
ELECTRICAL AND ELECTRONICS ENGINEERING

DEPARTMENT

EE446

Computer Architecture II

Laboratory Manual

Course Instructors:
Prof. Dr. Ece Güran Schmidt

Laboratory Assistants:
Doğu Erkan Arkadaş

Barış Tiryaki

March 2023

Contents

1 Laboratory Regulations 3
1.1 Rules . 3
1.2 Cheating . 4
1.3 Remarks and Evaluation . 4

2 General Information about Laboratory 5
2.1 Experimental Setup . 5

3 Quartus Software 6

4 Simulation Software 7
4.1 Simulation using cocotb . 7

5 Some Useful How-to Items 8
5.1 How to create a Verilog module with parameters . 8
5.2 How to initialize the Memory on FPGA . 8
5.3 Problems with running Cocotb . 9

5.3.1 Path Issues . 9
5.3.2 ”I give up” error . 9

5.4 Making your Code Compile Faster . 9
5.4.1 Avoiding Latches . 9

1

Course Instructors

Name e-mail Room
Prof. Dr. Ece Güran Schmidt eguran@metu.edu.tr A-402

Laboratory Assistants

Name e-mail Room
Doğu Erkan Arkadaş arkadas@metu.edu.tr A-404

Barış Tiryaki btiryaki@metu.edu.tr A-405

2

mailto:eguran@metu.edu.tr
mailto:arkadas@metu.edu.tr
mailto:btiryaki@metu.edu.tr

1 Laboratory Regulations

This laboratory is a very important part of EE446 - Computer Architecture II course to understand the
concepts in the computer architecture lectures thoroughly. By attending experiments and completing
all the work, the key concepts and most of the abstract parts of the lectures can be grasped very easily.
Thus, it is important to know the regulating rules of this laboratory for both a better understanding and
for your grades.

There are rules for the regulation of EE446 Laboratory. These rules are strict, and by taking EE446 -
Computer Architecture II course, you will be considered that you have understood and accepted all the
rules stated below.

1.1 Rules

The rules for EE446 - Computer Architecture II Laboratory are given below. Please read thoroughly:

1. The manual of an experiment will be available at least a week before the corresponding experiment.

2. A preliminary work to be detailed in each experiment manual has to be prepared for each experi-
ment.

3. The preliminary works will be collected last Sunday before the corresponding laboratory week
through the ODTUCLASS.

4. Preliminary work is a crucial part of the laboratory work in preparing for the experiment and
understanding the concepts to be covered in the corresponding experiment. Thus, You will NOT
be allowed to attend the relevant laboratory session without any preliminary work. Partially
done preliminary work reports are acceptable if at least you got a passing grade of 50%

5. Cheating and plagiarism will result in zero grades, whereas disciplinary actions may
also be taken. Please read the subsection 1.2 for detailed information about cheating.

6. Experiments are to be performed individually.

7. Grading for each laboratory work will be 40% preliminary work and 60% laboratory performance.

8. Talking and sharing information between students during a laboratory session is strictly forbidden.
Repeated offenses of this rule will make your lab performance grade 0.

9. No extra time will be given to the latecomers.

10. To leave the laboratory room during a session, you must get permission from the laboratory assis-
tant.

11. Transfer between laboratory sessions (e.g. from Group 1 to Group 5) will NOT be allowed unless
you have a valid excuse (medical report, etc.).

12. Your codes have to be well commented. The codes lacking any comments or overly laden with
comments will not be evaluated. Please read the subsection 1.3 for detailed information about
coding and commenting.

13. Students with officially documented legal excuses will be allowed to take make-ups. Only aca-
demic permissions (given by the University), signed confirmation from the instructors for any
exam clashes, and METU Health and Counseling Center (MEDIKO) will be considered valid doc-
uments for the right to take make-ups. You may take at most three make-ups even if you have
more than three officially documented legal excuses.

Since preliminary work spans several weeks unless you have a valid excuse for the said
weeks, you will not be allowed to submit new preliminary work

14. Students who do not attend or get zero grades from 3 or more experiments, excluding the first
one, will get N/A from the EE446 course. These students also won’t be allowed to participate in
the term project. Please note that insufficient preparation of the preliminary work of an experiment
or plagiarism is equivalent to not attending the corresponding experiment.

3

15. Be gentle with the FPGAs as they are expensive. Each FPGA costs around 364£
before shipping and tax. You will lose performance grades if you handle FPGAs roughly during
the laboratory sessions or do not put them in their boxes properly at the end of the sessions.

16. Bringing materials outside of those provided to the laboratory (written codes, etc.) are strictly
prohibited

1.2 Cheating

You are considered to graduate and become an engineer in 1 or 2 years. Hence, you are expected to act
according to the professionalism required as a METU graduate.

Copying work from any other resource (web page, your friend’s report, older resources you have found,
etc.) during preliminary work or sharing information or code files during sessions is considered cheating.
Automated tools such as ChatGPT are allowed if the output is changed sufficiently to be different from
other students; otherwise, it will count as plagiarism.

Helping your friends, studying together, or any form of cooperation is encouraged -since it fosters your
relationships with others and helps you learn the topic better- but YOU do your own work. Creating
only one report/code is not studying together or is not cooperation and will NOT be accepted.

1.3 Remarks and Evaluation

Your laboratory grade comprises your preliminary work grade and laboratory session performance grade.
Preliminary work requires the implementation of different computer architectures, all of which are used
to experiment during the laboratory sessions. The performance grade is based on the functionality of
your implementations, the comprehensiveness of your knowledge of the related laboratory topic, and how
much help you get from your TAs. TAs will help you as if they are your laboratory partner; however,
any big help you receive (such as a TA writing code for you or fixing major issues in your design) will
result in a percentage reduction in your laboratory performance grade. If a big part of the design is
not implemented in your preliminary work, you will most likely get ZERO performance grades from the
corresponding step, as implementing the design during the laboratory session is nearly impossible.

Implementations without comments will not be considered valid implementations of the tasks, and the
corresponding task will not be evaluated. You are expected to write down explanatory comments in your
code. That does not mean you should write an explanation next to each code line. What is required is
an explanation of the functionality of the code blocks and the functionality of the representative code
lines where necessary.

You are always expected to do proper test benching of your code in software before embedding it into an
FPGA. For this laboratory, test benches of all the designs (except for the first laboratory
and the term project) will be given to you. You are also expected to practice your implementations
with the FPGAs before attending your laboratory session so that major bugs that may cost too much
time to fix can be eliminated and you are on the safer side to complete the experimental work within
the required time slot. You can practice and work on your implementations by using the laboratory at
EA-407, which is open to access 24/7.

4

2 General Information about Laboratory

As it is mentioned before, this laboratory is a very important part of EE446 - Computer Architecture
II course. The laboratory work helps you understand most of the concepts given in the computer
architecture lectures.

The experiments will be carried out in Microprocessor Laboratory at EA-409 which is located on the 4th
floor of A Block of our department. EA-407 laboratory will be open to access on the weekdays during
working hours (09:00-17:00) for you to practice. Hence, you may test and debug your preliminary work
prior to your laboratory session.

Figure 1: Microprocessor and Computer Architecture Laboratory, A Building, Room 407

There are different sessions of laboratory and you are assigned to one of the sessions to perform your
experiments.

There will be a total of 4 experiments and 1 course project. These experiments and the project are based
on constructively practicing the design of computers via Verilog hardware description language and will
be on the following subjects:

• Fundamental modules for computer design

• Single cycle computer

• Multi-cycle computer

• Pipelined computer

• Project: Simplified RISC-V Computer

2.1 Experimental Setup

The experimental setup of EE446 Laboratory is composed of the following items:

• A notebook computer

– You may login as a student, which does not require any password

– Computer has Quartus and other materials you may need during the lab/ when practicing

• DE1-SoC Development Kit - A board containing Altera Cyclone V 5CSEMA5F31C6N FPGA

– DE1-SoC is connected to the notebook via a USB data cable.

– DE1-SoC is programmed via Quartus installed on the notebook (to be explained in Section
3).

5

(a) DE1-SoC Board

(b) Digital Oscilloscope

Figure 2: Devices used in the laboratory

– For simulation purposes, cocotb is installed on the notebooks (to be explained in Section 4.1).

• Digital Oscilloscope - Oscilloscope for debugging purposes

3 Quartus Software

Throughout the labs of this semester, we will be using Quartus Prime Lite Edition to be able to program
the DE1-SoC FPGA board. This requires very little know-how in creating a project, adding files,
compiling, and programming with the compiled board. To learn how to do this you should read sections
4-6 of Quartus Prime IntroductionUsing Verilog Designs documents. DE1-SOC board pin assignments
and project creation will be done using the vendor supplied DE1-SoC System Builder program which
you should read about in DE1-SoC user manual l section 4. These are very light readings which should
only take about 30 minutes of your time, read them before attending laboratory sessions.

6

https://odtuclass2022s.metu.edu.tr/pluginfile.php/344255/mod_folder/content/0/Manuals/Quartus%20Prime%20Introduction%20w%20Verilog.pdf
https://odtuclass2022s.metu.edu.tr/pluginfile.php/344255/mod_folder/content/0/Manuals/DE1-SoC_User_manual_revf.pdf

4 Simulation Software

This section introduces simulation software to be used throughout the laboratory work to perform be-
havioral simulation for the Verilog design codes and embed the designs to the FPGA, respectively. Basics
for the cocotb are covered in this section. For more general usage tutorials of the cocotb, one can refer
to the tutorials available on the EE446 ODTUClass course page.

4.1 Simulation using cocotb

This part only concisely covers the basics of cocotb. To get a more detailed look into cocotb with
installation guides, please check the cocotb document in ODTUCLASS or official cocotb documents.

Cocotb is simply an interface between a Verilog simulator (Icarus Verilog for this course) and a Python
script you will write (or one that will be given to you) as a test bench. Cocotb will show your Verilog
design as an object in the Python script. Thus, every signal in your Verilog design will be a variable of
the Verilog object. You can use anything available in Python to verify your design. To better understand
this, please check the supplied test bench examples on ODTUCLASS. Since Cocotb is fully on Python,
unlike ModelSim, no Verilog knowledge is required to test any design on the bench.

To run your test bench, open the Anaconda Prompt and change the directory to match the location of
the test files. If your ”User” folder or the folder test-bench is in has a space in its PATH, cocotb will give
an error so be mindful of that. Use make command to run the test bench with the default simulator
(specified in the makefile) or make sim=icarus to simulate with Icarus Verilog explicitly.

7

https://docs.cocotb.org/en/stable/

5 Some Useful How-to Items

In this section, some tips and tricks on using Quartus software and Verilog programming are to be
presented. Those can be helpful for your preliminary work tasks.

5.1 How to create a Verilog module with parameters

There are many cases where designing a module should be generalized. For example, a registered design
can be used for different data widths. It is cumbersome to implement the same design to support different
data widths. To overcome this, some parts of the module can be parametrized so that modules with
different properties of the same design can be instantiated. For the register example, one can make the
data width a parameter so that by varying the parameter, registers of different data width can be created
from the same design.

In Verilog, a module can be easily parameterized. You will just add a parameter block before defining
the arguments of the module. An example of a module with parameters is given below:

// an example module with parameters
// the module i s to s p l i t a data bus in to two

module b u s s p l i t #(parameter W=8, S=4) (bus in , s p l i t o u t 0 , s p l i t o u t 1) ;

input wire [(W − 1) : 0] bus in ;

output wire [(W − S − 1) : 0] s p l i t o u t 1 ;
output wire [(S − 1) : 0] s p l i t o u t 0 ;

a s s i gn bus out0 = bus in [(S − 1) : 0] ;
a s s i gn bus out1 = bus in [(W − 1) : S] ;

endmodule

Note that, the default values of the parameters should be provided so that the module can be instantiated
with the default parameters if no parameter setting is performed. To create a module with a specified
parameter, the values of the parameters should be supplied to the module in the order they are defined:

// assume you want to s p l i t the content o f the i n s t r u c t i o n r e g i s t e r
// say the name o f the output o f the i n s t r u c t i o n r e g i s t e r i s r eg out

. . .

wire [3 : 0] i n s t r ; // most s i g n i f i c a n t 4 b i t s are f o r i n s t r u c t i o n
wire [1 1 : 0] oprnd ; // the r e s t i s f o r operand

bu s s p l i t #(16 , 12) s p l i t i n s t r (. bus in (r eg out) , . s p l i t o u t 0 (oprnd) ,
. s p l i t o u t 1 (i n s t r)) ;

. . .

5.2 How to initialize the Memory on FPGA

To initialize the memory on the FPGA you need to use ”readmemh” command inside an initial block
as in below. One thing you need to make certain of is that the hex file should have elements for each
memory location.

For example: If you have a memory with 256 locations each containing a byte hex file should have 256
bytes specified in it.

8

i n i t i a l begin
$readmemh(” i n s t r u c t i o n s . hex” , mem, 0) ;

end

5.3 Problems with running Cocotb

5.3.1 Path Issues

Cocotb does not like Turkish characters (as do most software libraries). If you have a Turkish character
in your files or in your file path (either the test folder or the folder Icarus/Python is installed) you will
get a ”Unicode Error” when trying to run tests.

5.3.2 ”I give up” error

This is usually because one or more components of your environment are not set up correctly.

The best way to solve this is to go to ODTUClass or the cocotb website and reinstall everything by
following the steps. We highly suggest using a version of Anaconda as it handles most of the environment
for you.

Also, older Icarus versions can cause this error, so delete the old version and install the latest version
(should be v12+).

5.4 Making your Code Compile Faster

5.4.1 Avoiding Latches

For your codes to compile faster, you need to avoid any undesirable latches.

For your combinational circuits to not produce latches, you must specify every signal’s value in each
possible case.

For example:

If you write a mux like this:

always @(∗) begin
case (s e l e c t)

2 ’ b00 : output va lue = input 0 ;
2 ’ b01 : output va lue = input 1 ;
2 ’ b10 : output va lue = input 2 ;

endcase
end

Since 1 case is empty, the synthesizer assumes that case means storing the previous value. A combina-
tional circuit that stores a value results in a latch you can see in Figure 3

The same thing can happen if you have multiple signals in your case statements. Even if some of the
signals are ”don’t care” in some cases, you should always assign a value to every single signal in every
case.

9

Figure 3: Example of a Latch in Synthesis

10

DE1-SoC User Manual 1 www.terasic.com

January 28, 2019

i3

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

DE1-SoC User Manual 1 www.terasic.com

January 28, 2019

CONTENTS

Chapter 1 DE1-SoC Development Kit ... 4

1.1 Package Contents ... 4

1.2 DE1-SoC System CD ... 5

1.3 Getting Help ... 5

Chapter 2 Introduction of the DE1-SoC Board .. 6

2.1 Layout and Components ... 6

2.2 Block Diagram of the DE1-SoC Board .. 8

Chapter 3 Using the DE1-SoC Board ... 12

3.1 Settings of FPGA Configuration Mode .. 12

3.2 Configuration of Cyclone V SoC FPGA on DE1-SoC ... 13

3.3 Board Status Elements.. 19

3.4 Board Reset Elements .. 20

3.5 Clock Circuitry ... 21

3.6 Peripherals Connected to the FPGA ... 23

3.6.1 User Push-buttons, Switches and LEDs .. 23

3.6.2 7-segment Displays ... 26

3.6.3 2x20 GPIO Expansion Headers ... 28

3.6.4 24-bit Audio CODEC .. 30

3.6.5 I2C Multiplexer ... 31

3.6.6 VGA .. 32

3.6.7 TV Decoder ... 35

3.6.8 IR Receiver .. 37

3.6.9 IR Emitter LED ... 37

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

DE1-SoC User Manual 2 www.terasic.com

January 28, 2019

3.6.10 SDRAM Memory .. 38

3.6.11 PS/2 Serial Port .. 40

3.6.12 A/D Converter and 2x5 Header ... 42

3.7 Peripherals Connected to Hard Processor System (HPS)... 43

3.7.1 User Push-buttons and LEDs ... 43

3.7.2 Gigabit Ethernet ... 44

3.7.3 UART .. 45

3.7.4 DDR3 Memory .. 46

3.7.5 Micro SD Card Socket ... 48

3.7.6 2-port USB Host .. 49

3.7.7 G-sensor ... 50

3.7.8 LTC Connector .. 51

Chapter 4 DE1-SoC System Builder ... 53

4.1 Introduction .. 53

4.2 Design Flow ... 53

4.3 Using DE1-SoC System Builder .. 54

Chapter 5 Examples For FPGA .. 60

5.1 DE1-SoC Factory Configuration .. 60

5.2 Audio Recording and Playing .. 61

5.3 Karaoke Machine ... 64

5.4 SDRAM Test in Nios II .. 66

5.5 SDRAM Test in Verilog ... 69

5.6 TV Box Demonstration .. 71

5.7 PS/2 Mouse Demonstration .. 73

5.8 IR Emitter LED and Receiver Demonstration ... 76

5.9 ADC Reading ... 82

Chapter 6 Examples for HPS SoC .. 87

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

DE1-SoC User Manual 3 www.terasic.com

January 28, 2019

6.1 Hello Program .. 87

6.2 Users LED and KEY .. 89

6.3 I2C Interfaced G-sensor ... 95

6.4 I2C MUX Test .. 98

Chapter 7 Examples for using both HPS SoC and FGPA 101

7.1 HPS Control LED and HEX ... 101

7.2 DE1-SoC Control Panel ... 105

7.3 DE1-SoC Linux Frame Buffer Project ... 105

Chapter 8 Programming the EPCS Device ... 107

8.1 Before Programming Begins .. 107

8.2 Convert .SOF File to .JIC File .. 107

8.3 Write JIC File into the EPCS Device ... 112

8.4 Erase the EPCS Device .. 114

8.5 Nios II Boot from EPCS Device in Quartus II v16.0 ... 115

Chapter 9 Appendix ... 116

9.1 Revision History ... 116

9.2 Copyright Statement ... 116

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

DE1-SoC User Manual 4 www.terasic.com

January 28, 2019

Chapter 1

DE1-SoC

Development Kit

The DE1-SoC Development Kit presents a robust hardware design platform built around the Altera

System-on-Chip (SoC) FPGA, which combines the latest dual-core Cortex-A9 embedded cores

with industry-leading programmable logic for ultimate design flexibility. Users can now leverage

the power of tremendous re-configurability paired with a high-performance, low-power processor

system. Altera’s SoC integrates an ARM-based hard processor system (HPS) consisting of processor,

peripherals and memory interfaces tied seamlessly with the FPGA fabric using a high-bandwidth

interconnect backbone. The DE1-SoC development board is equipped with high-speed DDR3

memory, video and audio capabilities, Ethernet networking, and much more that promise many

exciting applications.

The DE1-SoC Development Kit contains all the tools needed to use the board in conjunction with a

computer that runs the Microsoft Windows XP or later.

11..11 PPaacckkaaggee CCoonntteennttss

Figure 1-1 shows a photograph of the DE1-SoC package.

Figure 1-1 The DE1-SoC package contents

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

DE1-SoC User Manual 5 www.terasic.com

January 28, 2019

The DE1-SoC package includes:

• The DE1-SoC development board

• DE1-SoC Quick Start Guide

• USB cable (Type A to B) for FPGA programming and control

• USB cable (Type A to Mini-B) for UART control

• 12V DC power adapter

11..22 DDEE11--SSooCC SSyysstteemm CCDD

The DE1-SoC System CD contains all the documents and supporting materials associated with

DE1-SoC, including the user manual, system builder, reference designs, and device datasheets.

Users can download this system CD from the link: http://cd-de1-soc.terasic.com.

11..33 GGeettttiinngg HHeellpp

Here are the addresses where you can get help if you encounter any problems:

• Altera Corporation

• 101 Innovation Drive San Jose, California, 95134 USA

Email: university@altera.com

• Terasic Technologies

• 9F., No.176, Sec.2, Gongdao 5th Rd, East Dist, Hsinchu City, 30070. Taiwan

Email: support@terasic.com

Tel.: +886-3-575-0880

Website: de1-soc.terasic.com

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com
http://cd-de1-soc.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/User/AppData/Roaming/Microsoft/Word/參考/12.06.2013/參考/12.03.2013/參考/11.26.2013/參考/09.17.2013/參考/09.14.2013/參考/09.14.2013/參考/08.14.2013/university@altera.com
mailto:support@terasic.com
http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&No=836

DE1-SoC User Manual 6 www.terasic.com

January 28, 2019

Chapter 2

Introduction of the

DE1-SoC Board

This chapter provides an introduction to the features and design characteristics of the board.

22..11 LLaayyoouutt aanndd CCoommppoonneennttss

Figure 2-1 shows a photograph of the board. It depicts the layout of the board and indicates the

location of the connectors and key components.

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

DE1-SoC User Manual 7 www.terasic.com

January 28, 2019

Figure 2-1 DE1-SoC development board (top view)

Figure 2-2 De1-SoC development board (bottom view)

The DE1-SoC board has many features that allow users to implement a wide range of designed

circuits, from simple circuits to various multimedia projects.

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

DE1-SoC User Manual 8 www.terasic.com

January 28, 2019

The following hardware is provided on the board:

◼ FPGA

• Altera Cyclone® V SE 5CSEMA5F31C6N device

• Altera serial configuration device – EPCS128

• USB-Blaster II onboard for programming; JTAG Mode

• 64MB SDRAM (16-bit data bus)

• 4 push-buttons

• 10 slide switches

• 10 red user LEDs

• Six 7-segment displays

• Four 50MHz clock sources from the clock generator

• 24-bit CD-quality audio CODEC with line-in, line-out, and microphone-in jacks

• VGA DAC (8-bit high-speed triple DACs) with VGA-out connector

• TV decoder (NTSC/PAL/SECAM) and TV-in connector

• PS/2 mouse/keyboard connector

• IR receiver and IR emitter

• Two 40-pin expansion header with diode protection

• A/D converter, 4-pin SPI interface with FPGA

◼ HPS (Hard Processor System)

• 800MHz Dual-core ARM Cortex-A9 MPCore processor

• 1GB DDR3 SDRAM (32-bit data bus)

• 1 Gigabit Ethernet PHY with RJ45 connector

• 2-port USB Host, normal Type-A USB connector

• Micro SD card socket

• Accelerometer (I2C interface + interrupt)

• UART to USB, USB Mini-B connector

• Warm reset button and cold reset button

• One user button and one user LED

• LTC 2x7 expansion header

22..22 BBlloocckk DDiiaaggrraamm ooff tthhee DDEE11--SSooCC BBooaarrdd

Figure 2-3 is the block diagram of the board. All the connections are established through the

Cyclone V SoC FPGA device to provide maximum flexibility for users. Users can configure the

FPGA to implement any system design.

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

DE1-SoC User Manual 9 www.terasic.com

January 28, 2019

Figure 2-3 Block diagram of DE1-SoC

Detailed information about Figure 2-3 are listed below.

FFPPGGAA DDeevviiccee

• Cyclone V SoC 5CSEMA5F31 Device

• Dual-core ARM Cortex-A9 (HPS)

• 85K programmable logic elements

• 4,450 Kbits embedded memory

• 6 fractional PLLs

• 2 hard memory controllers

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

DE1-SoC User Manual 10 www.terasic.com

January 28, 2019

CCoonnffiigguurraattiioonn aanndd DDeebbuugg

• Quad serial configuration device – EPCS128 on FPGA

• Onboard USB-Blaster II (normal type B USB connector)

MMeemmoorryy DDeevviiccee

• 64MB (32Mx16) SDRAM on FPGA

• 1GB (2x256Mx16) DDR3 SDRAM on HPS

• Micro SD card socket on HPS

CCoommmmuunniiccaattiioonn

• Two port USB 2.0 Host (ULPI interface with USB type A connector)

• UART to USB (USB Mini-B connector)

• 10/100/1000 Ethernet

• PS/2 mouse/keyboard

• IR emitter/receiver

• I2C multiplexer

CCoonnnneeccttoorrss

• Two 40-pin expansion headers

• One 10-pin ADC input header

• One LTC connector (one Serial Peripheral Interface (SPI) Master ,one I2C and one GPIO

interface)

DDiissppllaayy

• 24-bit VGA DAC

AAuuddiioo

• 24-bit CODEC, Line-in, Line-out, and microphone-in jacks

VViiddeeoo IInnppuutt

• TV decoder (NTSC/PAL/SECAM) and TV-in connector

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

DE1-SoC User Manual 11 www.terasic.com

January 28, 2019

AADDCC

• Interface: SPI

• Fast throughput rate: 500 KSPS

• Channel number: 8

• Resolution: 12-bit

• Analog input range : 0 ~ 4.096

SSwwiittcchheess,, BBuuttttoonnss,, aanndd IInnddiiccaattoorrss

• 5 user Keys (FPGA x4, HPS x1)

• 10 user switches (FPGA x10)

• 11 user LEDs (FPGA x10, HPS x 1)

• 2 HPS reset buttons (HPS_RESET_n and HPS_WARM_RST_n)

• Six 7-segment displays

SSeennssoorrss

• G-Sensor on HPS

PPoowweerr

• 12V DC input

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

DE1-SoC User Manual 12 www.terasic.com

January 28, 2019

Chapter 3

Using the DE1-SoC

Board

This chapter provides an instruction to use the board and describes the peripherals.

