduction, Number systems, signed arithmetic
2	Boolean Algebra and logic gates
3	Simplification of Boolean functions, Karnaugh map, 2-level implementations
4	Analysis and design of Combinational circuits, MSI circuits (decoders, mux, etc)
5	Basic flipflops, Analysis and design of synchronous sequential logic
6	Registers and serial mode of operation, counters and timing signals.

Grading

Deliverable	Grade Points
Midterm	25
Final	35
Quizzes (5)	25
Homework assignments (6)	15
Attendance Bonus	10
Total	110

Policies

- Any attempt of <u>cheating</u> will be considered as a disciplinary action
- You can have a <u>makeup</u> if you have a valid health excuse on the exam day
- Additional info: http://oidb.metu.edu.tr/son-yariyilina-kayitli-olan-onlisans-ve-lisans-ogrencileri-icin-butunleme-sinavlari-yonergesi

Course Objective

- Why Should You Take This Course?
 - Basics of combinational and sequential logic design
 - → Needed for understanding any computer system
 - Preparation for advanced courses in microprocessors, computer architecture and VLSI
- Motivation
 - Look "under the hood" of computers to get a solid understanding
 - → Gain insight and confidence
 - → Become a better programmer by being aware of hardware issues

Motivation

Digital Age

Everything is becoming digital

Enabled by shrinking and more capable chips

□ Positive Impact

- Better computing
- Better devices: Tablets, cameras, cars, smart phones, medical devices,...
- → "embedded systems"
- Thousands of new devices every year
- Designers needed: Potential career direction

Context

Application >"hello programs world!" Software Operating device drivers Systems instructions Architecture == registers focus of this course datapaths Microcontrollers architecture adders Logic 어 memories **AND** gates Digital **NOT** gates Circuits Analog amplifiers Circuits filters transistors **Devices** diodes **electrons Physics**

Software app

EE 442

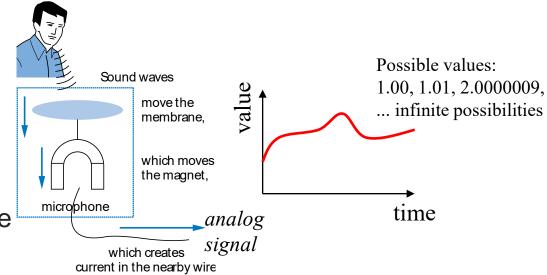
EE 445-446

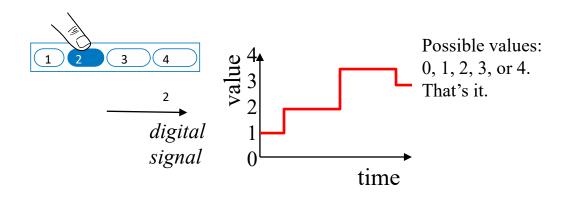
EE 348/EE 314

EE 312

EE 311

EE 212

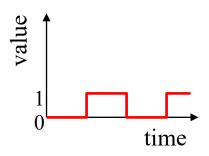

Phys courses



What Does Digital Mean?

- Analog signal
 - Continuous values
 - → infinite number of possible values
 - Example: voltage on a wire of a microphone

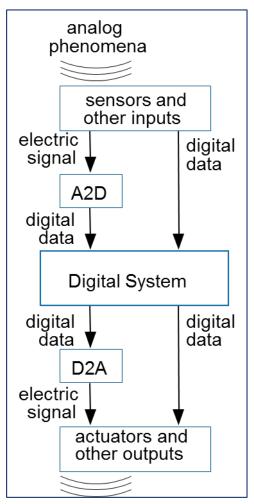
- Digital signal
 - Discrete values
 - → Finite number of possible values
 - Example: buttons pressed on a keypad

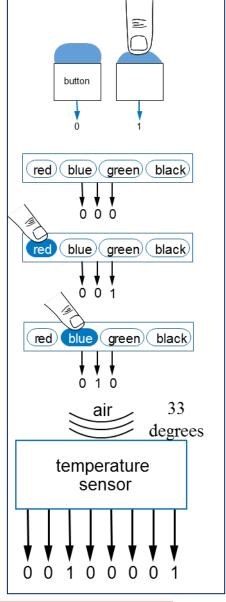


Digital Signals With Two Values: Binary

- Binary digital signal
 - Only two possible values
 - Typically represented as 0 and 1