33..11 SSeettttiinnggss ooff FFPPGGAA CCoonnffiigguurraattiioonn MMooddee

When the DE1-SoC board is powered on, the FPGA can be configured from EPCS or HPS. The

MSEL[4:0] pins are used to select the configuration scheme. It is implemented as a 6-pin DIP

switch SW10 on the DE1-SoC board, as shown in Figure 3-1.

Figure 3-1 DIP switch (SW10) setting of Active Serial (AS) mode at the back of DE1-SoC board

Table 3-1 shows the relation between MSEL[4:0] and DIP switch (SW10).

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

DE1-SoC User Manual 13 www.terasic.com

January 28, 2019

Table 3-1 FPGA Configuration Mode Switch (SW10)

Board Reference Signal Name Description Default

SW10.1 MSEL0

Use these pins to set the FPGA

Configuration scheme

ON (“0”)

SW10.2 MSEL1 OFF (“1”)

SW10.3 MSEL2 ON (“0”)

SW10.4 MSEL3 ON (“0”)

SW10.5 MSEL4 OFF (“1”)

SW10.6 N/A N/A N/A

Figure 3-1 shows MSEL[4:0] setting of AS mode, which is also the default setting on DE1-SoC.

When the board is powered on, the FPGA is configured from EPCS, which is pre-programmed with

the default code. If developers wish to reconfigure FPGA from an application software running on

Linux, the MSEL[4:0] needs to be set to “01010” before the programming process begins. If

developers using the "Linux Console with frame buffer" or "Linux LXDE Desktop" SD Card image,

the MSEL[4:0] needs to be set to “00000” before the board is powered on.

Table 3-2 MSEL Pin Settings for FPGA Configure of DE1-SoC

MSEL[4:0] Configure Scheme Description

10010 AS FPGA configured from EPCS (default)

01010 FPPx32 FPGA configured from HPS software: Linux

00000 FPPx16

FPGA configured from HPS software: U-Boot, with

image stored on the SD card, like LXDE Desktop or

console Linux with frame buffer edition.

33..22 CCoonnffiigguurraattiioonn ooff CCyycclloonnee VV SSooCC FFPPGGAA oonn DDEE11--SSooCC

There are two types of programming method supported by DE1-SoC:

1. JTAG programming: It is named after the IEEE standards Joint Test Action Group.

The configuration bit stream is downloaded directly into the Cyclone V SoC FPGA. The FPGA will

retain its current status as long as the power keeps applying to the board; the configuration

information will be lost when the power is off.

2. AS programming: The other programming method is Active Serial configuration.

The configuration bit stream is downloaded into the quad serial configuration device (EPCS128),

which provides non-volatile storage for the bit stream. The information is retained within EPCS128

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

DE1-SoC User Manual 14 www.terasic.com

January 28, 2019

even if the DE1-SoC board is turned off. When the board is powered on, the configuration data in

the EPCS128 device is automatically loaded into the Cyclone V SoC FPGA.

◼ JTAG Chain on DE1-SoC Board

The FPGA device can be configured through JTAG interface on DE1-SoC board, but the JTAG

chain must form a closed loop, which allows Quartus II programmer to the detect FPGA device.

Figure 3-2 illustrates the JTAG chain on DE1-SoC board.

Figure 3-2 Path of the JTAG chain

◼ Configure the FPGA in JTAG Mode

There are two devices (FPGA and HPS) on the JTAG chain. The following shows how the FPGA is

programmed in JTAG mode step by step.

1. Open the Quartus II programmer and click “Auto Detect”, as circled in Figure 3-3

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

DE1-SoC User Manual 15 www.terasic.com

January 28, 2019

Figure 3-3 Detect FPGA device in JTAG mode

2. Select detected device associated with the board, as circled in Figure 3-4.

Figure 3-4 Select 5CSEMA5 device

3. Both FPGA and HPS are detected, as shown in Figure 3-5.

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

DE1-SoC User Manual 16 www.terasic.com

January 28, 2019

Figure 3-5 FPGA and HPS detected in Quartus programmer

4. Right click on the FPGA device and open the .sof file to be programmed, as highlighted in

Figure 3-6.

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

DE1-SoC User Manual 17 www.terasic.com

January 28, 2019

Figure 3-6 Open the .sof file to be programmed into the FPGA device

5. Select the .sof file to be programmed, as shown in Figure 3-7.

Figure 3-7 Select the .sof file to be programmed into the FPGA device

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

DE1-SoC User Manual 18 www.terasic.com

January 28, 2019

6. Click “Program/Configure” check box and then click “Start” button to download the .sof file

into the FPGA device, as shown in Figure 3-8.

Figure 3-8 Program .sof file into the FPGA device

◼ Configure the FPGA in AS Mode

• The DE1-SoC board uses a quad serial configuration device (EPCS128) to store configuration

data for the Cyclone V SoC FPGA. This configuration data is automatically loaded from the

quad serial configuration device chip into the FPGA when the board is powered up.

• Users need to use Serial Flash Loader (SFL) to program the quad serial configuration device

via JTAG interface. The FPGA-based SFL is a soft intellectual property (IP) core within the

FPGA that bridge the JTAG and Flash interfaces. The SFL Megafunction is available in

Quartus II. Figure 3-9 shows the programming method when adopting SFL solution.

• Please refer to Chapter 9: Steps of Programming the Quad Serial Configuration Device for the

basic programming instruction on the serial configuration device.

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

DE1-SoC User Manual 19 www.terasic.com

January 28, 2019

Figure 3-9 Programming a quad serial configuration device with SFL solution

33..33 BBooaarrdd SSttaattuuss EElleemmeennttss

In addition to the 10 LEDs that FPGA device can control, there are 5 indicators which can indicate

the board status (See Figure 3-10), please refer the details in Table 3-3

Figure 3-10 LED Indicators on DE1-SoC

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

DE1-SoC User Manual 20 www.terasic.com

January 28, 2019

Table 3-3 LED Indicators

Board Reference LED Name Description

D14 12-V Power Illuminate when 12V power is active.

TXD UART TXD Illuminate when data is transferred from FT232R to USB Host.

RXD UART RXD
Illuminate when data is transferred from USB Host to FT232R.

D5 JTAG_RX

Reserved

D4 JTAG_TX

33..44 BBooaarrdd RReesseett EElleemmeennttss

There are two HPS reset buttons on DE1-SoC, HPS (cold) reset and HPS warm reset, as shown in

Figure 3-11. Table 3-4 describes the purpose of these two HPS reset buttons. Figure 3-12 is the

reset tree for DE1-SoC.

Figure 3-11 HPS cold reset and warm reset buttons on DE1-SoC

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

DE1-SoC User Manual 21 www.terasic.com

January 28, 2019

Table 3-4 Description of Two HPS Reset Buttons on DE1-SoC

Board Reference Signal Name Description

KEY5 HPS_RESET_N
Cold reset to the HPS, Ethernet PHY and USB host device.

Active low input which resets all HPS logics that can be reset.

KEY7 HPS_WARM_RST_N
Warm reset to the HPS block. Active low input affects the

system reset domain for debug purpose.

Figure 3-12 HPS reset tree on DE1-SoC board

33..55 CClloocckk CCiirrccuuiittrryy

Figure 3-13 shows the default frequency of all external clocks to the Cyclone V SoC FPGA. A

clock generator is used to distribute clock signals with low jitter. The four 50MHz clock signals

connected to the FPGA are used as clock sources for user logic. One 25MHz clock signal is

connected to two HPS clock inputs, and the other one is connected to the clock input of Gigabit

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

DE1-SoC User Manual 22 www.terasic.com

January 28, 2019

Ethernet Transceiver. Two 24MHz clock signals are connected to the clock inputs of USB

Host/OTG PHY and USB hub controller. The associated pin assignment for clock inputs to FPGA

I/O pins is listed in Table 3-5.

Figure 3-13 Block diagram of the clock distribution on DE1-SoC

Table 3-5 Pin Assignment of Clock Inputs

Signal Name FPGA Pin No. Description I/O Standard

CLOCK_50 PIN_AF14 50 MHz clock input 3.3V

CLOCK2_50 PIN_AA16 50 MHz clock input 3.3V

CLOCK3_50 PIN_Y26 50 MHz clock input 3.3V

CLOCK4_50 PIN_K14 50 MHz clock input 3.3V

HPS_CLOCK1_25 PIN_D25 25 MHz clock input 3.3V

HPS_CLOCK2_25 PIN_F25 25 MHz clock input 3.3V

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

DE1-SoC User Manual 23 www.terasic.com

January 28, 2019

33..66 PPeerriipphheerraallss CCoonnnneecctteedd ttoo tthhee FFPPGGAA

This section describes the interfaces connected to the FPGA. Users can control or monitor different

interfaces with user logic from the FPGA.

3.6.1 User Push-buttons, Switches and LEDs

The board has four push-buttons connected to the FPGA, as shown in Figure 3-14 Connections

between the push-buttons and the Cyclone V SoC FPGA. Schmitt trigger circuit is implemented and act

as switch debounce in Figure 3-15 for the push-buttons connected. The four push-buttons named

KEY0, KEY1, KEY2, and KEY3 coming out of the Schmitt trigger device are connected directly to

the Cyclone V SoC FPGA. The push-button generates a low logic level or high logic level when it

is pressed or not, respectively. Since the push-buttons are debounced, they can be used as clock or

reset inputs in a circuit.

Figure 3-14 Connections between the push-buttons and the Cyclone V SoC FPGA

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

DE1-SoC User Manual 24 www.terasic.com

January 28, 2019

Pushbutton releasedPushbutton depressed

Before

Debouncing

Schmitt Trigger

Debounced

Figure 3-15 Switch debouncing

There are ten slide switches connected to the FPGA, as shown in Figure 3-16. These switches are

not debounced and to be used as level-sensitive data inputs to a circuit. Each switch is connected

directly and individually to the FPGA. When the switch is set to the DOWN position (towards the

edge of the board), it generates a low logic level to the FPGA. When the switch is set to the UP

position, a high logic level is generated to the FPGA.

Figure 3-16 Connections between the slide switches and the Cyclone V SoC FPGA

There are also ten user-controllable LEDs connected to the FPGA. Each LED is driven directly and

individually by the Cyclone V SoC FPGA; driving its associated pin to a high logic level or low

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

DE1-SoC User Manual 25 www.terasic.com

January 28, 2019

level to turn the LED on or off, respectively. Figure 3-17 shows the connections between LEDs and

Cyclone V SoC FPGA. Table 3-6, Table 3-7 and Table 3-8 list the pin assignment of user

push-buttons, switches, and LEDs.

Figure 3-17 Connections between the LEDs and the Cyclone V SoC FPGA

Table 3-6 Pin Assignment of Slide Switches

Signal Name FPGA Pin No. Description I/O Standard

SW[0] PIN_AB12 Slide Switch[0] 3.3V

SW[1] PIN_AC12 Slide Switch[1] 3.3V

SW[2] PIN_AF9 Slide Switch[2] 3.3V

SW[3] PIN_AF10 Slide Switch[3] 3.3V

SW[4] PIN_AD11 Slide Switch[4] 3.3V

SW[5] PIN_AD12 Slide Switch[5] 3.3V

SW[6] PIN_AE11 Slide Switch[6] 3.3V

SW[7] PIN_AC9 Slide Switch[7] 3.3V

SW[8] PIN_AD10 Slide Switch[8] 3.3V

SW[9] PIN_AE12 Slide Switch[9] 3.3V

Table 3-7 Pin Assignment of Push-buttons

Signal Name FPGA Pin No. Description I/O Standard

KEY[0] PIN_AA14 Push-button[0] 3.3V

KEY[1] PIN_AA15 Push-button[1] 3.3V

KEY[2] PIN_W15 Push-button[2] 3.3V

KEY[3] PIN_Y16 Push-button[3] 3.3V

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

DE1-SoC User Manual 26 www.terasic.com

January 28, 2019

Table 3-8 Pin Assignment of LEDs

Signal Name FPGA Pin No. Description I/O Standard

LEDR[0] PIN_V16 LED [0] 3.3V

LEDR[1] PIN_W16 LED [1] 3.3V

LEDR[2] PIN_V17 LED [2] 3.3V

LEDR[3] PIN_V18 LED [3] 3.3V

LEDR[4] PIN_W17 LED [4] 3.3V

LEDR[5] PIN_W19 LED [5] 3.3V

LEDR[6] PIN_Y19 LED [6] 3.3V

LEDR[7] PIN_W20 LED [7] 3.3V

LEDR[8] PIN_W21 LED [8] 3.3V

LEDR[9] PIN_Y21 LED [9] 3.3V

3.6.2 7-segment Displays

The DE1-SoC board has six 7-segment displays. These displays are paired to display numbers in

various sizes. Figure 3-18 shows the connection of seven segments (common anode) to pins on

Cyclone V SoC FPGA. The segment can be turned on or off by applying a low logic level or high

logic level from the FPGA, respectively.

Each segment in a display is indexed from 0 to 6, with corresponding positions given in Figure

3-18. Table 3-9 shows the pin assignment of FPGA to the 7-segment displays.

Figure 3-18 Connections between the 7-segment display HEX0 and the Cyclone V SoC FPGA

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

DE1-SoC User Manual 27 www.terasic.com

January 28, 2019

Table 3-9 Pin Assignment of 7-segment Displays

Signal Name FPGA Pin No. Description I/O Standard

HEX0[0] PIN_AE26 Seven Segment Digit 0[0] 3.3V

HEX0[1] PIN_AE27 Seven Segment Digit 0[1] 3.3V

HEX0[2] PIN_AE28 Seven Segment Digit 0[2] 3.3V

HEX0[3] PIN_AG27 Seven Segment Digit 0[3] 3.3V

HEX0[4] PIN_AF28 Seven Segment Digit 0[4] 3.3V

HEX0[5] PIN_AG28 Seven Segment Digit 0[5] 3.3V

HEX0[6] PIN_AH28 Seven Segment Digit 0[6] 3.3V

HEX1[0] PIN_AJ29 Seven Segment Digit 1[0] 3.3V

HEX1[1] PIN_AH29 Seven Segment Digit 1[1] 3.3V

HEX1[2] PIN_AH30 Seven Segment Digit 1[2] 3.3V

HEX1[3] PIN_AG30 Seven Segment Digit 1[3] 3.3V

HEX1[4] PIN_AF29 Seven Segment Digit 1[4] 3.3V

HEX1[5] PIN_AF30 Seven Segment Digit 1[5] 3.3V

HEX1[6] PIN_AD27 Seven Segment Digit 1[6] 3.3V

HEX2[0] PIN_AB23 Seven Segment Digit 2[0] 3.3V

HEX2[1] PIN_AE29 Seven Segment Digit 2[1] 3.3V

HEX2[2] PIN_AD29 Seven Segment Digit 2[2] 3.3V

HEX2[3] PIN_AC28 Seven Segment Digit 2[3] 3.3V

HEX2[4] PIN_AD30 Seven Segment Digit 2[4] 3.3V

HEX2[5] PIN_AC29 Seven Segment Digit 2[5] 3.3V

HEX2[6] PIN_AC30 Seven Segment Digit 2[6] 3.3V

HEX3[0] PIN_AD26 Seven Segment Digit 3[0] 3.3V

HEX3[1] PIN_AC27 Seven Segment Digit 3[1] 3.3V

HEX3[2] PIN_AD25 Seven Segment Digit 3[2] 3.3V

HEX3[3] PIN_AC25 Seven Segment Digit 3[3] 3.3V

HEX3[4] PIN_AB28 Seven Segment Digit 3[4] 3.3V

HEX3[5] PIN_AB25 Seven Segment Digit 3[5] 3.3V

HEX3[6] PIN_AB22 Seven Segment Digit 3[6] 3.3V

HEX4[0] PIN_AA24 Seven Segment Digit 4[0] 3.3V

HEX4[1] PIN_Y23 Seven Segment Digit 4[1] 3.3V

HEX4[2] PIN_Y24 Seven Segment Digit 4[2] 3.3V

HEX4[3] PIN_W22 Seven Segment Digit 4[3] 3.3V

HEX4[4] PIN_W24 Seven Segment Digit 4[4] 3.3V

HEX4[5] PIN_V23 Seven Segment Digit 4[5] 3.3V

HEX4[6] PIN_W25 Seven Segment Digit 4[6] 3.3V

HEX5[0] PIN_V25 Seven Segment Digit 5[0] 3.3V

HEX5[1] PIN_AA28 Seven Segment Digit 5[1] 3.3V

HEX5[2] PIN_Y27 Seven Segment Digit 5[2] 3.3V

HEX5[3] PIN_AB27 Seven Segment Digit 5[3] 3.3V

HEX5[4] PIN_AB26 Seven Segment Digit 5[4] 3.3V

HEX5[5] PIN_AA26 Seven Segment Digit 5[5] 3.3V

HEX5[6] PIN_AA25 Seven Segment Digit 5[6] 3.3V

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

DE1-SoC User Manual 28 www.terasic.com

January 28, 2019

3.6.3 2x20 GPIO Expansion Headers

The board has two 40-pin expansion headers. Each header has 36 user pins connected directly to the

Cyclone V SoC FPGA. It also comes with DC +5V (VCC5), DC +3.3V (VCC3P3), and two GND

pins. The maximum power consumption allowed for a daughter card connected to one or two GPIO

ports is shown in Table 3-10.

Table 3-10 Voltage and Max. Current Limit of Expansion Header(s)

Supplied Voltage Max. Current Limit

5V 1A

3.3V 1.5A

Each pin on the expansion headers is connected to two diodes and a resistor for protection against

high or low voltage level. Figure 3-19 shows the protection circuitry applied to all 2x36 data pins.

Table 3-11 shows the pin assignment of two GPIO headers.

Figure 3-19 Connections between the GPIO header and Cyclone V SoC FPGA

Table 3-11 Pin Assignment of Expansion Headers

Signal Name FPGA Pin No. Description I/O Standard

GPIO_0[0] PIN_AC18 GPIO Connection 0[0] 3.3V

GPIO_0 [1] PIN_Y17 GPIO Connection 0[1] 3.3V

GPIO_0 [2] PIN_AD17 GPIO Connection 0[2] 3.3V

GPIO_0 [3] PIN_Y18 GPIO Connection 0[3] 3.3V

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

DE1-SoC User Manual 29 www.terasic.com

January 28, 2019

GPIO_0 [4] PIN_AK16 GPIO Connection 0[4] 3.3V

GPIO_0 [5] PIN_AK18 GPIO Connection 0[5] 3.3V

GPIO_0 [6] PIN_AK19 GPIO Connection 0[6] 3.3V

GPIO_0 [7] PIN_AJ19 GPIO Connection 0[7] 3.3V

GPIO_0 [8] PIN_AJ17 GPIO Connection 0[8] 3.3V

GPIO_0 [9] PIN_AJ16 GPIO Connection 0[9] 3.3V

GPIO_0 [10] PIN_AH18 GPIO Connection 0[10] 3.3V

GPIO_0 [11] PIN_AH17 GPIO Connection 0[11] 3.3V

GPIO_0 [12] PIN_AG16 GPIO Connection 0[12] 3.3V

GPIO_0 [13] PIN_AE16 GPIO Connection 0[13] 3.3V

GPIO_0 [14] PIN_AF16 GPIO Connection 0[14] 3.3V

GPIO_0 [15] PIN_AG17 GPIO Connection 0[15] 3.3V

GPIO_0 [16] PIN_AA18 GPIO Connection 0[16] 3.3V

GPIO_0 [17] PIN_AA19 GPIO Connection 0[17] 3.3V

GPIO_0 [18] PIN_AE17 GPIO Connection 0[18] 3.3V

GPIO_0 [19] PIN_AC20 GPIO Connection 0[19] 3.3V

GPIO_0 [20] PIN_AH19 GPIO Connection 0[20] 3.3V

GPIO_0 [21] PIN_AJ20 GPIO Connection 0[21] 3.3V

GPIO_0 [22] PIN_AH20 GPIO Connection 0[22] 3.3V

GPIO_0 [23] PIN_AK21 GPIO Connection 0[23] 3.3V

GPIO_0 [24] PIN_AD19 GPIO Connection 0[24] 3.3V

GPIO_0 [25] PIN_AD20 GPIO Connection 0[25] 3.3V

GPIO_0 [26] PIN_AE18 GPIO Connection 0[26] 3.3V

GPIO_0 [27] PIN_AE19 GPIO Connection 0[27] 3.3V

GPIO_0 [28] PIN_AF20 GPIO Connection 0[28] 3.3V

GPIO_0 [29] PIN_AF21 GPIO Connection 0[29] 3.3V

GPIO_0 [30] PIN_AF19 GPIO Connection 0[30] 3.3V

GPIO_0 [31] PIN_AG21 GPIO Connection 0[31] 3.3V

GPIO_0 [32] PIN_AF18 GPIO Connection 0[32] 3.3V

GPIO_0 [33] PIN_AG20 GPIO Connection 0[33] 3.3V

GPIO_0 [34] PIN_AG18 GPIO Connection 0[34] 3.3V

GPIO_0 [35] PIN_AJ21 GPIO Connection 0[35] 3.3V

GPIO_1[0] PIN_AB17 GPIO Connection 1[0] 3.3V

GPIO_1[1] PIN_AA21 GPIO Connection 1[1] 3.3V

GPIO_1 [2] PIN_AB21 GPIO Connection 1[2] 3.3V

GPIO_1 [3] PIN_AC23 GPIO Connection 1[3] 3.3V

GPIO_1 [4] PIN_AD24 GPIO Connection 1[4] 3.3V

GPIO_1 [5] PIN_AE23 GPIO Connection 1[5] 3.3V

GPIO_1 [6] PIN_AE24 GPIO Connection 1[6] 3.3V

GPIO_1 [7] PIN_AF25 GPIO Connection 1[7] 3.3V

GPIO_1 [8] PIN_AF26 GPIO Connection 1[8] 3.3V

GPIO_1 [9] PIN_AG25 GPIO Connection 1[9] 3.3V

GPIO_1[10] PIN_AG26 GPIO Connection 1[10] 3.3V

GPIO_1 [11] PIN_AH24 GPIO Connection 1[11] 3.3V

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

DE1-SoC User Manual 30 www.terasic.com

January 28, 2019

GPIO_1 [12] PIN_AH27 GPIO Connection 1[12] 3.3V

GPIO_1 [13] PIN_AJ27 GPIO Connection 1[13] 3.3V

GPIO_1 [14] PIN_AK29 GPIO Connection 1[14] 3.3V

GPIO_1 [15] PIN_AK28 GPIO Connection 1[15] 3.3V

GPIO_1 [16] PIN_AK27 GPIO Connection 1[16] 3.3V

GPIO_1 [17] PIN_AJ26 GPIO Connection 1[17] 3.3V

GPIO_1 [18] PIN_AK26 GPIO Connection 1[18] 3.3V

GPIO_1 [19] PIN_AH25 GPIO Connection 1[19] 3.3V

GPIO_1 [20] PIN_AJ25 GPIO Connection 1[20] 3.3V

GPIO_1 [21] PIN_AJ24 GPIO Connection 1[21] 3.3V

GPIO_1 [22] PIN_AK24 GPIO Connection 1[22] 3.3V

GPIO_1 [23] PIN_AG23 GPIO Connection 1[23] 3.3V

GPIO_1 [24] PIN_AK23 GPIO Connection 1[24] 3.3V

GPIO_1 [25] PIN_AH23 GPIO Connection 1[25] 3.3V

GPIO_1 [26] PIN_AK22 GPIO Connection 1[26] 3.3V

GPIO_1 [27] PIN_AJ22 GPIO Connection 1[27] 3.3V

GPIO_1 [28] PIN_AH22 GPIO Connection 1[28] 3.3V

GPIO_1 [29] PIN_AG22 GPIO Connection 1[29] 3.3V

GPIO_1 [30] PIN_AF24 GPIO Connection 1[30] 3.3V

GPIO_1 [31] PIN_AF23 GPIO Connection 1[31] 3.3V

GPIO_1 [32] PIN_AE22 GPIO Connection 1[32] 3.3V

GPIO_1 [33] PIN_AD21 GPIO Connection 1[33] 3.3V

GPIO_1 [34] PIN_AA20 GPIO Connection 1[34] 3.3V

GPIO_1 [35] PIN_AC22 GPIO Connection 1[35] 3.3V

3.6.4 24-bit Audio CODEC

The DE1-SoC board offers high-quality 24-bit audio via the Wolfson WM8731 audio CODEC

(Encoder/Decoder). This chip supports microphone-in, line-in, and line-out ports, with adjustable

sample rate from 8 kHz to 96 kHz. The WM8731 is controlled via serial I2C bus, which is

connected to HPS or Cyclone V SoC FPGA through an I2C multiplexer. The connection of the

audio circuitry to the FPGA is shown in Figure 3-20, and the associated pin assignment to the

FPGA is listed in Table 3-12. More information about the WM8731 codec is available in its

datasheet, which can be found on the manufacturer’s website, or in the directory

\DE1_SOC_datasheets\Audio CODEC of DE1-SoC System CD.

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

DE1-SoC User Manual 31 www.terasic.com

January 28, 2019

Figure 3-20 Connections between the FPGA and audio CODEC

Table 3-12 Pin Assignment of Audio CODEC

Signal Name FPGA Pin No. Description I/O Standard

AUD_ADCLRCK PIN_K8 Audio CODEC ADC LR Clock 3.3V

AUD_ADCDAT PIN_K7 Audio CODEC ADC Data 3.3V

AUD_DACLRCK PIN_H8 Audio CODEC DAC LR Clock 3.3V

AUD_DACDAT PIN_J7 Audio CODEC DAC Data 3.3V

AUD_XCK PIN_G7 Audio CODEC Chip Clock 3.3V

AUD_BCLK PIN_H7 Audio CODEC Bit-stream Clock 3.3V

I2C_SCLK PIN_J12 or PIN_E23 I2C Clock 3.3V

I2C_SDAT PIN_K12 or PIN_C24 I2C Data 3.3V

3.6.5 I2C Multiplexer

The DE1-SoC board implements an I2C multiplexer for HPS to access the I2C bus originally

owned by FPGA. Figure 3-21 shows the connection of I2C multiplexer to the FPGA and HPS. HPS

can access Audio CODEC and TV Decoder if and only if the HPS_I2C_CONTROL signal is set to

high. The pin assignment of I2C bus is listed in Table 3-13 .

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

DE1-SoC User Manual 32 www.terasic.com

January 28, 2019

Figure 3-21 Control mechanism for the I2C multiplexer

Table 3-13 Pin Assignment of I2C Bus

Signal Name FPGA Pin No. Description I/O Standard

FPGA_I2C_SCLK PIN_J12 FPGA I2C Clock 3.3V

FPGA_I2C_SDAT PIN_K12 FPGA I2C Data 3.3V

HPS_I2C1_SCLK PIN_E23 I2C Clock of the first HPS I2C concontroller 3.3V

HPS_I2C1_SDAT PIN_C24 I2C Data of the first HPS I2C concontroller 3.3V

HPS_I2C2_SCLK PIN_H23 I2C Clock of the second HPS I2C concontroller 3.3V

HPS_I2C2_SDAT PIN_A25 I2C Data of the second HPS I2C concontroller 3.3V

3.6.6 VGA

The DE1-SoC board has a 15-pin D-SUB connector populated for VGA output. The VGA

synchronization signals are generated directly from the Cyclone V SoC FPGA, and the Analog

Devices ADV7123 triple 10-bit high-speed video DAC (only the higher 8-bits are used) transforms

signals from digital to analog to represent three fundamental colors (red, green, and blue). It can

support up to SXGA standard (1280*1024) with signals transmitted at 100MHz. Figure 3-22 shows

the signals connected between the FPGA and VGA.

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

DE1-SoC User Manual 33 www.terasic.com

January 28, 2019

Figure 3-22 Connections between the FPGA and VGA

The timing specification for VGA synchronization and RGB (red, green, blue) data can be easily

found on website nowadays. Figure 3-22 illustrates the basic timing requirements for each row

(horizontal) displayed on a VGA monitor. An active-low pulse of specific duration is applied to the

horizontal synchronization (hsync) input of the monitor, which signifies the end of one row of data

and the start of the next. The data (RGB) output to the monitor must be off (driven to 0 V) for a

time period called the back porch (b) after the hsync pulse occurs, which is followed by the display

interval (c). During the data display interval the RGB data drives each pixel in turn across the row

being displayed. Finally, there is a time period called the front porch (d) where the RGB signals

must again be off before the next hsync pulse can occur. The timing of vertical synchronization

(vsync) is similar to the one shown in Figure 3-23, except that a vsync pulse signifies the end of

one frame and the start of the next, and the data refers to the set of rows in the frame (horizontal

timing). Table 3-14 and Table 3-15 show different resolutions and durations of time period a, b, c,

and d for both horizontal and vertical timing.

More information about the ADV7123 video DAC is available in its datasheet, which can be found

on the manufacturer’s website, or in the directory \Datasheets\VIDEO DAC of DE1-SoC System

CD. The pin assignment between the Cyclone V SoC FPGA and the ADV7123 is listed in Table

3-16.

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

DE1-SoC User Manual 34 www.terasic.com

January 28, 2019

Figure 3-23 VGA horizontal timing specification

Table 3-14 VGA Horizontal Timing Specification

VGA mode Horizontal Timing Spec

Configuration Resolution(HxV) a(us) b(us) c(us) d(us) Pixel clock(MHz)

VGA(60Hz) 640x480 3.8 1.9 25.4 0.6 25

VGA(85Hz) 640x480 1.6 2.2 17.8 1.6 36

SVGA(60Hz) 800x600 3.2 2.2 20 1 40

SVGA(75Hz) 800x600 1.6 3.2 16.2 0.3 49

SVGA(85Hz) 800x600 1.1 2.7 14.2 0.6 56

XGA(60Hz) 1024x768 2.1 2.5 15.8 0.4 65

XGA(70Hz) 1024x768 1.8 1.9 13.7 0.3 75

XGA(85Hz) 1024x768 1.0 2.2 10.8 0.5 95

1280x1024(60Hz) 1280x1024 1.0 2.3 11.9 0.4 108

Table 3-15 VGA Vertical Timing Specification

VGA mode Vertical Timing Spec

Configuration Resolution(HxV) a(lines) b(lines) c(lines) d(lines) Pixel clock(MHz)

VGA(60Hz) 640x480 2 33 480 10 25

VGA(85Hz) 640x480 3 25 480 1 36

SVGA(60Hz) 800x600 4 23 600 1 40

SVGA(75Hz) 800x600 3 21 600 1 49

SVGA(85Hz) 800x600 3 27 600 1 56

XGA(60Hz) 1024x768 6 29 768 3 65

XGA(70Hz) 1024x768 6 29 768 3 75

XGA(85Hz) 1024x768 3 36 768 1 95

1280x1024(60Hz) 1280x1024 3 38 1024 1 108

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

DE1-SoC User Manual 35 www.terasic.com

January 28, 2019

Table 3-16 Pin Assignment of VGA

Signal Name FPGA Pin No. Description I/O Standard

VGA_R[0] PIN_A13 VGA Red[0] 3.3V

VGA_R[1] PIN_C13 VGA Red[1] 3.3V

VGA_R[2] PIN_E13 VGA Red[2] 3.3V

VGA_R[3] PIN_B12 VGA Red[3] 3.3V

VGA_R[4] PIN_C12 VGA Red[4] 3.3V

VGA_R[5] PIN_D12 VGA Red[5] 3.3V

VGA_R[6] PIN_E12 VGA Red[6] 3.3V

VGA_R[7] PIN_F13 VGA Red[7] 3.3V

VGA_G[0] PIN_J9 VGA Green[0] 3.3V

VGA_G[1] PIN_J10 VGA Green[1] 3.3V

VGA_G[2] PIN_H12 VGA Green[2] 3.3V

VGA_G[3] PIN_G10 VGA Green[3] 3.3V

VGA_G[4] PIN_G11 VGA Green[4] 3.3V

VGA_G[5] PIN_G12 VGA Green[5] 3.3V

VGA_G[6] PIN_F11 VGA Green[6] 3.3V

VGA_G[7] PIN_E11 VGA Green[7] 3.3V

VGA_B[0] PIN_B13 VGA Blue[0] 3.3V

VGA_B[1] PIN_G13 VGA Blue[1] 3.3V

VGA_B[2] PIN_H13 VGA Blue[2] 3.3V

VGA_B[3] PIN_F14 VGA Blue[3] 3.3V

VGA_B[4] PIN_H14 VGA Blue[4] 3.3V

VGA_B[5] PIN_F15 VGA Blue[5] 3.3V

VGA_B[6] PIN_G15 VGA Blue[6] 3.3V

VGA_B[7] PIN_J14 VGA Blue[7] 3.3V

VGA_CLK PIN_A11 VGA Clock 3.3V

VGA_BLANK_N PIN_F10 VGA BLANK 3.3V

VGA_HS PIN_B11 VGA H_SYNC 3.3V

VGA_VS PIN_D11 VGA V_SYNC 3.3V

VGA_SYNC_N PIN_C10 VGA SYNC 3.3V

3.6.7 TV Decoder

The DE1-SoC board is equipped with an Analog Device ADV7180 TV decoder chip. The

ADV7180 is an integrated video decoder which automatically detects and converts a standard

analog baseband television signals (NTSC, PAL, and SECAM) into 4:2:2 component video data,

which is compatible with the 8-bit ITU-R BT.656 interface standard. The ADV7180 is compatible

with wide range of video devices, including DVD players, tape-based sources, broadcast sources,

and security/surveillance cameras.

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

DE1-SoC User Manual 36 www.terasic.com

January 28, 2019

The registers in the TV decoder can be accessed and set through serial I2C bus by the Cyclone V

SoC FPGA or HPS. Note that the I2C address W/R of the TV decoder (U4) is 0x40/0x41. The pin

assignment of TV decoder is listed in Table 3-17. More information about the ADV7180 is

available on the manufacturer’s website, or in the directory \DE1_SOC_datasheets\Video Decoder

of DE1-SoC System CD.

Figure 3-24 Connections between the FPGA and TV Decoder

Table 3-17 Pin Assignment of TV Decoder

Signal Name FPGA Pin No. Description I/O Standard

TD_DATA [0] PIN_D2 TV Decoder Data[0] 3.3V

TD_DATA [1] PIN_B1 TV Decoder Data[1] 3.3V

TD_DATA [2] PIN_E2 TV Decoder Data[2] 3.3V

TD_DATA [3] PIN_B2 TV Decoder Data[3] 3.3V

TD_DATA [4] PIN_D1 TV Decoder Data[4] 3.3V

TD_DATA [5] PIN_E1 TV Decoder Data[5] 3.3V

TD_DATA [6] PIN_C2 TV Decoder Data[6] 3.3V

TD_DATA [7] PIN_B3 TV Decoder Data[7] 3.3V

TD_HS PIN_A5 TV Decoder H_SYNC 3.3V

TD_VS PIN_A3 TV Decoder V_SYNC 3.3V

TD_CLK27 PIN_H15 TV Decoder Clock Input. 3.3V

TD_RESET_N PIN_F6 TV Decoder Reset 3.3V

I2C_SCLK PIN_J12 or PIN_E23 I2C Clock 3.3V

I2C_SDAT PIN_K12 or PIN_C24 I2C Data 3.3V

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

DE1-SoC User Manual 37 www.terasic.com

January 28, 2019

3.6.8 IR Receiver

The board comes with an infrared remote-control receiver module (model: IRM-V538/TR1), whose

datasheet is provided in the directory \Datasheets\ IR Receiver and Emitter of DE1-SoC system CD.

The remote control, which is optional and can be ordered from the website, has an encoding chip

(uPD6121G) built-in for generating infrared signals. Figure 3-25 shows the connection of IR

receiver to the FPGA. Table 3-18 shows the pin assignment of IR receiver to the FPGA.

Figure 3-25 Connection between the FPGA and IR Receiver

Table 3-18 Pin Assignment of IR Receiver

Signal Name FPGA Pin No. Description I/O Standard

IRDA_RXD PIN_ AA30 IR Receiver 3.3V

3.6.9 IR Emitter LED

The board has an IR emitter LED for IR communication, which is widely used for operating

television device wirelessly from a short line-of-sight distance. It can also be used to communicate

with other systems by matching this IR emitter LED with another IR receiver on the other side.

Figure 3-26 shows the connection of IR emitter LED to the FPGA. Table 3-19 shows the pin

assignment of IR emitter LED to the FPGA.

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

DE1-SoC User Manual 38 www.terasic.com

January 28, 2019

Figure 3-26 Connection between the FPGA and IR emitter LED

Table 3-19 Pin Assignment of IR Emitter LED

Signal Name FPGA Pin No. Description I/O Standard

IRDA_TXD PIN_ AB30 IR Emitter 3.3V

3.6.10 SDRAM Memory

The board features 64MB of SDRAM with a single 64MB (32Mx16) SDRAM chip. The chip

consists of 16-bit data line, control line, and address line connected to the FPGA. This chip uses the

3.3V LVCMOS signaling standard. Connections between the FPGA and SDRAM are shown in

Figure 3-27, and the pin assignment is listed in Table 3-20.

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

DE1-SoC User Manual 39 www.terasic.com

January 28, 2019

Figure 3-27 Connections between the FPGA and SDRAM

Table 3-20 Pin Assignment of SDRAM

Signal Name FPGA Pin No. Description I/O Standard

DRAM_ADDR[0] PIN_AK14 SDRAM Address[0] 3.3V

DRAM_ADDR[1] PIN_AH14 SDRAM Address[1] 3.3V

DRAM_ADDR[2] PIN_AG15 SDRAM Address[2] 3.3V

DRAM_ADDR[3] PIN_AE14 SDRAM Address[3] 3.3V

DRAM_ADDR[4] PIN_AB15 SDRAM Address[4] 3.3V

DRAM_ADDR[5] PIN_AC14 SDRAM Address[5] 3.3V

DRAM_ADDR[6] PIN_AD14 SDRAM Address[6] 3.3V

DRAM_ADDR[7] PIN_AF15 SDRAM Address[7] 3.3V

DRAM_ADDR[8] PIN_AH15 SDRAM Address[8] 3.3V

DRAM_ADDR[9] PIN_AG13 SDRAM Address[9] 3.3V

DRAM_ADDR[10] PIN_AG12 SDRAM Address[10] 3.3V

DRAM_ADDR[11] PIN_AH13 SDRAM Address[11] 3.3V

DRAM_ADDR[12] PIN_AJ14 SDRAM Address[12] 3.3V

DRAM_DQ[0] PIN_AK6 SDRAM Data[0] 3.3V

DRAM_DQ[1] PIN_AJ7 SDRAM Data[1] 3.3V

DRAM_DQ[2] PIN_AK7 SDRAM Data[2] 3.3V

DRAM_DQ[3] PIN_AK8 SDRAM Data[3] 3.3V

DRAM_DQ[4] PIN_AK9 SDRAM Data[4] 3.3V

DRAM_DQ[5] PIN_AG10 SDRAM Data[5] 3.3V

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

DE1-SoC User Manual 40 www.terasic.com

January 28, 2019

DRAM_DQ[6] PIN_AK11 SDRAM Data[6] 3.3V

DRAM_DQ[7] PIN_AJ11 SDRAM Data[7] 3.3V

DRAM_DQ[8] PIN_AH10 SDRAM Data[8] 3.3V

DRAM_DQ[9] PIN_AJ10 SDRAM Data[9] 3.3V

DRAM_DQ[10] PIN_AJ9 SDRAM Data[10] 3.3V

DRAM_DQ[11] PIN_AH9 SDRAM Data[11] 3.3V

DRAM_DQ[12] PIN_AH8 SDRAM Data[12] 3.3V

DRAM_DQ[13] PIN_AH7 SDRAM Data[13] 3.3V

DRAM_DQ[14] PIN_AJ6 SDRAM Data[14] 3.3V

DRAM_DQ[15] PIN_AJ5 SDRAM Data[15] 3.3V

DRAM_BA[0] PIN_AF13 SDRAM Bank Address[0] 3.3V

DRAM_BA[1] PIN_AJ12 SDRAM Bank Address[1] 3.3V

DRAM_LDQM PIN_AB13 SDRAM byte Data Mask[0] 3.3V

DRAM_UDQM PIN_AK12 SDRAM byte Data Mask[1] 3.3V

DRAM_RAS_N PIN_AE13 SDRAM Row Address Strobe 3.3V

DRAM_CAS_N PIN_AF11 SDRAM Column Address Strobe 3.3V

DRAM_CKE PIN_AK13 SDRAM Clock Enable 3.3V

DRAM_CLK PIN_AH12 SDRAM Clock 3.3V

DRAM_WE_N PIN_AA13 SDRAM Write Enable 3.3V

DRAM_CS_N PIN_AG11 SDRAM Chip Select 3.3V

3.6.11 PS/2 Serial Port

The DE1-SoC board comes with a standard PS/2 interface and a connector for a PS/2 keyboard or

mouse. Figure 3-28 shows the connection of PS/2 circuit to the FPGA. Users can use the PS/2

keyboard and mouse on the DE1-SoC board simultaneously by a PS/2 Y-Cable, as shown in Figure

3-29. Instructions on how to use PS/2 mouse and/or keyboard can be found on various educational

websites. The pin assignment associated to this interface is shown in Table 3-21.

Note: If users connect only one PS/2 equipment, the PS/2 signals connected to the FPGA I/O

should be “PS2_CLK” and “PS2_DAT”.

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

DE1-SoC User Manual 41 www.terasic.com

January 28, 2019

Figure 3-28 Connections between the FPGA and PS/2

Figure 3-29 Y-Cable for using keyboard and mouse simultaneously

Table 3-21 Pin Assignment of PS/2

Signal Name FPGA Pin No. Description I/O Standard

PS2_CLK PIN_AD7 PS/2 Clock 3.3V

PS2_DAT PIN_AE7 PS/2 Data 3.3V

PS2_CLK2 PIN_AD9 PS/2 Clock (reserved for second PS/2 device) 3.3V

PS2_DAT2 PIN_AE9 PS/2 Data (reserved for second PS/2 device) 3.3V

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

DE1-SoC User Manual 42 www.terasic.com

January 28, 2019

3.6.12 A/D Converter and 2x5 Header

The DE1-SoC has an analog-to-digital converter (LTC2308), which features low noise,

eight-channel CMOS 12-bit. This ADC offers conversion throughput rate up to 500KSPS. The

analog input range for all input channels can be 0 V to 4.096V. The internal conversion clock allows

the external serial output data clock (SCLK) to operate at any frequency up to 40MHz. It can be

configured to accept eight input signals at inputs ADC_IN0 through ADC_IN7. These eight input

signals are connected to a 2x5 header, as shown in Figure 3-30.

More information about the A/D converter chip is available in its datasheet. It can be found on

manufacturer’s website or in the directory \datasheet of De1-SoC system CD.

Figure 3-30 Signals of the 2x5 Header

Figure 3-31 shows the connections between the FPGA, 2x5 header, and the A/D converter.

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

DE1-SoC User Manual 43 www.terasic.com

January 28, 2019

Figure 3-31 Connections between the FPGA, 2x5 header, and the A/D converter

Table 3-22 Pin Assignment of ADC

Signal Name FPGA Pin No. Description I/O Standard

ADC_CS_N PIN_AJ4 Chip select 3.3V

ADC_DOUT PIN_AK3 Digital data input 3.3V

ADC_DIN PIN_AK4 Digital data output 3.3V

ADC_SCLK PIN_AK2 Digital clock input 3.3V

33..77 PPeerriipphheerraallss CCoonnnneecctteedd ttoo HHaarrdd PPrroocceessssoorr SSyysstteemm ((HHPPSS))

This section introduces the interfaces connected to the HPS section of the Cyclone V SoC FPGA.

Users can access these interfaces via the HPS processor.

33..77..11 UUsseerr PPuusshh--bbuuttttoonnss aanndd LLEEDDss

Similar to the FPGA, the HPS also has its set of switches, buttons, LEDs, and other interfaces

connected exclusively. Users can control these interfaces to monitor the status of HPS.

Table 3-23 gives the pin assignment of all the LEDs, switches, and push-buttons.

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

DE1-SoC User Manual 44 www.terasic.com

January 28, 2019

Table 3-23 Pin Assignment of LEDs, Switches and Push-buttons

Signal Name HPS GPIO Register/bit Function

HPS_KEY GPIO54 GPIO1[25] I/O

HPS_LED GPIO53 GPIO1[24] I/O

33..77..22 GGiiggaabbiitt EEtthheerrnneett

The board supports Gigabit Ethernet transfer by an external Micrel KSZ9021RN PHY chip and

HPS Ethernet MAC function. The KSZ9021RN chip with integrated 10/100/1000 Mbps Gigabit

Ethernet transceiver also supports RGMII MAC interface. Figure 3-32 shows the connections

between the HPS, Gigabit Ethernet PHY, and RJ-45 connector.

The pin assignment associated to Gigabit Ethernet interface is listed in Table 3-24. More

information about the KSZ9021RN PHY chip and its datasheet, as well as the application notes,

which are available on the manufacturer’s website.

Figure 3-32 Connections between the HPS and Gigabit Ethernet

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

DE1-SoC User Manual 45 www.terasic.com

January 28, 2019

Table 3-24 Pin Assignment of Gigabit Ethernet PHY

Signal Name FPGA Pin No. Description I/O Standard

HPS_ENET_TX_EN PIN_A20 GMII and MII transmit enable 3.3V

HPS_ENET_TX_DATA[0] PIN_F20 MII transmit data[0] 3.3V

HPS_ENET_TX_DATA[1] PIN_J19 MII transmit data[1] 3.3V

HPS_ENET_TX_DATA[2] PIN_F21 MII transmit data[2] 3.3V

HPS_ENET_TX_DATA[3] PIN_F19 MII transmit data[3] 3.3V

HPS_ENET_RX_DV PIN_K17 GMII and MII receive data valid 3.3V

HPS_ENET_RX_DATA[0] PIN_A21 GMII and MII receive data[0] 3.3V

HPS_ENET_RX_DATA[1] PIN_B20 GMII and MII receive data[1] 3.3V

HPS_ENET_RX_DATA[2] PIN_B18 GMII and MII receive data[2] 3.3V

HPS_ENET_RX_DATA[3] PIN_D21 GMII and MII receive data[3] 3.3V

HPS_ENET_RX_CLK PIN_G20 GMII and MII receive clock 3.3V

HPS_ENET_RESET_N PIN_E18 Hardware Reset Signal 3.3V

HPS_ENET_MDIO PIN_E21 Management Data 3.3V

HPS_ENET_MDC PIN_B21 Management Data Clock Reference 3.3V

HPS_ENET_INT_N PIN_C19 Interrupt Open Drain Output 3.3V

HPS_ENET_GTX_CLK PIN_H19 GMII Transmit Clock 3.3V

There are two LEDs, green LED (LEDG) and yellow LED (LEDY), which represent the status of

Ethernet PHY (KSZ9021RNI). The LED control signals are connected to the LEDs on the RJ45

connector. The state and definition of LEDG and LEDY are listed in Table 3-25. For instance, the

connection from board to Gigabit Ethernet is established once the LEDG lights on.