- One binary digit is a bit
- → We will consider binary digital signals in this lecture
- Popularity of binary digital signals
 - Only need to realize two signal states such as ON and OFF
 - Transistors, the basic digital electric component, operate using two voltages (two stable states)
 - Storing/transmitting one of two values is easier than three or more

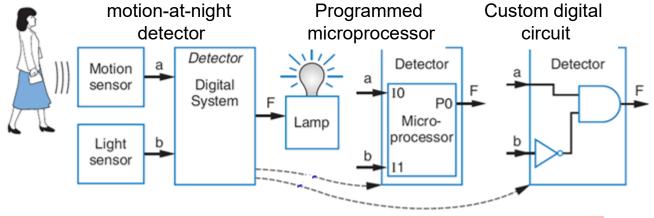




Encoding

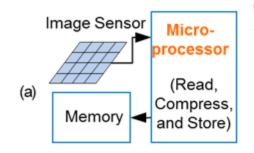
- Inherently binary inputs
 - Example: Button
 - Not pressed (0)
 - Pressed (1)
- Inherently digital inputs
 - Need binary encoding
 - Example: encode multi-button
 - > red=001; blue=010, ...
- Analog inputs
 - Need analog-to-digital conversion
 - Obtain digital input after sampling
 - Use binary encoding of digital input with bits

Bits and Bytes

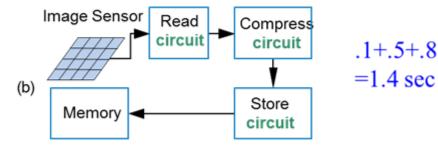

- ☐ 1 Byte: 8 bits
- Common metric prefixes
 - ▶ kilo (thousand, or 10³), mega (million, or 10⁶), giga (billion, or 10⁶), tera (trillion, or 10¹²), peta (10¹⁵)
 - > e.g., kilobyte, or KByte
- Note: metric prefixes also commonly used inaccurately
 - > 2¹⁶ = 65536 commonly written as "64 Kbyte"
 - Typical when describing memory sizes
 - ➤ Just know: 2¹⁰=1024=1K
 - > 1M=1K*1K=2¹⁰*2¹⁰=2²⁰
- Also watch out for "KB" for kilobyte vs. "Kb" for kilobit

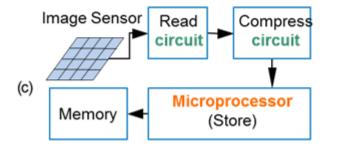
Implementing Digital Systems

- Designing Digital Circuits
 - Custom design for each task (large design time)
 - (Up to 300 times more) power efficient and fast execution
- Programming Microprocessors Circuits
 - Design flexibility (just change the program for a different task)
 - Possibly more expensive and slower execution
- → Choice based on design requirements



Design Tactics

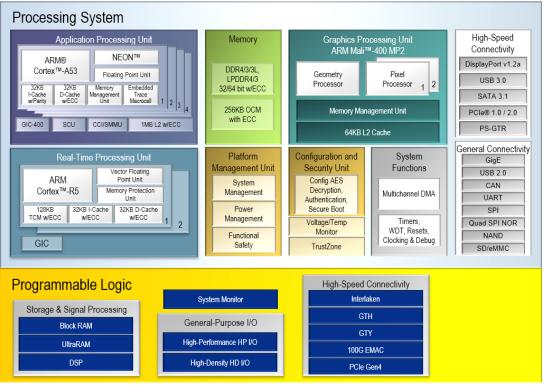

- Common Procedure
 - Designers partition a system among microprocessor and custom digital circuits
- Example
 - Sample digital camera task execution times on a digital circuit vs. Microprocessor


Task	Microprocessor	Custom Digital Circuit
Read	5	0.1
Compress	8	0.5
Store	1	0.8

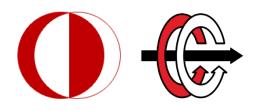
Q: How long for each implementation option?

5+8+1=14 sec

Good compromise


→ EE348 is on digital circuits. Microprocessors → EE447

Cutting Edge


- Zyng® UltraScale+™ MPSoC devices
 - > 64-bit processors
 - Soft and hard engines for graphics, video, signal processing
 - Real-time processor
 - Programmable logic
 - GPU devices
- Applications
 - Real-time control
 - > 5G Wireless
 - Advanced driver-assistance systems
 - Internet-of-Things etc.

https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html

EE 348 Introduction to Logic Design