Table 3-25 State and Definition of LED Mode Pins

LED (State) LED (Definition) Link /Activity

 LEDG LEDY LEDG LEDY

H H OFF OFF Link off

L H ON OFF 1000 Link / No Activity

Toggle H Blinking OFF 1000 Link / Activity (RX, TX)

H L OFF ON 100 Link / No Activity

H Toggle OFF Blinking 100 Link / Activity (RX, TX)

L L ON ON 10 Link/ No Activity

Toggle Toggle Blinking Blinking 10 Link / Activity (RX, TX)

33..77..33 UUAARRTT

The board has one UART interface connected for communication with the HPS. This interface

doesn’t support HW flow control signals. The physical interface is implemented by UART-USB

onboard bridge from a FT232R chip to the host with an USB Mini-B connector. More information

about the chip is available on the manufacturer’s website, or in the directory \Datasheets\UART TO

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

DE1-SoC User Manual 46 www.terasic.com

January 28, 2019

USB of DE1-SoC system CD. Figure 3-33 shows the connections between the HPS, FT232R chip,

and the USB Mini-B connector. Table 3-26 lists the pin assignment of UART interface connected to

the HPS.

Figure 3-33 Connections between the HPS and FT232R Chip

Table 3-26 Pin Assignment of UART Interface

Signal Name FPGA Pin No. Description I/O Standard

HPS_UART_RX PIN_B25 HPS UART Receiver 3.3V

HPS_UART_TX PIN_C25 HPS UART Transmitter 3.3V

HPS_CONV_USB_N PIN_B15 Reserve 3.3V

33..77..44 DDDDRR33 MMeemmoorryy

The board supports 1GB of DDR3 SDRAM comprising of two x16 bit DDR3 devices on HPS side.

The signals are connected to the dedicated Hard Memory Controller for HPS I/O banks and the

target speed is 400 MHz. Table 3-27 lists the pin assignment of DDR3 and its description with I/O

standard.

Table 3-27 Pin Assignment of DDR3 Memory

Signal Name FPGA Pin No. Description I/O Standard

HPS_DDR3_A[0] PIN_F26 HPS DDR3 Address[0] SSTL-15 Class I

HPS_DDR3_A[1] PIN_G30 HPS DDR3 Address[1] SSTL-15 Class I

HPS_DDR3_A[2] PIN_F28 HPS DDR3 Address[2] SSTL-15 Class I

HPS_DDR3_A[3] PIN_F30 HPS DDR3 Address[3] SSTL-15 Class I

HPS_DDR3_A[4] PIN_J25 HPS DDR3 Address[4] SSTL-15 Class I

HPS_DDR3_A[5] PIN_J27 HPS DDR3 Address[5] SSTL-15 Class I

HPS_DDR3_A[6] PIN_F29 HPS DDR3 Address[6] SSTL-15 Class I

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

DE1-SoC User Manual 47 www.terasic.com

January 28, 2019

HPS_DDR3_A[7] PIN_E28 HPS DDR3 Address[7] SSTL-15 Class I

HPS_DDR3_A[8] PIN_H27 HPS DDR3 Address[8] SSTL-15 Class I

HPS_DDR3_A[9] PIN_G26 HPS DDR3 Address[9] SSTL-15 Class I

HPS_DDR3_A[10] PIN_D29 HPS DDR3 Address[10] SSTL-15 Class I

HPS_DDR3_A[11] PIN_C30 HPS DDR3 Address[11] SSTL-15 Class I

HPS_DDR3_A[12] PIN_B30 HPS DDR3 Address[12] SSTL-15 Class I

HPS_DDR3_A[13] PIN_C29 HPS DDR3 Address[13] SSTL-15 Class I

HPS_DDR3_A[14] PIN_H25 HPS DDR3 Address[14] SSTL-15 Class I

HPS_DDR3_BA[0] PIN_E29 HPS DDR3 Bank Address[0] SSTL-15 Class I

HPS_DDR3_BA[1] PIN_J24 HPS DDR3 Bank Address[1] SSTL-15 Class I

HPS_DDR3_BA[2] PIN_J23 HPS DDR3 Bank Address[2] SSTL-15 Class I

HPS_DDR3_CAS_n PIN_E27 DDR3 Column Address Strobe SSTL-15 Class I

HPS_DDR3_CKE PIN_L29 HPS DDR3 Clock Enable SSTL-15 Class I

HPS_DDR3_CK_n PIN_L23 HPS DDR3 Clock Differential 1.5-V SSTL Class I

HPS_DDR3_CK_p PIN_M23 HPS DDR3 Clock p Differential 1.5-V SSTL Class I

HPS_DDR3_CS_n PIN_H24 HPS DDR3 Chip Select SSTL-15 Class I

HPS_DDR3_DM[0] PIN_K28 HPS DDR3 Data Mask[0] SSTL-15 Class I

HPS_DDR3_DM[1] PIN_M28 HPS DDR3 Data Mask[1] SSTL-15 Class I

HPS_DDR3_DM[2] PIN_R28 HPS DDR3 Data Mask[2] SSTL-15 Class I

HPS_DDR3_DM[3] PIN_W30 HPS DDR3 Data Mask[3] SSTL-15 Class I

HPS_DDR3_DQ[0] PIN_K23 HPS DDR3 Data[0] SSTL-15 Class I

HPS_DDR3_DQ[1] PIN_K22 HPS DDR3 Data[1] SSTL-15 Class I

HPS_DDR3_DQ[2] PIN_H30 HPS DDR3 Data[2] SSTL-15 Class I

HPS_DDR3_DQ[3] PIN_G28 HPS DDR3 Data[3] SSTL-15 Class I

HPS_DDR3_DQ[4] PIN_L25 HPS DDR3 Data[4] SSTL-15 Class I

HPS_DDR3_DQ[5] PIN_L24 HPS DDR3 Data[5] SSTL-15 Class I

HPS_DDR3_DQ[6] PIN_J30 HPS DDR3 Data[6] SSTL-15 Class I

HPS_DDR3_DQ[7] PIN_J29 HPS DDR3 Data[7] SSTL-15 Class I

HPS_DDR3_DQ[8] PIN_K26 HPS DDR3 Data[8] SSTL-15 Class I

HPS_DDR3_DQ[9] PIN_L26 HPS DDR3 Data[9] SSTL-15 Class I

HPS_DDR3_DQ[10] PIN_K29 HPS DDR3 Data[10] SSTL-15 Class I

HPS_DDR3_DQ[11] PIN_K27 HPS DDR3 Data[11] SSTL-15 Class I

HPS_DDR3_DQ[12] PIN_M26 HPS DDR3 Data[12] SSTL-15 Class I

HPS_DDR3_DQ[13] PIN_M27 HPS DDR3 Data[13] SSTL-15 Class I

HPS_DDR3_DQ[14] PIN_L28 HPS DDR3 Data[14] SSTL-15 Class I

HPS_DDR3_DQ[15] PIN_M30 HPS DDR3 Data[15] SSTL-15 Class I

HPS_DDR3_DQ[16] PIN_U26 HPS DDR3 Data[16] SSTL-15 Class I

HPS_DDR3_DQ[17] PIN_T26 HPS DDR3 Data[17] SSTL-15 Class I

HPS_DDR3_DQ[18] PIN_N29 HPS DDR3 Data[18] SSTL-15 Class I

HPS_DDR3_DQ[19] PIN_N28 HPS DDR3 Data[19] SSTL-15 Class I

HPS_DDR3_DQ[20] PIN_P26 HPS DDR3 Data[20] SSTL-15 Class I

HPS_DDR3_DQ[21] PIN_P27 HPS DDR3 Data[21] SSTL-15 Class I

HPS_DDR3_DQ[22] PIN_N27 HPS DDR3 Data[22] SSTL-15 Class I

HPS_DDR3_DQ[23] PIN_R29 HPS DDR3 Data[23] SSTL-15 Class I

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

DE1-SoC User Manual 48 www.terasic.com

January 28, 2019

HPS_DDR3_DQ[24] PIN_P24 HPS DDR3 Data[24] SSTL-15 Class I

HPS_DDR3_DQ[25] PIN_P25 HPS DDR3 Data[25] SSTL-15 Class I

HPS_DDR3_DQ[26] PIN_T29 HPS DDR3 Data[26] SSTL-15 Class I

HPS_DDR3_DQ[27] PIN_T28 HPS DDR3 Data[27] SSTL-15 Class I

HPS_DDR3_DQ[28] PIN_R27 HPS DDR3 Data[28] SSTL-15 Class I

HPS_DDR3_DQ[29] PIN_R26 HPS DDR3 Data[29] SSTL-15 Class I

HPS_DDR3_DQ[30] PIN_V30 HPS DDR3 Data[30] SSTL-15 Class I

HPS_DDR3_DQ[31] PIN_W29 HPS DDR3 Data[31] SSTL-15 Class I

HPS_DDR3_DQS_n[0] PIN_M19 HPS DDR3 Data Strobe n[0] Differential 1.5-V SSTL Class I

HPS_DDR3_DQS_n[1] PIN_N24 HPS DDR3 Data Strobe n[1] Differential 1.5-V SSTL Class I

HPS_DDR3_DQS_n[2] PIN_R18 HPS DDR3 Data Strobe n[2] Differential 1.5-V SSTL Class I

HPS_DDR3_DQS_n[3] PIN_R21 HPS DDR3 Data Strobe n[3] Differential 1.5-V SSTL Class I

HPS_DDR3_DQS_p[0] PIN_N18 HPS DDR3 Data Strobe p[0] Differential 1.5-V SSTL Class I

HPS_DDR3_DQS_p[1] PIN_N25 HPS DDR3 Data Strobe p[1] Differential 1.5-V SSTL Class I

HPS_DDR3_DQS_p[2] PIN_R19 HPS DDR3 Data Strobe p[2] Differential 1.5-V SSTL Class I

HPS_DDR3_DQS_p[3] PIN_R22 HPS DDR3 Data Strobe p[3] Differential 1.5-V SSTL Class I

HPS_DDR3_ODT PIN_H28 HPS DDR3 On-die Termination SSTL-15 Class I

HPS_DDR3_RAS_n PIN_D30 DDR3 Row Address Strobe SSTL-15 Class I

HPS_DDR3_RESET_n PIN_P30 HPS DDR3 Reset SSTL-15 Class I

HPS_DDR3_WE_n PIN_C28 HPS DDR3 Write Enable SSTL-15 Class I

HPS_DDR3_RZQ PIN_D27 External reference ball for

output drive calibration

1.5 V

33..77..55 MMiiccrroo SSDD CCaarrdd SSoocckkeett

The board supports Micro SD card interface with x4 data lines. It serves not only an external

storage for the HPS, but also an alternative boot option for DE1-SoC board. Figure 3-34 shows

signals connected between the HPS and Micro SD card socket.

Table 3-28 lists the pin assignment of Micro SD card socket to the HPS.

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

DE1-SoC User Manual 49 www.terasic.com

January 28, 2019

Figure 3-34 Connections between the FPGA and SD card socket

Table 3-28 Pin Assignment of Micro SD Card Socket

Signal Name FPGA Pin No. Description I/O Standard

HPS_SD_CLK PIN_A16 HPS SD Clock 3.3V

HPS_SD_CMD PIN_F18 HPS SD Command Line 3.3V

HPS_SD_DATA[0] PIN_G18 HPS SD Data[0] 3.3V

HPS_SD_DATA[1] PIN_C17 HPS SD Data[1] 3.3V

HPS_SD_DATA[2] PIN_D17 HPS SD Data[2] 3.3V

HPS_SD_DATA[3] PIN_B16 HPS SD Data[3] 3.3V

33..77..66 22--ppoorrtt UUSSBB HHoosstt

The board has two USB 2.0 type-A ports with a SMSC USB3300 controller and a 2-port hub

controller. The SMSC USB3300 device in 32-pin QFN package interfaces with the SMSC

USB2512B hub controller. This device supports UTMI+ Low Pin Interface (ULPI), which

communicates with the USB 2.0 controller in HPS. The PHY operates in Host mode by connecting

the ID pin of USB3300 to ground. When operating in Host mode, the device is powered by the two

USB type-A ports. Figure 3-35 shows the connections of USB PTG PHY to the HPS. Table 3-29

lists the pin assignment of USBOTG PHY to the HPS.

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

DE1-SoC User Manual 50 www.terasic.com

January 28, 2019

Figure 3-35 Connections between the HPS and USB OTG PHY

Table 3-29 Pin Assignment of USB OTG PHY

Signal Name FPGA Pin No. Description I/O Standard

HPS_USB_CLKOUT PIN_N16 60MHz Reference Clock Output 3.3V

HPS_USB_DATA[0] PIN_E16 HPS USB_DATA[0] 3.3V

HPS_USB_DATA[1] PIN_G16 HPS USB_DATA[1] 3.3V

HPS_USB_DATA[2] PIN_D16 HPS USB_DATA[2] 3.3V

HPS_USB_DATA[3] PIN_D14 HPS USB_DATA[3] 3.3V

HPS_USB_DATA[4] PIN_A15 HPS USB_DATA[4] 3.3V

HPS_USB_DATA[5] PIN_C14 HPS USB_DATA[5] 3.3V

HPS_USB_DATA[6] PIN_D15 HPS USB_DATA[6] 3.3V

HPS_USB_DATA[7] PIN_M17 HPS USB_DATA[7] 3.3V

HPS_USB_DIR PIN_E14 Direction of the Data Bus 3.3V

HPS_USB_NXT PIN_A14 Throttle the Data 3.3V

HPS_USB_RESET PIN_G17 HPS USB PHY Reset 3.3V

HPS_USB_STP PIN_C15 Stop Data Stream on the Bus 3.3V

33..77..77 GG--sseennssoorr

The board comes with a digital accelerometer sensor module (ADXL345), commonly known as

G-sensor. This G-sensor is a small, thin, ultralow power assumption 3-axis accelerometer with

high-resolution measurement. Digitalized output is formatted as 16-bit in two’s complement and

can be accessed through I2C interface. The I2C address of G-sensor is 0xA6/0xA7. More

information about this chip can be found in its datasheet, which is available on manufacturer’s

website or in the directory \Datasheet folder of DE1-SoC system CD. Figure 3-36 shows the

connections between the HPS and G-sensor. Table 3-30 lists the pin assignment of G-senor to the

HPS.

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

DE1-SoC User Manual 51 www.terasic.com

January 28, 2019

Figure 3-36 Connections between Cyclone V SoC FPGA and G-Sensor

Table 3-30 Pin Assignment of G-senor

Signal Name FPGA Pin No. Description I/O Standard

HPS_GSENSOR_INT PIN_B22 HPS GSENSOR Interrupt Output 3.3V

HPS_I2C1_SCLK PIN_E23 HPS I2C Clock (share bus with LTC) 3.3V

HPS_I2C1_SDAT PIN_C24 HPS I2C Data (share bus) 3.3V

33..77..88 LLTTCC CCoonnnneeccttoorr

The board has a 14-pin header, which is originally used to communicate with various daughter

cards from Linear Technology. It is connected to the SPI Master and I2C ports of HPS. The

communication with these two protocols is bi-directional. The 14-pin header can also be used for

GPIO, SPI, or I2C based communication with the HPS. Connections between the HPS and LTC

connector are shown in Figure 3-37, and the pin assignment of LTC connector is listed in Table

3-31.

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

DE1-SoC User Manual 52 www.terasic.com

January 28, 2019

Figure 3-37 Connections between the HPS and LTC connector

Table 3-31 Pin Assignment of LTC Connector

Signal Name FPGA Pin No. Description I/O Standard

HPS_LTC_GPIO PIN_H17 HPS LTC GPIO 3.3V

HPS_I2C2_SCLK PIN_H23 HPS I2C2 Clock (share bus with

G-Sensor)

3.3V

HPS_I2C2_SDAT PIN_A25 HPS I2C2 Data (share bus with

G-Sensor)

3.3V

HPS_SPIM_CLK PIN_C23 SPI Clock 3.3V

HPS_SPIM_MISO PIN_E24 SPI Master Input/Slave Output 3.3V

HPS_SPIM_MOSI PIN_D22 SPI Master Output /Slave Input 3.3V

HPS_SPIM_SS PIN_D24 SPI Slave Select 3.3V

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

DE1-SoC User Manual 53 www.terasic.com

January 28, 2019

Chapter 4

DE1-SoC System

Builder

This chapter describes how users can create a custom design project with the tool named DE1-SoC

System Builder.

44..11 IInnttrroodduuccttiioonn

The DE1-SoC System Builder is a Windows-based utility. It is designed to help users create a

Quartus II project for DE1-SoC within minutes. The generated Quartus II project files include:

• Quartus II project file (.qpf)

• Quartus II setting file (.qsf)

• Top-level design file (.v)

• Synopsis design constraints file (.sdc)

• Pin assignment document (.htm)

The above files generated by the DE1-SoC System Builder can also prevent occurrence of situations

that are prone to compilation error when users manually edit the top-level design file or place pin

assignment. The common mistakes that users encounter are:

• Board is damaged due to incorrect bank voltage setting or pin assignment.

• Board is malfunctioned because of wrong device chosen, declaration of pin location or

direction is incorrect or forgotten.

• Performance degradation due to improper pin assignment.

44..22 DDeessiiggnn FFllooww

This section provides an introduction to the design flow of building a Quartus II project for

DE1-SoC under the DE1-SoC System Builder. The design flow is illustrated in Figure 4-1.

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

DE1-SoC User Manual 54 www.terasic.com

January 28, 2019

The DE1-SoC System Builder will generate two major files, a top-level design file (.v) and a

Quartus II setting file (.qsf) after users launch the DE1-SoC System Builder and create a new

project according to their design requirements

The top-level design file contains a top-level Verilog HDL wrapper for users to add their own

design/logic. The Quartus II setting file contains information such as FPGA device type, top-level

pin assignment, and the I/O standard for each user-defined I/O pin.

Finally, the Quartus II programmer is used to download .sof file to the development board via JTAG

interface.

Figure 4-1 Design flow of building a project from the beginning to the end

44..33 UUssiinngg DDEE11--SSooCC SSyysstteemm BBuuiillddeerr

This section provides the procedures in details on how to use the DE1-SoC System Builder.

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

DE1-SoC User Manual 55 www.terasic.com

January 28, 2019

◼ Install and Launch the DE1-SoC System Builder

The DE1-SoC System Builder is located in the directory: “Tools\SystemBuilder” of the DE1-SoC

System CD. Users can copy the entire folder to a host computer without installing the utility. A

window will pop up, as shown in Figure 4-2, after executing the DE1-SoC SystemBuilder.exe on

the host computer.

Figure 4-2 The GUI of DE1-SoC System Builder

◼ Enter Project Name

Enter the project name in the circled area, as shown in Figure 4-3.

The project name typed in will be assigned automatically as the name of your top-level design

entity.

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

DE1-SoC User Manual 56 www.terasic.com

January 28, 2019

Figure 4-3 Enter the project name

◼ System Configuration

Users are given the flexibility in the System Configuration to include their choice of components in

the project, as shown in Figure 4-4. Each component onboard is listed and users can enable or

disable one or more components at will. If a component is enabled, the DE1-SoC System Builder

will automatically generate its associated pin assignment, including the pin name, pin location, pin

direction, and I/O standard.

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

DE1-SoC User Manual 57 www.terasic.com

January 28, 2019

Figure 4-4 System configuration group

◼ GPIO Expansion

If users connect any Terasic GPIO-based daughter card to the GPIO connector(s) on DE1-SoC, the

DE1-SoC System Builder can generate a project that include the corresponding module, as shown

in Figure 4-5. It will also generate the associated pin assignment automatically, including pin name,

pin location, pin direction, and I/O standard.

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

DE1-SoC User Manual 58 www.terasic.com

January 28, 2019

Figure 4-5 GPIO expansion group

The “Prefix Name” is an optional feature that denote the pin name of the daughter card assigned in

your design. Users may leave this field blank.

◼ Project Setting Management

The DE1-SoC System Builder also provides the option to load a setting or save users’ current board

configuration in .cfg file, as shown in Figure 4-6.

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

DE1-SoC User Manual 59 www.terasic.com

January 28, 2019

Figure 4-6 Project Settings

◼ Project Generation

When users press the Generate button, the DE1-SoC System Builder will generate the

corresponding Quartus II files and documents, as listed in Table 4-1:

Table 4-1 Files generated by the DE1-SoC System Builder

No. Filename Description

1 <Project name>.v Top level Verilog HDL file for Quartus II

2 <Project name>.qpf Quartus II Project File

3 <Project name>.qsf Quartus II Setting File

4 <Project name>.sdc Synopsis Design Constraints file for Quartus II

5 <Project name>.htm Pin Assignment Document

Users can add custom logic into the project in Quartus II and compile the project to generate the

SRAM Object File (.sof).

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

DE1-SoC User Manual 60 www.terasic.com

January 28, 2019

Chapter 5

Examples For FPGA

This chapter provides examples of advanced designs implemented by RTL or Qsys on the DE1-SoC

board. These reference designs cover the features of peripherals connected to the FPGA, such as

audio, SDRAM, and IR receiver. All the associated files can be found in the directory

\Demonstrations\FPGA of DE1-SoC System CD.

◼ Installation of Demonstrations

To install the demonstrations on your computer:

Copy the folder Demonstrations to a local directory of your choice. It is important to make sure the

path to your local directory contains NO space. Otherwise it will lead to error in Nios II. Note

Quartus II v16.0 or later is required for all DE1-SoC demonstrations to support Cyclone V SoC

device.

55..11 DDEE11--SSooCC FFaaccttoorryy CCoonnffiigguurraattiioonn

The DE1-SoC board has a default configuration bit-stream pre-programmed, which demonstrates

some of the basic features onboard. The setup required for this demonstration and the location of its

files are shown below.

◼ Demonstration Setup, File Locations, and Instructions

• Project directory: DE1_SoC_Default

• Bitstream used: DE1_SoC_Default.sof or DE1_SoC_Default.jic

• Power on the DE1-SoC board with the USB cable connected to the USB-Blaster II port. If

necessary (that is, if the default factory configuration is not currently stored in the EPCS

device), download the bit stream to the board via JTAG interface.

• You should now be able to observe the 7-segment displays are showing a sequence of

characters, and the red LEDs are blinking.

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

DE1-SoC User Manual 61 www.terasic.com

January 28, 2019

• If the VGA D-SUB connector is connected to a VGA display, it would show a color picture.

• If the stereo line-out jack is connected to a speaker and KEY[1] is pressed, a 1 kHz humming

sound will come out of the line-out port .

• For the ease of execution, a demo_batch folder is provided in the project. It is able to not only

load the bit stream into the FPGA in command line, but also program or erase .jic file to the

EPCS by executing the test.bat file shown in Figure 5-1.

If users want to program a new design into the EPCS device, the easiest method is to copy the

new .sof file into the demo_batch folder and execute the test.bat. Option “2” will convert

the .sof to .jic and option”3” will program .jic file into the EPCS device.

Figure 5-1 Command line of the batch file to program the FPGA and EPCS device

55..22 AAuuddiioo RReeccoorrddiinngg aanndd PPllaayyiinngg

This demonstration shows how to implement an audio recorder and player on DE1-SoC board with

the built-in audio CODEC chip. It is developed based on Qsys and Eclipse. Figure 5-2 shows the

buttons and slide switches used to interact this demonstration onboard. Users can configure this

audio system through two push-buttons and four slide switches:

• SW0 is used to specify the recording source to be Line-in or MIC-In.

• SW1, SW2, and SW3 are used to specify the recording sample rate such as 96K, 48K, 44.1K,

32K, or 8K.

• Table 5-1 and Table 5-2 summarize the usage of slide switches for configuring the audio

recorder and player.

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

DE1-SoC User Manual 62 www.terasic.com

January 28, 2019

Figure 5-2 Buttons and switches for the audio recorder and player

Figure 5-3 shows the block diagram of audio recorder and player design. There are hardware and

software parts in the block diagram. The software part stores the Nios II program in the on-chip

memory. The software part is built under Eclipse in C programming language. The hardware part is

built under Qsys in Quartus II. The hardware part includes all the other blocks such as the “AUDIO

Controller”, which is a user-defined Qsys component and it is designed to send audio data to the

audio chip or receive audio data from the audio chip.

The audio chip is programmed through I2C protocol, which is implemented in C code. The I2C pins

from the audio chip are connected to Qsys system interconnect fabric through PIO controllers. The

audio chip is configured in master mode in this demonstration. The audio interface is configured as

16-bit I2S mode. 18.432MHz clock generated by the PLL is connected to the MCLK/XTI pin of the

audio chip through the audio controller.

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

DE1-SoC User Manual 63 www.terasic.com

January 28, 2019

Figure 5-3 Block diagram of the audio recorder and player

◼ Demonstration Setup, File Locations, and Instructions

• Hardware project directory: DE1_SoC _Audio

• Bitstream used: DE1_SoC_Audio.sof

• Software project directory: DE1_SoC _Audio\software

• Connect an audio source to the Line-in port

• Connect a Microphone to the MIC-in port

• Connect a speaker or headset to the Line-out port

• Load the bitstream into the FPGA. (note *1)

• Load the software execution file into the FPGA. (note *1)

• Configure the audio with SW0, as shown in Table 5-1.

• Press KEY3 to start/stop audio recording (note *2)

• Press KEY2 to start/stop audio playing (note *3)

Table 5-1 Slide switches usage for audio source

Slide Switches 0 – DOWN Position 1 – UP Position

SW0 Audio is from MIC-in Audio is from Line-in

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

DE1-SoC User Manual 64 www.terasic.com

January 28, 2019

Table 5-2 Settings of switches for the sample rate of audio recorder and player

SW5

(0 – DOWN;

1- UP)

SW4

(0 – DOWN;

1-UP)

SW3

(0 – DOWN;

1-UP)

Sample Rate

0 0 0 96K

0 0 1 48K

0 1 0 44.1K

0 1 1 32K

1 0 0 8K

Unlisted combination 96K

Note:

(1). Execute DE1_SoC _Audio \demo_batch\ DE1-SoC_Audio.bat to download .sof and .elf

files.

(2). Recording process will stop if the audio buffer is full.

(3). Playing process will stop if the audio data is played completely.

55..33 KKaarraaookkee MMaacchhiinnee

This demonstration uses the microphone-in, line-in, and line-out ports on DE1-SoC to create a

Karaoke machine. The WM8731 CODEC is configured in master mode. The audio CODEC

generates AD/DA serial bit clock (BCK) and the left/right channel clock (LRCK) automatically. The

I2C interface is used to configure the audio CODEC, as shown in Figure 5-4. The sample rate and

gain of the CODEC are set in a similar manner, and the data input from the line-in port is then

mixed with the microphone-in port. The result is sent out to the line-out port.

The sample rate is set to 48 kHz in this demonstration. The gain of the audio CODEC is

reconfigured via I2C bus by pressing the pushbutton KEY0, cycling within ten predefined gain

values (volume levels) provided by the device.

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

DE1-SoC User Manual 65 www.terasic.com

January 28, 2019

Figure 5-4 Block diagram of the Karaoke machine demonstration

◼ Demonstration Setup, File Locations, and Instructions

• Project directory: DE1_SOC_i2sound

• Bitstream used: DE1_SOC_i2sound.sof

• Connect a microphone to the microphone-in port (pink color)

• Connect the audio output of a music player, such as a MP3 player or computer, to the line-in

port (blue color)

• Connect a headset/speaker to the line-out port (green color)

• Load the bitstream into the FPGA by executing the batch file ‘DE1_SOC_i2sound’ in the

directory DE1_SOC_i2sound\demo_batch

• Users should be able to hear a mixture of microphone sound and the sound from the music

player

• Press KEY0 to adjust the volume; it cycles between volume level 0 to 9

Figure 5-5 illustrates the setup for this demonstration.

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

DE1-SoC User Manual 66 www.terasic.com

January 28, 2019

Figure 5-5 Setup for the Karaoke machine

55..44 SSDDRRAAMM TTeesstt iinn NNiiooss IIII

There are many applications use SDRAM as a temporary storage. Both hardware and software

designs are provided to illustrate how to perform memory access in Qsys in this demonstration. It

also shows how Altera’s SDRAM controller IP accesses SDRAM and how the Nios II processor

reads and writes the SDRAM for hardware verification. The SDRAM controller handles complex

aspects of accessing SDRAM such as initializing the memory device, managing SDRAM banks,

and keeping the devices refreshed at certain interval.

◼ System Block Diagram

Figure 5-6 shows the system block diagram of this demonstration. The system requires a 50 MHz

clock input from the board. The SDRAM controller is configured as a 64MB controller. The

working frequency of the SDRAM controller is 100MHz, and the Nios II program is running on the

on-chip memory.

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

DE1-SoC User Manual 67 www.terasic.com

January 28, 2019

Figure 5-6 Block diagram of the SDRAM test in Nios II

The system flow is controlled by a program running in Nios II. The Nios II program writes test

patterns into the entire 64MB of SDRAM first before calling the Nios II system function,

alt_dcache_flush_all, to make sure all the data are written to the SDRAM. It then reads data from

the SDRAM for data verification. The program will show the progress in nios-terminal when

writing/reading data to/from the SDRAM. When the verification process reaches 100%, the result

will be displayed in nios-terminal.

◼ Design Tools

• Quartus II v16.0

• Nios II Eclipse v16.0

◼ Demonstration Source Code

• Quartus project directory: DE1_SoC_SDRAM_Nios_Test

• Nios II Eclipse directory: DE1_SoC_SDRAM_Nios_Test \Software

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

DE1-SoC User Manual 68 www.terasic.com

January 28, 2019

◼ Nios II Project Compilation

• Click “Clean” from the “Project” menu of Nios II Eclipse before compiling the reference

design in Nios II Eclipse.

◼ Demonstration Batch File

The files are located in the directory \DE1_SoC_SDRAM_Nios_Test \demo_batch.

The folder includes the following files:

• Batch file for USB-Blaster II : DE1_SoC_SDRAM_Nios_Test.bat and

DE1_SoC_SDRAM_Nios_Test_bashrc

• FPGA configuration file : DE1_SoC_SDRAM_Nios_Test.sof

• Nios II program: DE1_SoC_SDRAM_Nios_Test.elf

◼ Demonstration Setup

• Quartus II v16.0 and Nios II v16.0 must be pre-installed on the host PC.

• Power on the DE1-SoC board.

• Connect the DE1-SoC board (J13) to the host PC with a USB cable and install the USB-Blaster

driver if necessary.

• Execute the demo batch file “DE1_SoC_SDRAM_Nios_Test.bat” from the directory

DE1_SoC_SDRAM_Nios_Test\demo_batch

• After the program is downloaded and executed successfully, a prompt message will be

displayed in nios2-terminal.

• Press any button (KEY3~KEY0) to start the SDRAM verification process. Press KEY0 to run

the test continuously.

• The program will display the test progress and result, as shown in Figure 5-7.

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

DE1-SoC User Manual 69 www.terasic.com

January 28, 2019

Figure 5-7 Display of progress and result for the SDRAM test in Nios II

55..55 SSDDRRAAMM TTeesstt iinn VVeerriilloogg

DE1-SoC system CD offers another SDRAM test with its test code written in Verilog HDL. The

memory size of the SDRAM bank tested is still 64MB.

◼ Function Block Diagram

Figure 5-8 shows the function block diagram of this demonstration. The SDRAM controller uses 50

MHz as a reference clock and generates 100 MHz as the memory clock.

Figure 5-8 Block diagram of the SDRAM test in Verilog

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

DE1-SoC User Manual 70 www.terasic.com

January 28, 2019

RW_test module writes the entire memory with a test sequence first before comparing the data read

back with the regenerated test sequence, which is same as the data written to the memory. KEY0

triggers test control signals for the SDRAM, and the LEDs will indicate the test result according to

Table 5-3.

◼ Design Tools

• Quartus II v16.0

◼ Demonstration Source Code

• Project directory: DE1_SoC_SDRAM_RTL_Test

• Bitstream used: DE1_SoC_SDRAM_RTL_Test.sof

◼ Demonstration Batch File

Demo batch file folder: \DE1_SoC_SDRAM_RTL_Test\demo_batch

The directory includes the following files:

• Batch file: DE1_SoC_SDRAM_RTL_Test.bat

• FPGA configuration file: DE1_SoC_SDRAM_RTL_Test.sof

◼ Demonstration Setup

• Quartus II v16.0 must be pre-installed to the host PC.

• Connect the DE1-SoC board (J13) to the host PC with a USB cable and install the USB-Blaster

II driver if necessary

• Power on the DE1_SoC board.

• Execute the demo batch file “ DE1_SoC_SDRAM_RTL_Test.bat” from the directoy

\DE1_SoC_SDRAM_RTL_Test \demo_batch.

• Press KEY0 on the DE1_SoC board to start the verification process. When KEY0 is pressed,

the LEDR [2:0] should turn on. When KEY0 is then released, LEDR1 and LEDR2 should

start blinking.

• After approximately 8 seconds, LEDR1 should stop blinking and stay ON to indicate the test is

PASS. Table 5-3 lists the status of LED indicators.

• If LEDR2 is not blinking, it means 50MHz clock source is not working.

• If LEDR1 failed to remain ON after approximately 8 seconds, the SDRAM test is NG.

• Press KEY0 again to repeat the SDRAM test.

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

DE1-SoC User Manual 71 www.terasic.com

January 28, 2019

Table 5-3 Status of LED Indicators

Name Description

LEDR0 Reset

LEDR1 ON if the test is PASS after releasing KEY0

LEDR2 Blinks

55..66 TTVV BBooxx DDeemmoonnssttrraattiioonn

This demonstration turns DE1-SoC board into a TV box by playing video and audio from a DVD

player using the VGA output, audio CODEC and the TV decoder on the DE1-SoC board. Figure

5-9 shows the block diagram of the design. There are two major blocks in the system called

I2C_AV_Config and TV_to_VGA. The TV_to_VGA block consists of the ITU-R 656 Decoder,

SDRAM Frame Buffer, YUV422 to YUV444, YCbCr to RGB, and VGA Controller. The figure also

shows the TV decoder (ADV7180) and the VGA DAC (ADV7123) chip used.

The register values of the TV decoder are used to configure the TV decoder via the I2C_AV_Config

block, which uses the I2C protocol to communicate with the TV decoder. The TV decoder will be

unstable for a time period upon power up, and the Lock Detector block is responsible for detecting

this instability.

The ITU-R 656 Decoder block extracts YcrCb 4:2:2 (YUV 4:2:2) video signals from the ITU-R 656

data stream sent from the TV decoder. It also generates a data valid control signal, which indicates

the valid period of data output. De-interlacing needs to be performed on the data source because the

video signal for the TV decoder is interlaced. The SDRAM Frame Buffer and a field selection

multiplexer (MUX), which is controlled by the VGA Controller, are used to perform the

de-interlacing operation. The VGA Controller also generates data request and odd/even selection

signals to the SDRAM Frame Buffer and filed selection multiplexer (MUX). The YUV422 to

YUV444 block converts the selected YcrCb 4:2:2 (YUV 4:2:2) video data to the YcrCb 4:4:4 (YUV

4:4:4) video data format.

Finally, the YcrCb_to_RGB block converts the YcrCb data into RGB data output. The VGA

Controller block generates standard VGA synchronous signals VGA_HS and VGA_VS to enable

the display on a VGA monitor.

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

DE1-SoC User Manual 72 www.terasic.com

January 28, 2019

Figure 5-9 Block diagram of the TV box demonstration

DDeemmoonnssttrraattiioonn SSoouurrccee CCooddee

• Project directory: DE1_SoC_TV

• Bitstream used: DE1_SoC_TV.sof

DDeemmoonnssttrraattiioonn BBaattcchh FFiillee

Demo batch directory: \DE1_SoC_TV \demo_batch

The folder includes the following files:

• Batch file: DE1_SoC_TV.bat

• FPGA configuration file : DE1_SoC_TV.sof

DDeemmoonnssttrraattiioonn SSeettuupp,, FFiillee LLooccaattiioonnss,, aanndd IInnssttrruuccttiioonnss

• Connect a DVD player’s composite video output (yellow plug) to the Video-in RCA jack (J6)

on the DE1-SoC board, as shown in Figure 5-10. The DVD player has to be configured to

provide:

• NTSC output

• 60Hz refresh rate

• 4:3 aspect ratio

• Non-progressive video

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

DE1-SoC User Manual 73 www.terasic.com

January 28, 2019

• Connect the VGA output of the DE1-SoC board to a VGA monitor.

• Connect the audio output of the DVD player to the line-in port of the DE1-SoC board and

connect a speaker to the line-out port. If the audio output jacks from the DVD player are RCA

type, an adaptor is needed to convert to the mini-stereo plug supported on the DE1-SoC

board.

• Load the bitstream into the FPGA by executing the batch file ‘DE1_SoC_TV.bat’ from the

directory \DE1_SoC_TV \demo_batch\. Press KEY0 on the DE1-SoC board to reset the

demonstration.

Figure 5-10 Setup for the TV box demonstration

55..77 PPSS//22 MMoouussee DDeemmoonnssttrraattiioonn

A simply PS/2 controller coded in Verilog HDL is provided to demonstrate bi-directional

communication with a PS/2 mouse. A comprehensive PS/2 controller can be developed based on it

and more sophisticated functions can be implemented such as setting the sampling rate or resolution,

which needs to transfer two data bytes at once.

More information about the PS/2 protocol can be found on various websites.

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

DE1-SoC User Manual 74 www.terasic.com

January 28, 2019

◼ Introduction

PS/2 protocol uses two wires for bi-directional communication. One is the clock line and the other

one is the data line. The PS/2 controller always has total control over the transmission line, but it is

the PS/2 device which generates the clock signal during data transmission.

◼ Data Transmission from Device to the Controller

After the PS/2 mouse receives an enabling signal at stream mode, it will start sending out

displacement data, which consists of 33 bits. The frame data is cut into three sections and each of

them contains a start bit (always zero), eight data bits (with LSB first), one parity check bit (odd

check), and one stop bit (always one).

The PS/2 controller samples the data line at the falling edge of the PS/2 clock signal. This is

implemented by a shift register, which consists of 33 bits.

easily be implemented using a shift register of 33 bits, but be cautious with the clock domain

crossing problem.

◼ Data Transmission from the Controller to Device

When the PS/2 controller wants to transmit data to device, it first pulls the clock line low for more

than one clock cycle to inhibit the current transmission process or to indicate the start of a new

transmission process, which is usually called as inhibit state. It then pulls low the data line before

releasing the clock line. This is called the request state. The rising edge on the clock line formed by

the release action can also be used to indicate the sample time point as for a 'start bit. The device

will detect this succession and generates a clock sequence in less than 10ms time. The transmit data

consists of 12bits, one start bit (as explained before), eight data bits, one parity check bit (odd

check), one stop bit (always one), and one acknowledge bit (always zero). After sending out the

parity check bit, the controller should release the data line, and the device will detect any state

change on the data line in the next clock cycle. If there’s no change on the data line for one clock

cycle, the device will pull low the data line again as an acknowledgement which means that the data

is correctly received.

After the power on cycle of the PS/2 mouse, it enters into stream mode automatically and disable

data transmit unless an enabling instruction is received. Figure 5-11 shows the waveform while

communication happening on two lines.

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

DE1-SoC User Manual 75 www.terasic.com

January 28, 2019

Figure 5-11 Waveform of clock and data signals during data transmission

DDeemmoonnssttrraattiioonn SSoouurrccee CCooddee

• Project directory: DE1_SoC_PS2_DEMO

• Bitstream used: DE1_SoC_PS2_DEMO.sof

DDeemmoonnssttrraattiioonn BBaattcchh FFiillee

Demo batch file directoy: \DE1_SoC_PS2_DEMO \demo_batch

The folder includes the following files:

• Batch file: DE1_SoC_PS2_DEMO.bat

• FPGA configuration file : DE1_SoC_PS2_DEMO.sof

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

DE1-SoC User Manual 76 www.terasic.com

January 28, 2019

DDeemmoonnssttrraattiioonn SSeettuupp,, FFiillee LLooccaattiioonnss,, aanndd IInnssttrruuccttiioonnss

• Load the bitstream into the FPGA by executing \DE1_SoC_PS2_DEMO \demo_batch\

DE1_SoC_PS2_DEMO.bat

• Plug in the PS/2 mouse

• Press KEY[0] to enable data transfer

• Press KEY[1] to clear the display data cache

• The 7-segment display should change when the PS/2 mouse moves. The LEDR[2:0] will blink

according to Table 5-4 when the left-button, right-button, and/or middle-button is pressed.

Table 5-4 Description of 7-segment Display and LED Indicators

Indicator Name Description

LEDR[0] Left button press indicator

LEDR[1] Right button press indicator

LEDR[2] Middle button press indicator

HEX0 Low byte of X displacement

HEX1 High byte of X displacement

HEX2 Low byte of Y displacement

HEX3 High byte of Y displacement

55..88 IIRR EEmmiitttteerr LLEEDD aanndd RReecceeiivveerr DDeemmoonnssttrraattiioonn

DE1-SoC system CD has an example of using the IR Emitter LED and IR receiver. This

demonstration is coded in Verilog HDL.

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

DE1-SoC User Manual 77 www.terasic.com

January 28, 2019

Figure 5-12 Block diagram of the IR emitter LED and receiver demonstration

Figure 5-12 shows the block diagram of the design. It implements a IR TX Controller and a IR RX

Controller. When KEY0 is pressed, data test pattern generator will generate data to the IR TX

Controller continuously. When IR TX Controller is active, it will format the data to be compatible

with NEC IR transmission protocol and send it out through the IR emitter LED. The IR receiver

will decode the received data and display it on the six HEXs. Users can also use a remote control to

send data to the IR Receiver. The main function of IR TX /RX controller and IR remote control in

this demonstration is described in the following sections.

◼ IR TX Controller

Users can input 8-bit address and 8-bit command into the IR TX Controller. The IR TX Controller will

encode the address and command first before sending it out according to NEC IR transmission protocol

through the IR emitter LED. The input clock of IR TX Controller should be 50MHz.

The NEC IR transmission protocol uses pulse distance to encode the message bits. Each pulse burst is

562.5µs in length with a carrier frequency of 38kHz (26.3µs).

Figure 5-13 shows the duration of logical “1” and “0”. Logical bits are transmitted as follows:

• Logical '0' – a 562.5µs pulse burst followed by a 562.5µs space with a total transmit time

of 1.125ms

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

DE1-SoC User Manual 78 www.terasic.com

January 28, 2019

• Logical '1' – a 562.5µs pulse burst followed by a 1.6875ms space with a total transmit time

of 2.25ms

Figure 5-13 Duration of logical “1”and logical “0”

Figure 5-14 shows a frame of the protocol. Protocol sends a lead code first, which is a 9ms leading

pulse burst, followed by a 4.5ms window. The second inversed data is sent to verify the accuracy of the

information received. A final 562.5µs pulse burst is sent to signify the end of message transmission.

Because the data is sent in pair (original and inverted) according to the protocol, the overall

transmission time is constant.

Figure 5-14 Typical frame of NEC protocol

Note: The signal received by IR Receiver is inverted. For instance, if IR TX Controller sends a lead

code 9 ms high and then 4.5 ms low, IR Receiver will receive a 9 ms low and then 4.5 ms high lead

code.

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

DE1-SoC User Manual 79 www.terasic.com

January 28, 2019

◼ IR Remote

When a key on the remote control shown in Figure 5-15 is pressed, the remote control will emit a

standard frame, as shown in Table 5-5. The beginning of the frame is the lead code, which

represents the start bit, followed by the key-related information. The last bit end code represents the

end of the frame. The value of this frame is completely inverted at the receiving end.

Figure 5-15 The remote control used in this demonstration

Table 5-5 Key Code Information for Each Key on the Remote Control

Key Key Code Key Key Code Key Key Code Key Key Code

0x0F

0x13

0x10

0x12

0x01

0x02

0x03

0x1A

0x04

0x05

0x06

0x1E

0x07

0x08

0x09

0x1B

0x11

0x00

0x17

0x1F

0x16

0x14

0x18

0x0C

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

DE1-SoC User Manual 80 www.terasic.com

January 28, 2019

Lead Code 1bit Custom Code 16bits Key Code 8bits
Inv Key Code

8bits

End

Code

1bit

Figure 5-16 The transmitting frame of the IR remote control

◼ IR RX Controller

The following demonstration shows how to implement the IP of IR receiver controller in the FPGA.

Figure 5-17 shows the modules used in this demo, including Code Detector, State Machine, and

Shift Register. At the beginning the IR receiver demodulates the signal inputs to the Code Detector .

The Code Detector will check the Lead Code and feedback the examination result to the State

Machine.

The State Machine block will change the state from IDLE to GUIDANCE once the Lead Code is

detected. If the Code Detector detects the Custom Code status, the current state will change from

GUIDANCE to DATAREAD state. The Code Detector will also save the receiving data and output

to the Shift Register and display on the 7-segment. Figure 5-18 shows the state shift diagram of

State Machine block. The input clock should be 50MHz.

Figure 5-17 Modules in the IR Receiver controller

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

DE1-SoC User Manual 81 www.terasic.com

January 28, 2019

Figure 5-18 State shift diagram of State Machine block

DDeemmoonnssttrraattiioonn SSoouurrccee CCooddee

• Project directory: DE1_SoC_IR

• Bitstream used: DE1_SOC_IR.sof

DDeemmoonnssttrraattiioonn BBaattcchh FFiillee

Demo batch file directory: DE1_SoC_IR \demo_batch

The folder includes the following files:

• Batch file: DE1_SoC_IR.bat

• FPGA configuration file : DE1_SOC_IR.sof

DDeemmoonnssttrraattiioonn SSeettuupp,, FFiillee LLooccaattiioonnss,, aanndd IInnssttrruuccttiioonnss

• Load the bitstream into the FPGA by executing DE1_SoC_IR \demo_batch\ DE1_SoC_IR.bat

• Keep pressing KEY[0] to enable the pattern to be sent out continuously by the IR TX

Controller.

• Observe the six HEXs according to Table 5-6

• Release KEY[0] to stop the IR TX.

• Point the IR receiver with the remote control and press any button

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

DE1-SoC User Manual 82 www.terasic.com

January 28, 2019

• Observe the six HEXs according to Table 5-6

Table 5-6 Detailed Information of the Indicators

Indicator Name Description

HEX5 Inversed high byte of DATA(Key Code)

HEX4 Inversed low byte of DATA(Key Code)

HEX3 High byte of ADDRESS(Custom Code)

HEX2 Low byte of ADDRESS(Custom Code)

HEX1 High byte of DATA(Key Code)

HEX0 Low byte of DATA (Key Code)

55..99 AADDCC RReeaaddiinngg

This demonstration illustrates steps to evaluate the performance of the 8-channel 12-bit A/D

Converter LTC2308. The DC 5.0V on the 2x5 header is used to drive the analog signals by a

trimmer potentiometer. The voltage should be adjusted within the range between 0 and 4.096V. The

12-bit voltage measurement is displayed on the NIOS II console. Figure 5-19 shows the block

diagram of this demonstration.

The default full-scale of ADC is 0~4.096V.

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

DE1-SoC User Manual 83 www.terasic.com

January 28, 2019

Figure 5-19 Block diagram of ADC reading

Figure 5-20 depicts the pin arrangement of the 2x5 header. This header is the input source of ADC

convertor in this demonstration. Users can connect a trimmer to the specified ADC channel

(ADC_IN0 ~ ADC_IN7) that provides voltage to the ADC convert. The FPGA will read the

associated register in the convertor via serial interface and translates it to voltage value to be

displayed on the Nios II console.

Figure 5-20 Pin distribution of the 2x5 Header for the ADC

The LTC2308 is a low noise, 500ksps, 8-channel, 12-bit ADC with an SPI/MICROWIRE

compatible serial interface. The internal conversion clock allows the external serial output data

clock (SCK) to operate at any frequency up to 40MHz.In this demonstration, we realized the SPI

protocol in Verilog, and packet it into Avalon MM slave IP so that it can be connected to Qsys.

Figure 5-21 is SPI timing specification of LTC2308.

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

DE1-SoC User Manual 84 www.terasic.com

January 28, 2019

Figure 5-21 LTC2308 Timing with a Short CONVST Pulse

Important: Users should pay more attention to the impedance matching between the input source

and the ADC circuit. If the source impedance of the driving circuit is low, the ADC inputs can be

driven directly. Otherwise, more acquisition time should be allowed for a source with higher

impedance.

To modify acquisition time tACQ, user can change the tHCONVST macro value in adc_ltc2308.v.

When SCK is set to 40MHz, it means 25ns per unit. The default tHCONVST is set to 320,

achieving a 100KHz fsample. Thus adding more tHCONVST time (by increasing tHCONVST

macro value) will lower the sample rate of the ADC Converter.

`define tHCONVST 320

Figure 5-22 shows the example MUX configurations of ADC. In this demonstration, it is

configured as 8 signal-end channel in the verilog code. User can change SW[2:0] to measure the

corresponding channel.The default reference voltage is 4.096V.

The formula of the sample voltage is:

Sample Voltage = ADC Data / full scale Data * Reference Voltage.

In this demonstration, full scale is 2^12 =4096. Reference Voltage is 4.096V. Thus

ADC Value = ADC data/4096*4.096 = ADC data /1000

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

DE1-SoC User Manual 85 www.terasic.com

January 28, 2019

Figure 5-22 Example MUX Configurations

◼ System Requirements

The following items are required for this demonstration.

• DE1-SoC board x1

• Trimmer Potentiometer x1

• Wire Strip x3

◼ Demonstration File Locations

• Hardware project directory: DE1_SoC_ADC

• Bitstream used: DE1_SoC_ADC.sof

• Software project directory: DE1_SoC_ADC software

• Demo batch file : DE1_SoC_ADC\demo_batch\ DE1_SoC_ADC.bat

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

DE1-SoC User Manual 86 www.terasic.com

January 28, 2019

◼ Demonstration Setup and Instructions

• Connect the trimmer to corresponding ADC channel on the 2x5 header, as shown in Figure

5-23, as well as the +5V and GND signals. The setup shown above is connected to ADC

channel 0.

• Execute the demo batch file DE1_SoC_ADC.bat to load the bitstream and software execution

file to the FPGA.

• The Nios II console will display the voltage of the specified channel voltage result information.

• Provide any input voltage to other ADC channels and set SW[2:0] to the corresponding channel

if user want to measure other channels

Figure 5-23 Hardware setup for the ADC reading demonstration

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

DE1-SoC User Manual 87 www.terasic.com

January 28, 2019

Chapter 6

Examples for HPS

SoC

This chapter provides several C-code examples based on the Altera SoC Linux built by Yocto

project. These examples demonstrates major features connected to HPS interface on DE1-SoC

board such as users LED/KEY, I2C interfaced G-sensor, and I2C MUX. All the associated files can

be found in the directory Demonstrations/SOC of the DE1_SoC System CD. Please refer to Chapter

5 "Running Linux on the DE1-SoC board" from the DE1-SoC_Getting_Started_Guide.pdf to run

Linux on DE1-SoC board.

◼ Installation of the Demonstrations

To install the demonstrations on the host computer:

Copy the directory Demonstrations into a local directory of your choice. Altera SoC EDS v16.0 is

required for users to compile the c-code project.

66..11 HHeelllloo PPrrooggrraamm

This demonstration shows how to develop first HPS program with Altera SoC EDS tool. Please

refer to My_First_HPS.pdf from the system CD for more details.

The major procedures to develop and build HPS project are:

⚫ Install Altera SoC EDS on the host PC.

⚫ Create program .c/.h files with a generic text editor

⚫ Create a "Makefile" with a generic text editor

⚫ Build the project under Altera SoC EDS

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

DE1-SoC User Manual 88 www.terasic.com

January 28, 2019

◼ Program File

The main program for the Hello World demonstration is:

◼ Makefile

A Makefile is required to compile a project. The Makefile used for this demo is:

◼ Compile

Please launch Altera SoC EDS Command Shell to compile a project by executing

C:\altera\16.0\embedded\Embedded_Command_Shell.bat

The "cd" command can change the current directory to where the Hello World project is located.

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

DE1-SoC User Manual 89 www.terasic.com

January 28, 2019

The "make" command will build the project. The executable file "my_first_hps" will be generated

after the compiling process is successful. The "clean all" command removes all temporary files.

◼ Demonstration Source Code

• Build tool: Altera SoC EDS v16.0

• Project directory: \Demonstration\SoC\my_first_hps

• Binary file: my_first_hps

• Build command: make ("make clean" to remove all temporary files)

• Execute command: ./my_first_hps

◼ Demonstration Setup

• Connect a USB cable to the USB-to-UART connector (J4) on the DE1-SoC board and the host

PC.

• Copy the demo file "my_first_hps" into a microSD card under the "/home/root" folder in

Linux.

• Insert the booting microSD card into the DE1-SoC board.

• Power on the DE1-SoC board.

• Launch PuTTY and establish connection to the UART port of Putty. Type "root" to login Altera

Yocto Linux.

• Type "./my_first_hps" in the UART terminal of PuTTY to start the program, and the "Hello

World!" message will be displayed in the terminal.

66..22 UUsseerrss LLEEDD aanndd KKEEYY

This demonstration shows how to control the users LED and KEY by accessing the register of

GPIO controller through the memory-mapped device driver. The memory-mapped device driver

allows developer to access the system physical memory.

◼ Function Block Diagram

Figure 6-1 shows the function block diagram of this demonstration. The users LED and KEY are

connected to the GPIO1 controller in HPS. The behavior of GPIO controller is controlled by the

register in GPIO controller. The registers can be accessed by application software through the

memory-mapped device driver, which is built into Altera SoC Linux.

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

DE1-SoC User Manual 90 www.terasic.com

January 28, 2019

Figure 6-1 Block diagram of GPIO demonstration

◼ Block Diagram of GPIO Interface

The HPS provides three general-purpose I/O (GPIO) interface modules. Figure 6-2 shows the block

diagram of GPIO Interface. GPIO[28..0] is controlled by the GPIO0 controller and GPIO[57..29] is

controlled by the GPIO1 controller. GPIO[70..58] and input-only GPI[13..0] are controlled by the

GPIO2 controller.

Figure 6-2 Block diagram of GPIO Interface

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

DE1-SoC User Manual 91 www.terasic.com

January 28, 2019

◼ GPIO Register Block

The behavior of I/O pin is controlled by the registers in the register block. There are three 32-bit

registers in the GPIO controller used in this demonstration. The registers are:

⚫ gpio_swporta_dr: write output data to output I/O pin

⚫ gpio_swporta_ddr: configure the direction of I/O pin

⚫ gpio_ext_porta: read input data of I/O input pin

The gpio_swporta_ddr configures the LED pin as output pin and drives it high or low by writing

data to the gpio_swporta_dr register. The first bit (least significant bit) of gpio_swporta_dr

controls the direction of first IO pin in the associated GPIO controller and the second bit controls

the direction of second IO pin in the associated GPIO controller and so on. The value "1" in the

register bit indicates the I/O direction is output, and the value "0" in the register bit indicates the I/O

direction is input.

The first bit of gpio_swporta_dr register controls the output value of first I/O pin in the associated

GPIO controller, and the second bit controls the output value of second I/O pin in the associated

GPIO controller and so on. The value "1" in the register bit indicates the output value is high, and

the value "0" indicates the output value is low.

The status of KEY can be queried by reading the value of gpio_ext_porta register. The first bit

represents the input status of first IO pin in the associated GPIO controller, and the second bit

represents the input status of second IO pin in the associated GPIO controller and so on. The value

"1" in the register bit indicates the input state is high, and the value "0" indicates the input state is

low.

◼ GPIO Register Address Mapping

The registers of HPS peripherals are mapped to HPS base address space 0xFC000000 with 64KB

size. The registers of the GPIO1 controller are mapped to the base address 0xFF708000 with 4KB

size, and the registers of the GPIO2 controller are mapped to the base address 0xFF70A000 with

4KB size, as shown in Figure 6-3.

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

DE1-SoC User Manual 92 www.terasic.com

January 28, 2019

Figure 6-3 GPIO address map

◼ Software API

Developers can use the following software API to access the register of GPIO controller.

⚫ open: open memory mapped device driver

⚫ mmap: map physical memory to user space

⚫ alt_read_word: read a value from a specified register

⚫ alt_write_word: write a value into a specified register

⚫ munmap: clean up memory mapping

⚫ close: close device driver.

Developers can also use the following MACRO to access the register

⚫ alt_setbits_word: set specified bit value to one for a specified register

⚫ alt_clrbits_word: set specified bit value to zero for a specified register

The program must include the following header files to use the above API to access the registers of

GPIO controller.

#include <stdio.h>

#include <unistd.h>

#include <fcntl.h>

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

DE1-SoC User Manual 93 www.terasic.com

January 28, 2019

#include <sys/mman.h>

#include "hwlib.h"

#include "socal/socal.h"

#include "socal/hps.h"

#include "socal/alt_gpio.h"

◼ LED and KEY Control

Figure 6-4 shows the HPS users LED and KEY pin assignment for the DE1_SoC board. The LED

is connected to HPS_GPIO53 and the KEY is connected to HPS_GPIO54. They are controlled by

the GPIO1 controller, which also controls HPS_GPIO29 ~ HPS_GPIO57.

Figure 6-4 Pin assignment of LED and KEY

Figure 6-5 shows the gpio_swporta_ddr register of the GPIO1 controller. The bit-0 controls the

pin direction of HPS_GPIO29. The bit-24 controls the pin direction of HPS_GPIO53, which

connects to HPS_LED, the bit-25 controls the pin direction of HPS_GPIO54, which connects to

HPS_KEY and so on. The pin direction of HPS_LED and HPS_KEY are controlled by the bit-24

and bit-25 in the gpio_swporta_ddr register of the GPIO1 controller, respectively. Similarly, the

output status of HPS_LED is controlled by the bit-24 in the gpio_swporta_dr register of the

GPIO1 controller. The status of KEY can be queried by reading the value of the bit-24 in the

gpio_ext_porta register of the GPIO1 controller.

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

DE1-SoC User Manual 94 www.terasic.com

January 28, 2019

Figure 6-5 gpio_swporta_ddr register in the GPIO1 controller

The following mask is defined in the demo code to control LED and KEY direction and LED’s

output value.

#define USER_IO_DIR (0x01000000)

#define BIT_LED (0x01000000)

#define BUTTON_MASK (0x02000000)

The following statement is used to configure the LED associated pins as output pins.

alt_setbits_word((virtual_base +

((uint32_t)(ALT_GPIO1_SWPORTA_DDR_ADDR) &

(uint32_t)(HW_REGS_MASK))), USER_IO_DIR);

The following statement is used to turn on the LED.

alt_setbits_word((virtual_base +

((uint32_t)(ALT_GPIO1_SWPORTA_DR_ADDR) &

(uint32_t)(HW_REGS_MASK))), BIT_LED);

The following statement is used to read the content of gpio_ext_porta register. The bit mask is used

to check the status of the key.

alt_read_word((virtual_base +

((uint32_t)(ALT_GPIO1_EXT_PORTA_ADDR) &

(uint32_t)(HW_REGS_MASK))));

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

DE1-SoC User Manual 95 www.terasic.com

January 28, 2019

◼ Demonstration Source Code

• Build tool: Altera SoC EDS V16.0

• Project directory: \Demonstration\SoC\hps_gpio

• Binary file: hps_gpio

• Build command: make ('make clean' to remove all temporal files)

• Execute command: ./hps_gpio

◼ Demonstration Setup

• Connect a USB cable to the USB-to-UART connector (J4) on the DE1-SoC board and the host

PC.

• Copy the executable file "hps_gpio" into the microSD card under the "/home/root" folder in

Linux.

• Insert the booting micro SD card into the DE1-SoC board.

• Power on the DE1-SoC board.

• Launch PuTTY and establish connection to the UART port of Putty. Type "root" to login Altera

Yocto Linux.

• Type "./hps_gpio " in the UART terminal of PuTTY to start the program.

• HPS_LED will flash twice and users can control the user LED with push-button.

• Press HPS_KEY to light up HPS_LED.

• Press "CTRL + C" to terminate the application.

66..33 II22CC IInntteerrffaacceedd GG--sseennssoorr

This demonstration shows how to control the G-sensor by accessing its registers through the built-in

I2C kernel driver in Altera Soc Yocto Powered Embedded Linux.

◼ Function Block Diagram

Figure 6-6 shows the function block diagram of this demonstration. The G-sensor on the DE1_SoC

board is connected to the I2C0 controller in HPS. The G-Sensor I2C 7-bit device address is 0x53.

The system I2C bus driver is used to access the register files in the G-sensor. The G-sensor interrupt

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com
http://www.altera.com/devices/processor/arm/cortex-a9/software/soc-yocto-embedded-linux.html

DE1-SoC User Manual 96 www.terasic.com

January 28, 2019

signal is connected to the PIO controller. This demonstration uses polling method to read the

register data.

Figure 6-6 Block diagram of the G-sensor demonstration

◼ I2C Driver

The procedures to read a register value from G-sensor register files by the existing I2C bus driver in

the system are:

1. Open I2C bus driver "/dev/i2c-0": file = open("/dev/i2c-0", O_RDWR);

2. Specify G-sensor's I2C address 0x53: ioctl(file, I2C_SLAVE, 0x53);

3. Specify desired register index in g-sensor: write(file, &Addr8, sizeof(unsigned char));

4. Read one-byte register value: read(file, &Data8, sizeof(unsigned char));

The G-sensor I2C bus is connected to the I2C0 controller, as shown in the Figure 6-7. The driver

name given is '/dev/i2c-0'.

Figure 6-7 Connection of HPS I2C signals

The step 4 above can be changed to the following to write a value into a register.

write(file, &Data8, sizeof(unsigned char));

The step 4 above can also be changed to the following to read multiple byte values.

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

DE1-SoC User Manual 97 www.terasic.com

January 28, 2019

read(file, &szData8, sizeof(szData8)); // where szData is an array of bytes

The step 4 above can be changed to the following to write multiple byte values.

write(file, &szData8, sizeof(szData8)); // where szData is an array of bytes

◼ G-sensor Control

The ADI ADXL345 provides I2C and SPI interfaces. I2C interface is selected by setting the CS pin

to high on the DE1_SoC board.

The ADI ADXL345 G-sensor provides user-selectable resolution up to 13-bit ± 16g. The

resolution can be configured through the DATA_FORAMT(0x31) register. The data format in this

demonstration is configured as:

⚫ Full resolution mode

⚫ ± 16g range mode

⚫ Left-justified mode

The X/Y/Z data value can be derived from the DATAX0(0x32), DATAX1(0x33), DATAY0(0x34),

DATAY1(0x35), DATAZ0(0x36), and DATAX1(0x37) registers. The DATAX0 represents the least

significant byte and the DATAX1 represents the most significant byte. It is recommended to

perform multiple-byte read of all registers to prevent change in data between sequential registers

read. The following statement reads 6 bytes of X, Y, or Z value.

read(file, szData8, sizeof(szData8)); // where szData is an array of six-bytes

◼ Demonstration Source Code

• Build tool: Altera SoC EDS v16.0

• Project directory: \Demonstration\SoC\hps_gsensor

• Binary file: gsensor

• Build command: make ('make clean' to remove all temporal files)

• Execute command: ./gsensor [loop count]

◼ Demonstration Setup

• Connect a USB cable to the USB-to-UART connector (J4) on the DE1-SoC board and the host

PC.

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

DE1-SoC User Manual 98 www.terasic.com

January 28, 2019

• Copy the executable file "gsensor" into the microSD card under the "/home/root" folder in

Linux.

• Insert the booting microSD card into the DE1-SoC board.

• Power on the DE1-SoC board.

• Launch PuTTY to establish connection to the UART port of DE1-SoC board. Type "root" to

login Yocto Linux.

• Execute "./gsensor" in the UART terminal of PuTTY to start the G-sensor polling.

• The demo program will show the X, Y, and Z values in the PuTTY, as shown in Figure 6-8.

Figure 6-8 Terminal output of the G-sensor demonstration

• Press "CTRL + C" to terminate the program.

66..44 II22CC MMUUXX TTeesstt

The I2C bus on DE1-SoC is originally accessed by FPGA only. This demonstration shows how to

switch the I2C multiplexer for HPS to access the I2C bus.

◼ Function Block Diagram

Figure 6-9 shows the function block diagram of this demonstration. The I2C bus from both FPGA

and HPS are connected to an I2C multiplexer. It is controlled by HPS_I2C_CONTROL, which is

connected to the GPIO1 controller in HPS. The HPS I2C is connected to the I2C0 controller in

HPS, as well as the G-sensor.

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

DE1-SoC User Manual 99 www.terasic.com

January 28, 2019

Figure 6-9 Block diagram of the I2C MUX test demonstration

◼ HPS_I2C_CONTROL Control

HPS_I2C_CONTROL is connected to HPS_GPIO48, which is bit-19 of the GPIO1 controller.

Once HPS gets access to the I2C bus, it can then access Audio CODEC and TV Decoder when the

HPS_I2C_CONTROL signal is set to high.

The following mask in the demo code is defined to control the direction and output value of

HPS_I2C_CONTROL.

#define HPS_I2C_CONTROL (0x00080000)

The following statement is used to configure the HPS_I2C_CONTROL associated pins as output

pin.

alt_setbits_word((virtual_base +

((uint32_t)(ALT_GPIO1_SWPORTA_DDR_ADDR) &

(uint32_t)(HW_REGS_MASK))), HPS_I2C_CONTROL);

The following statement is used to set HPS_I2C_CONTROL high.

 alt_setbits_word((virtual_base +

((uint32_t)(ALT_GPIO1_SWPORTA_DR_ADDR) &

(uint32_t)(HW_REGS_MASK))), HPS_I2C_CONTROL);

The following statement is used to set HPS_I2C_CONTROL low.

 alt_clrbits_word((virtual_base +

((uint32_t)(ALT_GPIO1_SWPORTA_DR_ADDR) &

(uint32_t)(HW_REGS_MASK))), HPS_I2C_CONTROL);

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

DE1-SoC User Manual 100 www.terasic.com

January 28, 2019

◼ I2C Driver

The procedures to read register value from TV Decoder by the existing I2C bus driver in the system

are:

◼ Set HPS_I2C_CONTROL high for HPS to access I2C bus.

◼ Open the I2C bus driver "/dev/i2c-0": file = open("/dev/i2c-0", O_RDWR);

◼ Specify the I2C address 0x20 of ADV7180: ioctl(file, I2C_SLAVE, 0x20);

◼ Read or write registers;

◼ Set HPS_I2C_CONTROL low to release the I2C bus.

◼ Demonstration Source Code

• Build tool: Altera SoC EDS v16.0

• Project directory: \Demonstration\SoC\ hps_i2c_switch

• Binary file: i2c_switch

• Build command: make ('make clean' to remove all temporal files)

• Execute command: ./ i2c_switch

◼ Demonstration Setup

• Connect a USB cable to the USB-to-UART connector (J4) on the DE1-SoC board and host PC.

• Copy the executable file " i2c_switch " into the microSD card under the "/home/root" folder in

Linux.

• Insert the booting microSD card into the DE1-SoC board.

• Power on the DE1-SoC board.

• Launch PuTTY to establish connection to the UART port of DE1_SoC borad. Type "root" to

login Yocto Linux.

• Execute "./ i2c_switch " in the UART terminal of PuTTY to start the I2C MUX test.

• The demo program will show the result in the Putty, as shown in Figure 6-10.

Figure 6-10 Terminal output of the I2C MUX Test Demonstration

• Press "CTRL + C" to terminate the program.

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

DE1-SoC User Manual 101 www.terasic.com

January 28, 2019

Chapter 7

Examples for using

both HPS SoC and

FGPA

Although HPS and FPGA can operate independently, they are tightly coupled via a high-bandwidth

system interconnect built from high-performance ARM AMBA® AXITM bus bridges. Both FPGA

fabric and HPS can access to each other via these interconnect bridges. This chapter provides

demonstrations on how to achieve superior performance and lower latency through these

interconnect bridges when comparing to solutions containing a separate FPGA and discrete

processor.

77..11 HHPPSS CCoonnttrrooll LLEEDD aanndd HHEEXX

This demonstration shows how HPS controls the FPGA LED and HEX through Lightweight

HPS-to-FPGA Bridge. The FPGA is configured by HPS through FPGA manager in HPS.

◼ A brief view on FPGA manager

The FPGA manager in HPS configures the FPGA fabric from HPS. It also monitors the state of

FPGA and drives or samples signals to or from the FPGA fabric. The application software is

provided to configure FPGA through the FPGA manager. The FPGA configuration data is stored in

the file with .rbf extension. The MSEL[4:0] must be set to 01010 or 01110 before executing the

application software on HPS.

◼ Function Block Diagram

Figure 7-1 shows the block diagram of this demonstration. The HPS uses Lightweight

HPS-to-FPGA AXI Bridge to communicate with FPGA. The hardware in FPGA part is built into

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

DE1-SoC User Manual 102 www.terasic.com

January 28, 2019

Qsys. The data transferred through Lightweight HPS-to-FPGA Bridge is converted into Avalon-MM

master interface. Both PIO Controller and HEX Controller work as Avalon-MM slave in the system.

They control the associated pins to change the state of LED and HEX. This is similar to a system

using Nios II processor to control LED and HEX.

Figure 7-1 FPGA LED and HEX are controlled by HPS

◼ LED and HEX control

The Lightweight HPS-to-FPGA Bridge is a peripheral of HPS. The software running on Linux

cannot access the physical address of the HPS peripheral. The physical address must be mapped to

the user space before the peripheral can be accessed. Alternatively, a customized device driver

module can be added to the kernel. The entire CSR span of HPS is mapped to access various

registers within that span. The mapping function and the macro defined below can be reused if any

other peripherals whose physical address is also in this span.

The start address of Lightweight HPS-to-FPGA Bridge after mapping can be retrieved by

ALT_LWFPGASLVS_OFST, which is defined in altera_hps hardware library. The slave IP

connected to the bridge can then be accessed through the base address and the register offset in

these IPs. For instance, the base address of the PIO slave IP in this system is 0x0001_0040, the

direction control register offset is 0x01, and the data register offset is 0x00. The following statement

is used to retrieve the base address of PIO slave IP.

h2p_lw_led_addr=virtual_base+((unsigned long)(ALT_LWFPGASLVS_OFST

+ LED_PIO_BASE) & (unsigned long)(HW_REGS_MASK));

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

DE1-SoC User Manual 103 www.terasic.com

January 28, 2019

Considering this demonstration only needs to set the direction of PIO as output, which is the default

direction of the PIO IP, the step above can be skipped. The following statement is used to set the

output state of the PIO.

alt_write_word(h2p_lw_led_addr, Mask);

The Mask in the statement decides which bit in the data register of the PIO IP is high or low. The

bits in data register decide the output state of the pins connected to the LEDs. The HEX controlling

part is similar to the LED.

Since Linux supports multi-thread software, the software for this system creates two threads. One

controls the LED and the other one controls the HEX. The system calls pthread_create, which is

called in the main function to create a sub-thread, to complete the job. The program running in the

sub-thread controls the LED flashing in a loop. The main-thread in the main function controls the

digital shown on the HEX that keeps changing in a loop. The state of LED and HEX state change

simultaneously when the FPGA is configured and the software is running on HPS.

◼ Demonstration Source Code

• Build tool: Altera SoC EDS V16.0

• Project directory: \Demonstration\ SoC_FPGA\HPS_LED_HEX

• Quick file directory:\ Demonstration\ SoC_FPGA\HPS_LED_HEX\ quickfile

• FPGA configuration file : soc_system_dc.rbf

• Binary file: HPS_LED_HEX and hps_config_fpga

• Build app command: make ('make clean' to remove all temporal files)

• Execute app command:./hps_config_fpga soc_system_dc.rbf and./HPS_LED_HEX

◼◼ DDeemmoonnssttrraattiioonn SSeettuupp

• Quartus II and Nios II must be installed on the host PC.

• The MSEL[4:0] is set to 01010 or 01110.

• Connect a USB cable to the USB-Blaster II connector (J13) on the DE1-SoC board and the host

PC. Install the USB-Blaster II driver if necessary.

• Connect a USB cable to the USB-to-UART connector (J4) on the DE1-SoC board and the host

PC.

• Copy the executable files "hps_config_fpga" and "HPS_LED_HEX", and the FPGA

configuration file "soc_system_dc.rbf" into the microSD card under the "/home/root" folder

in Linux.

• Insert the booting microSD card into the DE1-SoC board. Please refer to the chapter 5

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

DE1-SoC User Manual 104 www.terasic.com

January 28, 2019

"Running Linux on the DE1-SoC board" on DE1-SoC_Getting_Started_Guide.pdf on how to

build a booting microSD card image.

• Power on the DE1-SoC board.

• Launch PuTTY to establish connection to the UART port of the DE1-SoC board. Type "root"

to login Altera Yocto Linux.

• Execute "./hps_config_fpga soc_system_dc.rbf " in the UART terminal of PuTTY to configure

the FPGA through the FPGA manager. After the configuration is successful, the message

shown in Figure 7-2Figure72 will be displayed in the terminal.

Figure 7-2 Running the application to configure the FPGA

• Execute "./HPS_LED_HEX " in the UART terminal of PuTTY to start the program.

• The message shown in Figure 7-3OLE_LINK4, will be displayed in the terminal. The LED[9:0]

will be flashing and the number on the HEX[5:0] will keep changing simultaneously.

Figure 7-3 Running result in the terminal of PuTTY

• Press "CTRL + C" to terminate the program.

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

DE1-SoC User Manual 105 www.terasic.com

January 28, 2019

77..22 DDEE11--SSooCC CCoonnttrrooll PPaanneell

The DE1-SoC Control Panel is a more comprehensive example. It demonstrates:

⚫ Control HPS LED and FPGA LED/HEX

⚫ Query the status of buttons connected to HPS and FPGA

⚫ Configure and query G-sensor connected to HPS

⚫ Control Video-in and VGA-out connected to FPGA

⚫ Control IR receiver connected to FPGA

This example not only controls the peripherals of HPS and FPGA, but also shows how to

implement a GUI program on Linux. Figure 7-4OLE_LINK4 is the screenshot of DE1-SOC

Control Panel.

Figure 7-4 Screenshot of DE1-SoC Control Panel

Please refer to DE1-SoC_Control_Panel.pdf, which is included in the DE1-SOC System CD for

more information on how to build a GUI program step by step.

77..33 DDEE11--SSooCC LLiinnuuxx FFrraammee BBuuffffeerr PPrroojjeecctt

The DE1-SoC Linux Frame Buffer Project is a example that a VGA monitor is utilized as a standard

output interface for the linux operate system. The Quartus II project is located at this path:

Demonstrations/SOC_FPGA/DE1_SOC_Linux_FB. The soc_system.rbf file in the project is used

for configuring FPGA through HPS. The .rbf file is converted form DE1_SOC_Linux_FB.sof by

clicking the sof_to_rbf.bat. The project is adopted for the following demonstrations.

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

DE1-SoC User Manual 106 www.terasic.com

January 28, 2019

⚫ DE1_SoC Linux Console with framebuffer

⚫ DE1_SoC LXDE with Desktop

⚫ DE1_SoC Ubuntu Desktop

The SD image file for the demonstrations above can be downloaded in the design resources for

DE1-SoC at Terasic website.

These examples provide a GUI environment for further developing for the users. For example, a QT

application can run on the system.

Figure 7-5 Screenshot of DE1-SoC Linux Console with framebuffer

Please refer to DE1-SoC_Getting_Started_Guide about how to get the SD images and create a boot

SD card.

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

DE1-SoC User Manual 107 www.terasic.com

January 28, 2019

Chapter 8

Programming the

EPCS Device

This chapter describes how to program the quad serial configuration (EPCS) device with Serial

Flash Loader (SFL) function via the JTAG interface. Users can program EPCS devices with a JTAG

indirect configuration (.jic) file, which is converted from a user-specified SRAM object file (.sof) in

Quartus. The .sof file is generated after the project compilation is successful. The steps of

converting .sof to .jic in Quartus II are listed below.

88..11 BBeeffoorree PPrrooggrraammmmiinngg BBeeggiinnss

The FPGA should be set to AS x1 mode i.e. MSEL[4..0] = “10010” to use the quad Flash as a

FPGA configuration device.

88..22 CCoonnvveerrtt ..SSOOFF FFiillee ttoo ..JJIICC FFiillee

1. Choose Convert Programming Files from the File menu of Quartus II, as shown in Figure

8-1.

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

DE1-SoC User Manual 108 www.terasic.com

January 28, 2019

Figure 8-1 File menu of Quartus II

2. Select JTAG Indirect Configuration File (.jic) from the Programming file type field in

the dialog of Convert Programming Files.

3. Choose EPCS128 from the Configuration device field.

4. Choose Active Serial from the Mode filed.

5. Browse to the target directory from the File name field and specify the name of output file.

6. Click on the SOF data in the section of Input files to convert, as shown in Figure 8-2.

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

DE1-SoC User Manual 109 www.terasic.com

January 28, 2019

Figure 8-2 Dialog of “Convert Programming Files”

7. Click Add File.

8. Select the .sof to be converted to a .jic file from the Open File dialog.

9. Click Open.

10. Click on the Flash Loader and click Add Device, as shown in Figure 8-3.

11. Click OK and the Select Devices page will appear.

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

DE1-SoC User Manual 110 www.terasic.com

January 28, 2019

Figure 8-3 Click on the “Flash Loader”

12. Select the targeted FPGA to be programed into the EPCS, as shown in Figure 8-4.

13. Click OK and the Convert Programming Files page will appear, as shown in Figure 8-5.

14. Click Generate.

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

DE1-SoC User Manual 111 www.terasic.com

January 28, 2019

Figure 8-4 “Select Devices” page

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

DE1-SoC User Manual 112 www.terasic.com

January 28, 2019

Figure 8-5 “Convert Programming Files” page after selecting the device

88..33 WWrriittee JJIICC FFiillee iinnttoo tthhee EEPPCCSS DDeevviiccee

When the conversion of SOF-to-JIC file is complete, please follow the steps below to program the

EPCS device with the .jic file created in Quartus II Programmer.

1. Set MSEL[4..0] = “10010”

2. Choose Programmer from the Tools menu and the Chain.cdf window will appear.

3. Click Auto Detect and then select the correct device. Both FPGA device and HPS should be

detected, as shown in Figure 8-6.

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

DE1-SoC User Manual 113 www.terasic.com

January 28, 2019

4. Double click the green rectangle region shown in Figure 8-6 and the Select New

Programming File page will appear. Select the .jic file to be programmed.

5. Program the EPCS device by clicking the corresponding Program/Configure box. A

factory default SFL image will be loaded, as shown in Figure 8-7.

6. Click Start to program the EPCS device.

Figure 8-6 Two devices are detected in the Quartus II Programmer

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

DE1-SoC User Manual 114 www.terasic.com

January 28, 2019

Figure 8-7 Quartus II programmer window with one .jic file

88..44 EErraassee tthhee EEPPCCSS DDeevviiccee

The steps to erase the existing file in the EPCS device are:

1. Set MSEL[4..0] = “10010”

2. Choose Programmer from the Tools menu and the Chain.cdf window will appear.

3. Click Auto Detect, and then select correct device, both FPGA device and HPS will detected.

(See Figure 8-6)

4. Double click the green rectangle region shown in Figure 8-6, and the Select New

Programming File page will appear. Select the correct .jic file.

5. Erase the EPCS device by clicking the corresponding Erase box. A factory default SFL

image will be loaded, as shown in Figure 8-8.

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

DE1-SoC User Manual 115 www.terasic.com

January 28, 2019

Figure 8-8 Erase the EPCS device in Quartus II Programmer

6. Click Start to erase the EPCS device.

88..55 NNiiooss IIII BBoooott ffrroomm EEPPCCSS DDeevviiccee iinn QQuuaarrttuuss IIII vv1166..00

There is a known problem in Quartus II software that the Quartus Programmer must be used to

program the EPCS device on DE1-SoC board.

Please refer to Altera’s website here with details step by step.

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com
http://niosii.com/support/kdb/solutions/rd11192013_118.html

DE1-SoC User Manual 116 www.terasic.com

January 28, 2019

Chapter 9

Appendix

99..11 RReevviissiioonn HHiissttoorryy

Version Change Log

V0.1 Initial Version (Preliminary)

V0.2 Add Chapter 5 and Chapter 6

V0.3 Modify Chapter 3

V0.4 Add Chapter 3 HPS

V0.5 Modify Chapter 3

V1.0 Modify Chapter 8

V1.1 Modify section 3.3

V1.2 1. Add Sectiom 7.3

2. Modify Figure 3-2

V1.2.1 Modify Figure 3-2

V1.2.2d Modify Figure 5-5 descriptions of remote controller

V2.0.0 Replay ADC device and modify demo description

V2.0.1 Modify EPCQ256 to EPCS128

V2.0.2 Update the remote control part and correct minor spelling

V2.0.3 Update demo for Q16.0

V2.0.4 Modify Figure 3-31

99..22 CCooppyyrriigghhtt SSttaatteemmeenntt

Copyright © 2016 Terasic Technologies. All rights reserved.

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

DE1-SoC User Manual 117 www.terasic.com

January 28, 2019

http://www.terasic.com/
../../Users/Chung-Chieh%20Wei/AppData/Roaming/Microsoft/Word/Download/參考/05.14.2014/參考/04.11.2014/參考/03.14.2014/參考/03.14.2014/參考/03.13.2014/參考/03.07.2014/參考/02.19.2014/www.terasic.com

No matter how you found the box when you opened it, you should close it in the

correct way.

Images 1-3 show how to put FPGA back to its box correctly.

Image 4 shows how not to do it.

Failing to do this will reduce your performance grade

Warming Up
for

Computer Design

METU EE 446
Computer Architecture

Laboratory

Laboratory Work 1 - Warming Up for Computer Design

Objectives

The purpose of the first laboratory work is to construct a Verilog library composed of the fundamental
modules to be used throughout the design of a computer. Moreover, simple datapath design is to be
practiced through designing simple architectures from the modules in the constructed library to perform
some simple tasks.

During this laboratory work, one will be familiar with designing modules with Verilog HDL. This lab-
oratory work is a tool for getting familiar with the software Quartus and cocotb, which will be used
throughout the semester. Finally, one will practice embedding the designs to a development board,
DE1-SoC Board, equipped with a field programmable gate array (FPGA) and several peripheral units
such as switch inputs, general purposed I/O pins, LED and 7-segment outputs, etc.

Do not worry if you can’t fully complete this laboratory work. We will give you the full library for future
laboratory works, and you will be required to use our codes for the supplied test benches to work.

1

1 Preliminary Work

To fulfill the requirements of this laboratory work, the following tasks should be performed. Note: You
should only include important parts of the code in the pdf report. The full code should be
submitted separately.

Every design here should be written in Verilog HDL and be present in your submission as
a ”.v” file

1.1 Reading Assignment

The laboratory manual, where the regulations and other useful information exist, is available on the
ODTUClass course page. Read that manual thoroughly. If you feel unfamiliar with Verilog HDL
programming, please refer to the corresponding lecture notes of the EE445 course, which are available
on the course page. You can also find a ton of resources online for free.

1.2 Module Design with Verilog HDL (40% Credits)

For this part, you will implement fundamental modules in Verilog. These modules will then be used
to construct more complex modules and computer architectures. More importantly, each module you
design is to be added to your library so that you will use it in future laboratory work. Thus, consider
this part of the preliminary work as building your Verilog module library.

You should submit your design codes separately from the report for each item in this part. You should
also submit the corresponding cocotb test bench codes alongside the makefile for the relevant items.
Additionally, remember to attach your explanation for the 2nd item of the ALU design in 1.2.4.

1.2.1 Decoder (2% Credits)

Implement a 2 to 4 and a 4 to 16 decoder.

1.2.2 Multiplexers (2% Credits)

Implement 2 to 1, 4 to 1, and 16 to 1 multiplexers, all of which have W -bit data input/outputs, where
W is a module parameter.

1.2.3 Combinational Shifter (7% Credits)

Implement a W -bit combinational shifter that has three inputs: a W -bit data input, a 5-bit shift input
called shamt, which describes the shift amount, and a 2-bit control input, whereW is a module parameter
specifying the data width of the input. The shifter should be able to do logical shift left, logical shift
right, arithmetic shift right, and rotate right, for which the control signals are given in the Table 1

Table 1: Shifter Control Descriptions

Shifter Control [1:0] Shifter Operation
00 LSL
01 LSR
10 ASR
11 RR

1.2.4 Arithmetic Logic Unit (ALU) (10% Credits)

1. Implement a W -bit ALU for 2’s complement arithmetic, where W is a parameter specifying the
data width of its operands.

The ALU has 3 data inputs, two W -bit for operands and one 1-bit for carry. The ALU should
have 12 operations controlled by a 4-bit control input. In addition to the W -bit result output, the

2

ALU should have four other status output bits: Carry out (CO), overflow (OVF), negative (N),
and zero (Z). Negative and zero bits are affected by all the ALU operations, whereas carry-out and
overflow can only be affected by arithmetic operations. The specifications of the ALU operations
and the ALU status outputs are provided in Table 2 and Table 3, respectively.

Table 2: ALU Operation Control

ALU Control [3:0] ALU Operation Symbol
0000 AND A ∧B
0001 EXOR A⊕B
0010 SubtractionAB A−B
0011 SubtractionBA B −A
0100 Addition A+B
0101 Addition Carry A+B + carry
0110 SubtractionAB Carry A−B + carry − 1
0111 SubtractionBA Carry B −A+ carry − 1
1100 ORR A ∨B
1101 Move B
1110 Bit Clear A ∧ ¬B
1111 Move Not ¬B

Table 3: ALU Status Descriptions

Status Description
CO 1 if there is a Carry Out from add or subtract operations; 0 for logic operations
OVF 1 if the add or subtract operation results in overflow; 0 for logic operations
Z 1 if the result is zero
N 1 if the result is negative

2. Explain your method to detect overflow.

3. Write a test bench module to test your implementation.

4. Comment the test cases in your code such that it is easily understandable which case you are
testing: Addition, subtraction, AND, OR, overflow, etc.

5. Verify that your implementation is correct.

6. Provide you Makefile

1.2.5 Registers (8% Credits)

For this step, you will implement three different W -bit registers, where W is a parameter specifying
the data width of the parallel input to the register and output of the register. Note that the registers
should have a clock input, even though it is not mentioned in the following items explicitly.

1. Simple register with synchronous reset: Implement a positive edge-triggered register with parallel
load and a synchronous reset. If the reset signal is 1, the content of the register is cleared at the
next rising edge of the clock. If the reset signal is 0, the content of the register is loaded with
the input data at the next rising edge of the clock. The specifications of the simple register with
synchronous reset are provided in Table 4.

Table 4: Simple Register (A) with Reset

Reset Operation
0 A← DATA
1 A← 0

3

2. Register with synchronous reset and write enable: Implement a positive edge triggered register
with parallel load, write enable, and synchronous reset. If the reset signal is 1, the contents of
the register are cleared at the next rising edge of the clock. If the reset signal is 0 and the write
enable signal is 1, the contents of the register are loaded with the input data at the next rising edge
of the clock. Finally, the register retains its content if the reset signal is 0 and the write enable
signal is 0. The specifications of the register with synchronous reset and write enable are provided
in Table 5.

Table 5: Register (A) with synchronous reset and write enable

Reset Write Enable Operation
0 0 Retain
0 1 A← DATA
1 X A← 0

1.2.6 Memory Unit (10% Credits)

For this step, you will implement a byte-addressable memory. The module has the inputs of a clock,
write enable, write data and address, and the output of read data. W is a parameter specifying the data
width of write data and read data in bytes. The input address width is up to you. Clock and write
enable is 1-bit.

Memory addressing should be combinational. Read data should change the moment the input address
changes. When write-enable is given as 1, W -byte write-data input should be written to the location
specified by the address input at the next positive clock edge. You should use Little Endian con-
vention to be consistent with ARM

1.2.7 7-Segment Display Converter(1% Credits)

Important: Although not part of the design, you will need a 7-segment converter to show your design’s
operation in the lab sessions properly.

This module should take a 4-byte input and output the input as a hex number for the 7-segment display.
Specifics of the conversions are up to you, but a simple case or else-if statement should be sufficient. You
can see the details of the 7-segment module in Figure 1. For more info, please check the DE1-SoC user
manual.

Figure 1: 7-Segment Display Signals for the DE1-SOC Board

4

https://odtuclass2022s.metu.edu.tr/pluginfile.php/344255/mod_folder/content/0/Manuals/DE1-SoC_User_manual_revf.pdf
https://odtuclass2022s.metu.edu.tr/pluginfile.php/344255/mod_folder/content/0/Manuals/DE1-SoC_User_manual_revf.pdf

1.3 Register File (20% Credits)

For this part, you will use your modules available from Part 1.2 to design a W -bit register file of 16
registers, where W is a parameter specifying the data width of the registers. The register file will be the
central storage of the computer you will design for future laboratory work.

For the design of the register file, you will use your decoder, multiplexer, and register implementa-
tions. The design should be according to the desired operation of the register file.

The register file has one data input and two data outputs. The sources of the outputs and the destination
of the input can be one of the 16 registers in the register file. Therefore, there should be three address
inputs of width 4: one for destination select and two for source select. Finally, a control signal is required
to enable write operation, and a synchronous reset signal is required to clear the contents of all registers
in the register file. Note that the register file should inherently have a clock input.

The content of a register in the register file should be able to be modified without affecting the contents
of the other registers. To modify a register, it should be addressed, and the write enable control of the
register file module should be 1. If the write enable of the register file is 0, then the contents of the
registers cannot be modified except for the reset condition. Note that the write operation is synchronous;
however, the read operation should be asynchronous so that the data outputs are available as soon as
their sources are addressed.

According to the aforementioned desired operation of the register file:

1. Design and sketch (on paper) a datapath for a register file design using your decoder, multiplexer
and register modules. You may use additional gates wherever necessary. For your sketch, you may
present your modules with boxes.

2. Implement your design in Verilog HDL.

3. Write your testbench for your implementation using cocotb. (10% Credit)

4. Provide you Makefile

5. Verify that your implementation is correct.

You should submit a pen and paper (or digital drawing) of the sketch of your design, the design code,
and the corresponding test bench code with the Makefile.

5

1.4 Datapath Design for an Architecture (40% Credits)

In this part, you will design a datapath for an architecture so that you can perform several tasks by
applying proper control signals. The architecture to be completed is provided in Figure 2. You designed
the modules in subsection 1.2. There is one 8-bit register with reset and write enable, one 8-bit ALU, one
8-bit shifter, and two 8-bit multiplexers in the initial datapath. External data input is directly connected
to the input of one of the MUXes.

Assuming that the existing connections cannot be modified, you should complete the architecture
by designing a datapath so that the following tasks can be performed with the desired constraints in less
than five clock cycles each:

1. 2’s Complement Load: Load the register with 2’s complement of the input.

2. Multiply by 10: The register will be loaded with the input times 10.

3. Duplicate the First 4-bit: Given a byte such as x7x6x5x4x3x2x1x0 the input make the content of
the register x7x6x5x4x7x6x5x4

According to the aforementioned tasks with specified constraints, design a datapath with as many addi-
tional MUXes as you want.

1. Implement your design in Verilog HDL.

2. Write your testbench for your implementation using cocotb. (20% Credit)

3. Provide your Makefile

4. Verify that your implementations are correct.

Figure 2: Architecture to which a datapath is to be designed

Considering your design, answer the following questions:

• How many control pins for the control signals does your architecture have?

• How many different control signals does your architecture use to perform the desired tasks?

• Can you reduce the number of control pins? Why not, or how?

• Write down the sequence of the control signals for all operations. How many clock cycles do these
operations take?

For this part, submit pen and paper (or digital drawing) of the sketch of your datapath design and your
answers to the questions.

6

2 Experimental Work

To upload your designs to the FPGA, you will use SystemBuilder to create a project with proper pin
assignments and module initialization. DE1-SoC User manual has a short section on how the System-
Builder works.

2.1 Register File (40% Credits)

Load the register file module designed in the Preliminary Work Part 1.3 to the DE1-SoC Board board
as an 8-bit register file. There are ten switches and four push buttons on the DE1-SoC board. For the
clock signal, use one of the push buttons. Debouncing exists in the push buttons of the DE1-SoC Board.
Since the board does not have enough switches and buttons for other control signals, you may connect
some signals to the ground or VCC. Every demonstration method is accepted as long as it is sufficient
to demonstrate the full capability.

Verify the operation of the register file and demonstrate it to your lab instructor.

You must output each of the register file outputs using 7-segment display modules of the
board. Use one 7-segment module for each hexadecimal digit

2.2 Datapath Design (60% Credits)

Load the custom architecture designed in the Preliminary Work Part 1.4 to the DE1-SoC Board board.
Use eight hardwired connections to the ground or VCC as the data input and use the 7-Segment Display
of the DE1-SoC Board board to display the content of the register. For your control signals and the
clock, you may use the push buttons and switches from the DE1-SoC Board board.

Verify the operation of your design by performing the 2’s Complement Load, Multiply by 10, and
Duplicate the First 4-bit operations and demonstrate it to your lab instructor.

You must output the resulting signal using 7-segment display modules of the board. Use
one 7-segment module for each hexadecimal digit

3 Parts List

DE1-SoC Board

7

https://odtuclass2023s.metu.edu.tr/pluginfile.php/460385/mod_folder/content/0/Supplementary%20Materials/DE1-SoC_User_manual_revf.pdf?forcedownload=1

Laboratory Work 2 - Single Cycle Processor Design

Objectives

This laboratory work aims to practice the design of a 32-bit single-cycle processor. You will construct
a datapath and control unit of the single-cycle processor like the one discussed in class. The designed
processor will be able to execute all instructions in the given restricted instruction set.

During this laboratory work, you will further improve your hard-wired controller design skills by designing
the controller unit of the single-cycle processor. Finally, you will embed your design into the FPGA of
the DE1-Soc board and experiment with it.

1

1 Preliminary Work

To fulfill the requirements of this laboratory work, the following tasks should be performed.

1.1 Reading Assignment

The laboratory manual, where the regulations and other useful information exist, is available on the
ODTUClass course page. Read that manual thoroughly. If you feel unfamiliar with Verilog HDL pro-
gramming and single-cycle processor design, please refer to the corresponding lecture notes of the EE445
and EE446 courses, which are available on the course page.

1.2 Single Cycle Processor Design with Verilog HDL (100% Credits)

For this laboratory work, you will design and implement a 32-bit single-cycle processor that executes
the instruction in only one clock cycle. First, you will design its datapath and then implement the
corresponding controller.

Before starting this lab, you should be familiar with the single-cycle implementation of the processor
described in the lecture slides. An example single-cycle processor schematic is shown in Figure 1. Our
model of the processor divides the machine into two major units: the control and the datapath. Each
unit is constructed from various functional blocks. For example, the below datapath contains the 32-bit
ALU, the register file, the sign extension logic, two adders, and five multiplexers to choose appropriate
operands.

Figure 1: A complete single cycle processor implementation

The processor you design will not support all ARM instructions but only a restricted set listed in
Table 1.For all instructions, conditional logic of EQ, NE, and AL are required. Thus, you only need
the ”Zero” flag. Condition codes defined in ARM standards are shown in Figure 3. You will implement
a shifting functionality for the second operand for data processing.

Note:LSL=2’b00, LSR=2’b01, ASR=2’b10, RR=2’b11;

Note: You will use the 32-bit ARM ISA format as shown in Figure 2.

You will need the following components to construct the datapath, all of which are given on ODTUClass
You must use the provided modules for the testbench to work

2

• Instruction memory where instructions
are stored

• Data memory where data is stored
• Register file
• Registers

• ALU
• Adders
• Immediate Extender
• Multiplexers
• Combinational Shifter

Figure 2: ARM ISA Format

Mnemonic Name Operation

ADD Addition add Rd,Rn,Rm Rd← Rn + (Rm sh shamt5)
SUB Subtraction sub Rd,Rn,Rm Rd← Rn - (Rm sh shamt5)
AND Bitwise And and Rd,Rn,Rm Rd← Rn & (Rm sh shamt5)
ORR Bitwise Or orr Rd,Rn,Rm Rd← Rn | (Rm sh shamt5)
MOV Move to Register mov Rd,Rm Rd← (Rm sh shamt5)
MOV Move to Register mov Rd,rot-imm8 Rd← (imm8 rr rot<< 1)
CMP Compare cmp Rd,Rn,Rm set the flag if (Rn - Rm =0)
STR Store str Rd,[Rn,imm12] Mem[Rn + imm12] ← Rd
LDR Load ldr Rd,[Rn,imm12] Rd ← Mem[Rn + imm12]
B Branch b imm24 PC ← (PC + 8) + (imm24<< 2)
BL Branch with Link bl imm24 PC ← (PC + 8) + (imm24<< 2), R14 ← PC + 4
BX Branch and Exchange bx Rm PC ← Rm

Table 1: ISA to be implemented

3

Figure 3: ARM Condition Codes

1.2.1 Datapath Design (30% Credits)

You are given an example architecture in Figure 1. You will implement a datapath with modules in your
library that have been constructed in the scope of the first laboratory work. Use the provided files
instead of the ones you wrote. The design will extend the datapath we discussed in the lectures. A
shifter needs to be added to support data processing instructions with shift. This shifter can also be used
for branches, but we built-in that functionality to the extender, as in lecture notes. Some modifications
in the datapath connections are also needed for BL and BX instructions. ALU has a pass-through for
the second operand that you can use for MOV.

Considering the instruction set provided in Table 1, perform the following design steps:

1. (20% Credits) Using Verilog HDL, implement the Datapath using only modules and wires; no
additional logic is allowed. Show the synthesized Datapaths RTL view. No I/O signal should be
floating or have a constant value, as that indicates an error.

2. (10% Credits) Explain how you added the functionalities not discussed in the lecture notes. The
register shifted immediate operations, both MOV operations, BL and BX.

For the operation of the computer, a certain external signal, namely RESET, is also necessary. Reset
resets the PC register at the next positive clock edge.

4

1.2.2 Controller Design (40% Credits)

In this step, the controller for the single-cycle processor is to be designed. It will look like the controller
in the lecture slides (Figure 4) with support for new instructions and addressing modes.

Figure 4: Controller

Perform the following steps:

1. (30% Credits) Using Verilog HDL, implement the Controller. There is no restriction, and you can
write it however you like. Show the synthesized Controller RTL view. No I/O signal should be
floating or have a constant value, indicating an error.

2. (10% Credits) Explain how you added the functionalities not discussed in the lecture notes. The
register shifted immediate operations, both MOV operations, BL and BX.

1.2.3 Top level for Tests (10% Credits)

Use the top-level file provided in ODTUClass to assemble the controller and datapath. This will also be
used to upload your design to the DE1-SoC Board. This will make:

1. Debug register select connect to the switches and debug register output connect to one of the seven
segments.

2. PC register connects to one of the seven segments.

1.2.4 Testbench (20% Credits)

Now that you have completed the implementation of the single-cycle CPU, it is required to verify its
operation through some light programming. You will use the supplied testbench for this. If the com-
puter cannot execute at least the MOV immediate instruction in the testbench, you will
not be admitted to the lab.

Don’t forget to give the proper signal handles to the initialization function of the testbench class. Also,
you can fill in the log controller and log datapath functions inside the helper library for your debugging
purposes. Do not change anything inside the TB class

Your report must include the test bench results as a screenshot!

2 Experimental Work

To upload your designs to the FPGA, you will use SystemBuilder to create a project with proper pin
assignments and module initialization. DE1-SoC User manual has a short section on how the System-

5

https://odtuclass2023s.metu.edu.tr/pluginfile.php/460385/mod_folder/content/0/Supplementary%20Materials/DE1-SoC_User_manual_revf.pdf?forcedownload=1

Builder works.

2.1 Single Cycle Processor (100% Credits)

Load your processor designed in the Preliminary Work Part 1.2 to the DE1-SoC board. Load the
instructions to your instruction memory using $readmemh with the provided hex file.

Your proctoring assistant will check the design and grade you depending on how many instructions the
computer can successfully execute. You can get help from the proctors but any major help decreases
your performance grade.

You must use the supplied top-level file that will connect all the necessary signals to the
board’s buttons, switches, and seven-segment displays

3 Parts List

DE1-SoC Board

6

Laboratory Work 3 - Multi Cycle Processor Design

Objectives

This laboratory work aims to practice the design of a 32-bit multi-cycle processor. You will construct
a datapath and a control unit of the multi-cycle processor like the one discussed in class. The designed
processor will be able to execute all instructions in the given restricted instruction set.

During this laboratory work, you will further improve your hard-wired controller design skills by designing
the controller unit of the multi-cycle processor. Finally, you will embed your design into the FPGA of
the DE1-SoC board and experiment with it.

1

1 Preliminary Work

To fulfill the requirements of this laboratory work, the following tasks should be performed.

1.1 Reading Assignment

The laboratory manual, where the regulations and other useful information exist, is available on the
ODTUClass course page. Read that manual thoroughly. If you feel unfamiliar with Verilog HDL pro-
gramming and multi-cycle processor design, please refer to the corresponding lecture notes of the EE445
and EE446 courses, which are available on the course page.

1.2 Multi Cycle Processor Design with Verilog HDL (100% Credits)

For this laboratory work, you will design and implement a 32-bit multi-cycle processor that executes
the instruction in multiple clock cycles. First, you will design its datapath and then implement the
corresponding controller.

Before starting this lab, you should be familiar with the multi-cycle implementation of the
processor described in lecture slides. The multi-cycle from the lecture notes is given in Figure 2.
You will implement a multi-cycle processor very similar to the one in the lecture notes with a few extra
instructions you should be familiar with from the previous laboratory and some design freedom.

The processor you design will not support all ARM instructions but only a restricted set listed in Table 1.
For all instructions, conditional logic of EQ, NE, and AL are required. Thus, you only need the ”Zero”
flag. Condition codes defined in ARM standards are shown in Figure 3. You will implement a shifting
functionality for the second operand for data processing.

Mnemonic Name Operation

ADD Addition add Rd,Rn,Rm Rd← Rn + (Rm sh shamt5)
SUB Subtraction sub Rd,Rn,Rm Rd← Rn - (Rm sh shamt5)
AND Bitwise And and Rd,Rn,Rm Rd← Rn & (Rm sh shamt5)
ORR Bitwise Or orr Rd,Rn,Rm Rd← Rn | (Rm sh shamt5)
MOV Move to Register mov Rd,Rm Rd← (Rm sh shamt5)
MOV Move to Register mov Rd,rot-imm8 Rd← (imm8 rr rot<< 1)
CMP Compare cmp Rd,Rn,Rm set the flag if (Rn - Rm =0)
STR Store str Rd,[Rn,imm12] Mem[Rn + imm12] ← Rd
LDR Load ldr Rd,[Rn,imm12] Rd ← Mem[Rn + imm12]
B Branch b imm24 PC ← (PC + 8) + (imm24<< 2)
BL Branch with Link bl imm24 PC ← (PC + 8) + (imm24<< 2), R14 ← PC + 4
BX Branch and Exchange bx Rm PC ← Rm

Table 1: ISA to be implemented

Note: You will use the 32-bit ARM ISA format as shown in Figure 1. You can check any web resource
for instructions not explained here, as we use standard ARM format.

You will need the following components to construct the datapath, all of which are given on ODTUClass
You must use the provided modules for the testbench to work

• One Instruction and Data memory (IDM)
• One Register file
• One Program Counter register
• One ALU

• One Immediate Extender
• One Combinational Shifter
• Multiplexers

2

Figure 1: ARM ISA Format

Figure 2: Multi cycle processor from the lecture notes

3

Figure 3: ARM Condition Codes

4

1.2.1 Datapath Design (30% Credits)

In this part of the laboratory work, given your ISA, you are expected to design a full datapath to support
all the instructions in the Table 1. The instructions will be stored in a unified instruction/data memory,
IDM, read from and executed. You use the memory module designed in the first lab as the IDM, also
given on ODTUClass.

As stated in the previous subsection, the previous ALU can be used, without modification to operations,
and control signal meanings can change (which would inherently affect the control signals required for
the proper operation), although there should not be any need for it. As another design limitation, you
can use only a single arithmetic logic processor, and no wired connection between the ALU
and the IDM is allowed. Besides, you may as well use other functional components and registers for
temporary data storage, provided that you support your reasoning. You are not allowed to design new
modules like in the previous laboratory.,

The design will extend the datapath we discussed in the lectures. A shifter needs to be added to support
data processing instructions with shift. This shifter can also be used for branches, but we built in that
functionality to the extender, as in lecture notes. Some modifications in the datapath connections are
also needed for BL and BX instructions. ALU has a pass-through for the second operand that you can
use for MOV.

Considering the instruction set provided in Table 1, perform the following design steps:

1. (20% Credits) Using Verilog HDL, implement the Datapath using only modules and wires; no
additional logic is allowed. Show the synthesized Datapaths RTL view. No I/O signal should be
floating or have a constant value, indicating an error.

2. (10% Credits) Explain how you added the functionalities not discussed in the lecture notes. The
register shifted immediate operations, both MOV operations, BL and BX.

For the operation of the computer, a certain external signal, namely RESET, is also necessary. Reset
resets the PC register at the next positive clock edge.

1.2.2 Controller Design (40% Credits)

The design of the control unit may be considered as designing the FSM (finite-state machine) that
will generate the control sequence in the correct conditional and sequential order concerning the cycles
described in the lecture notes.

• C0: Fetch Cycle: This is the first cycle corresponding to the operation of a single instruction.
The instruction is read from the instruction/data memory to be loaded to an instruction register
that holds the current one. Meanwhile, the program counter (PC) is increased to point to the next
instruction.

• C1: Decode Cycle: Within the decode cycle, the current instruction in the instruction register
is decoded to obtain the conditions and the operands.

• C2: Execute and Branches Cycle: In this cycle, the data is processed using the ALU or branch
is taken.

• C3: MemWrite/MemRead and ALU Writeback: In this cycle, processed data is written
back to the register file or to the memory.

• C4: Memory Writeback: In this cycle, data read from memory is written back to the register
file.

For the supplied test bench to work, you must ensure your instruction types take the same number of
cycles as in the lecture notes described in Figure 4. You are heavily encouraged to follow the lecture
notes.

• Data Processing and Store instructions: 4 cycles

• Branch Instructions (BL and BX included): 3 cycles

5

• Load instructions: 5 cycles

Regarding the above-given descriptions, with support for new instructions and addressing modes, you
must determine which control signal in your design is to be utilized in which cycle.

For the operation of the FSM, a certain external signal, namely RESET is also necessary.

• RESET(active high): Terminates the operation and sets the FSM to the first state at the next
positive clock edge.

Perform the following steps:

1. (30% Credits) Using Verilog HDL, implement the Controller. There is no restriction, and you can
write it however you like. Show the synthesized Controller’s RTL view. No I/O signal should be
floating or have a constant value, as that indicates an error.

2. (10% Credits) Explain how you added the functionalities not discussed in the lecture notes. The
register shifted immediate operations, both MOV operations, BL and BX.

Figure 4: FSM of the Controller from Lecture Notes

1.2.3 Top level for Tests (10% Credits)

Use the top-level file provided in ODTUClass to assemble the controller and datapath. This will also be
used to upload your design to the DE1-SoC Board. This will make:

6

1. Debug register select connects to the switches and debug register output connects to 4 seven
segments.

2. PC register connects to 2 seven segments.

3. FSM’s state connects to LEDs for ease of debugging.

1.2.4 Testbench (20% Credits)

Now that you have completed the implementation of the multi-cycle CPU, it is required to verify its
operation through some light programming. You will use the supplied testbench. If the computer
cannot execute at least the MOV immediate instruction in the testbench, you will not be
admitted to the lab.

Don’t forget to give the proper signal handles to the initialization function of the testbench class. Also,
you can fill in the log controller and log datapath functions inside the helper library for your debugging
purposes. Do not change anything inside the TB class

Note that your design will fail the testbench if the number of clock cycles for each in-
struction does not match the specification given in subsubsection 1.2.2. Your report must
include the test bench results as a screenshot!

2 Experimental Work

To upload your designs to the FPGA, you will use SystemBuilder to create a project with proper pin
assignments and module initialization. DE1-SoC User manual has a short section on how the System-
Builder works.

2.1 Multi Cycle Processor (100% Credits)

Load your processor designed in the Preliminary Work Part 1.2 to the DE1-SoC board. Load the
instructions to your instruction memory using $readmemh with the provided hex file.

Your proctoring assistant will check the design and grade you depending on how many instructions the
computer can successfully execute. You can get help from the proctors, but any major help decreases
your performance grade.

You must use the supplied top-level file that will connect all the necessary signals to the
board’s buttons, switches, and seven-segment displays

3 Parts List

DE1-SoC Board

7

https://odtuclass2023s.metu.edu.tr/pluginfile.php/460385/mod_folder/content/0/Supplementary%20Materials/DE1-SoC_User_manual_revf.pdf?forcedownload=1

Laboratory Work 4 - Pipelined Processor Design

Objectives

This laboratory work aims to practice the design of a 32-bit pipelined processor. You will construct a
datapath and a control unit of the pipelined processor like the one discussed in class with the hazard
unit. The designed processor will be able to execute all instructions in the instruction set.

During this laboratory work, you will improve your hard-wired controller design skills by designing the
pipelined processor’s controller unit, which will contain multiple stages like the datapath. Finally, you
will embed your design into the FPGA of the DE1-SoC board and demonstrate your design.

1

1 Preliminary Work

To fulfill the requirements of this laboratory work, the following tasks should be performed.

1.1 Reading Assignment

The laboratory manual, where the regulations and other useful information exist, is available on the
ODTUClass course page. Read that manual thoroughly. If you feel unfamiliar with pipelined CPU
architecture, please refer to the corresponding lecture notes of EE446 course.

1.2 Pipelined Processor Design with Verilog HDL (100% Credits)

For this laboratory work, you will design and implement a 32-bit pipelined processor that executes the
instruction in multiple clock cycles but differs from a multi-cycle because it has an IPC of one. First,
you will design its datapath and then implement the corresponding controller.

You will implement a pipelined processor very similar to the one in the lecture notes, with a few extra
instructions you should be familiar with from the previous laboratories.

The processor you design will not support all ARM instructions but only a restricted set listed in Table 1.
For all instructions, conditional logic of EQ, NE, and AL are required. Conditions codes defined in
ARM standards are shown in Figure 3. You will implement a shifting functionality for the second operand
for data processing.

Mnemonic Name Operation

ADD Addition add Rd,Rn,Rm Rd← Rn + (Rm sh shamt5)
SUB Subtraction sub Rd,Rn,Rm Rd← Rn - (Rm sh shamt5)
AND Bitwise And and Rd,Rn,Rm Rd← Rn & (Rm sh shamt5)
ORR Bitwise Or orr Rd,Rn,Rm Rd← Rn | (Rm sh shamt5)
MOV Move to Register mov Rd,Rm Rd← (Rm sh shamt5)
MOV Move to Register mov Rd,rot-imm8 Rd← (imm8 rr rot<< 1)
CMP Compare cmp Rd,Rn,Rm set the flag if (Rn - Rm =0)
STR Store str Rd,[Rn,imm12] Mem[Rn + imm12] ← Rd
LDR Load ldr Rd,[Rn,imm12] Rd ← Mem[Rn + imm12]
B Branch b imm24 PC ← (PC + 8) + (imm24<< 2)
BL Branch with Link bl imm24 PC ← (PC + 8) + (imm24<< 2), R14 ← PC + 4
BX Branch and Exchange bx Rm PC ← Rm

Table 1: ISA to be implemented

Note: For this lab, you will use the 32-bit ARM ISA format as shown in Figure 1. You can check any
resource from the web for any instructions not explained here, as we use standard ARM format.

2

Figure 1: ARM ISA Format

Figure 2: Pipelined processor from the lecture notes

3

Figure 3: ARM Condition Codes

4

1.2.1 Datapath Design (20% Credits)

In this part of the laboratory work, given your ISA, you are expected to design a full datapath that would
support all the instructions included in Figure 1. Using pipelined processor implementation, you will
use five stages for your datapath as in lecture notes: Fetch, Decode, Execute, Memory, and Writeback.
5 Stages are important because the test bench won’t work with different stages.

You will need the following components to construct the datapath, all of which are given on ODTUClass
You must use the provided modules for the testbench to work

• Instruction Memory
• Data Memory
• Register file
• Program Counter register
• One ALU

• One Immediate Extender
• Multiplexers
• One Combinational Shifter
• Interim registers for pipelined operation
• Adders

The design will extend the datapath we discussed in the lectures. A shifter needs to be added to support
data processing instructions with shift. This shifter can also be used for branches, but we built that
functionality into the extender, as in lecture notes. Some modifications in the datapath connections are
also needed for BL and BX instructions. ALU has a pass-through for the second operand that you can
use for MOV.

Give your reasoning in the report for the changes you made to the datapath in the lecture notes (including
how you used shifter and implemented the BL/BX instruction). You can change the datapath as much
as you want if you give proper reasoning. As a rule of thumb, try not to needlessly forward data between
stages and use the inter-stage registers as much as possible to ensure the critical path is small.

Considering the instruction set provided in Table 1, perform the following design steps:

1. (15% Credits) Using Verilog HDL, implement the Datapath using only modules and wires; no
additional logic is allowed. Show the synthesized Datapaths RTL view. No I/O signal should be
floating or have a constant value, as that indicates an error.

2. (5% Credits) Explain how you added the functionalities not discussed in the lecture notes. The
register shifted immediate operations, both MOV operations, BL and BX.

1.2.2 Controller Design (30% Credits)

You are going to design a controller for the datapath you have designed. The pipelined computer
controller will be very similar to the single-cycle controller but will forward the controller signals through
the pipeline stages.

The design will extend the controller we discussed in the lectures. The shifter controller will have
additional signals, and BL instruction will require you to design a new set of control signals for it. Make
sure everything is consistent with your datapath.

Give your reasoning in the report for the changes you made to the controller in the lecture notes (including
how you used shifter and implemented the BL instruction). As with the datapath, you can change the
controller as much as you want if you give proper reasoning.

For the correct operation of the computer, you will need a RESET signal that terminates the operation
and sets the PC to the very first slot in the instruction/data memory (active high) at the next positive
clock edge. Don’t forget to reset interim registers.

Perform the following steps:

1. (20% Credits) Using Verilog HDL, implement the Controller. There is no restriction, and you can
write it however you like. Show the synthesized Controller’s RTL view. No I/O signal should be
floating or have a constant value, as that indicates an error.

2. (10% Credits) Explain how you added the functionalities not discussed in the lecture notes. The
register shifted immediate operations, both MOV operations, BL and BX.

5

1.2.3 Hazard Unit (25%)

The hazard unit implemented for this project will handle two hazard types. Most of the design will be
consistent with the implementation you have studied in the lectures. As a reminder, the list of the terms
for hazard handling is given.

• Flush: Clearing a stage register so that the result of that stage is discarded

• Stall: Holding the value of a stage register so that a bubble can be introduced

• Forward: Sending the calculated value to a previous stage

1. (20% Credits) Using Verilog HDL, implement the Hazard Unit. There is no restriction, and you
can write it however you like. Show the synthesized Hazard Unit’s RTL view. No I/O signal should
be floating or have a constant value, indicating an error.

2. (10% Credits) Explain how you handled the functionalities not discussed in the lecture notes. The
register shifted immediate operations, both MOV operations, BL and BX.

Data Hazard Handling (15%) Data hazards happen when an instruction tries to read a register
that a previous instruction has not yet written back. There can be multiple methods to handle this
hazard type, even as simple as constant stalling. However, you can see that this implementation method
will decrease the efficiency of your design. Hence you are required to implement your hazard unit such
that:

• Hazards caused by data operations must be handled by forwarding such that no cycle is wasted.

• Hazards caused by memory operations can use a minimal amount of stalling, which is one cycle.

Control Hazard Handling (10%) Control hazards happen when the decision of what instruction to
fetch next has not been made by the time the fetch takes place.

Branch operations and other operations that write to the PC (MOV R15, BX, B, BL, etc. with their
conditional variants) will forward the new PC value to the fetch cycle and flush the wrong stages when
the branch is taken. This should be implemented with a minimal amount of flushing while considering
the critical path. See the lecture notes for more detailed explanations.

1.2.4 Top level for Tests (5% Credits)

Use the top-level file provided in ODTUClass to assemble the controller and datapath. This will also be
used to upload your design to the DE1-SoC Board. This will make:

1. Debug register select connect to the switches and debug register output connect to one of the seven
segments.

2. PC register connects to one of the seven segments.

3. You can use LEDs to connect to various hazard signals.

1.2.5 Testbench (20% Credits)

Now that you have completed the implementation of the pipelined CPU, it is required to verify its
operation through some light programming. You will use the supplied testbench for this.

Don’t forget to give the proper signal handles to the initialization function of the testbench class. Also,
you can fill in the log controller and log datapath functions inside the helper library for your debugging
purposes. Do not change anything inside the TB class

Your report must include the test bench results as a screenshot! You should submit the
testbench files as well

6

2 Experimental Work

To upload your designs to the FPGA, you will use SystemBuilder to create a project with proper pin
assignments and module initialization. DE1-SoC User manual has a short section on how the System-
Builder works.

2.1 Pipelined Processor (100% Credits)

Load your processor designed in the Preliminary Work to the DE1-SoC board. Load the instructions to
your instruction memory using $readmemh with the provided hex file.

Your proctoring assistant will check the design and grade you depending on how many instructions the
computer can successfully execute. You can get help from the proctors, but any significant help decreases
your performance grade.

You must use the supplied top-level file that will connect all the necessary signals to the
board’s buttons, switches, and seven-segment displays

3 Parts List

DE1-SoC Board

7

https://odtuclass2023s.metu.edu.tr/pluginfile.php/460385/mod_folder/content/0/Supplementary%20Materials/DE1-SoC_User_manual_revf.pdf?forcedownload=1

METU EE446

Computer Architecture

Laboratory

Laboratory Project - Single Cycle RISC-V Processor

Objectives

This project aims to explore a novel, license-free, open-source instruction set architecture that is becoming
increasingly popular in the industry. You will construct the datapath and the control unit of a single-
cycle 32-bit RISC-V processor. For this project, the instruction set has been extended by one more
instruction. The designed processor will be able to execute all instructions in the extended instruction
set. Finally, you will embed your design into the FPGA of the DE1-SoC board and demonstrate your
design.

This project will be done in groups of 2 students unless you choose to do the project by
yourself. You can choose your partner. Each partner is expected to contribute in equal amounts. If
the work is divided too unevenly, the student who did more will be generously graded, while the student
who did less will be penalized. The most uneven work division acceptable is 60-40. If you wish to do the
project in a group but cannot find a partner, we will match you with another student (if possible).

The project needs to be done by groups individually. In other words, inter-group cooperation
will be considered as cheating and further action will be taken as explained in the EE446
Laboratory Manual.

1

Contents

1 Introduction 3
1.1 Reading Assignment . 3
1.2 Comparison with ARM . 3

2 Project Preliminary Work (20%) 4
2.1 ISA to be implemented . 4

2.1.1 Extra instruction . 4
2.2 Datapath (25%) . 4

2.2.1 Datapath Design . 4
2.2.2 Datapath Implementation . 4

2.3 Controller (25%) . 4
2.3.1 Controller Design . 4
2.3.2 Controller Implementation . 5

2.4 Top Level (5%) . 5
2.5 Testbench (45%) . 5
2.6 Important Considerations . 5

3 Project Demonstration (80%) 6

A Useful Materials 7

2

1 Introduction

RISC-V is an innovative instruction-set architecture (ISA) that was initially developed to support re-
search and education in computer architecture at UC Berkeley. Its design aspirations have since ex-
panded, aiming to become a standard, free, and open architecture for industry implementations. Char-
acterized by its flexibility and generality, RISC-V is not tailored to specific microarchitectural styles or
technologies, making it suitable for a wide range of hardware implementations, from custom chips to
multicore processors. The architecture includes a modular structure with a base integer ISA and op-
tional extensions supporting 32-bit and 64-bit address spaces. RISC-V is designed to facilitate efficient
implementations and is fully virtualizable, simplifying hypervisor development. This open and versatile
ISA holds significant potential to influence academic research and industrial applications broadly.

1.1 Reading Assignment

In this project, a part of RISC-V ISA will be implemented. To get familiar with it, read the RISC-V
specification given in the link below. Chapters 2, 24 and 25 are of most interest. Note that this project
manual doesn’t contain the low-level details needed to implement the processor fully. Therefore, you’ll
need to seek additional information from relevant parts of the RISC-V specification.

RISC-V Specification 20191213.pdf

Additionally, Chapter 7.3 of Harris & Harris Risc-v book contains an implementation of part of the ISA,
which you can consider:

Sarah Harris, David Harris - Digital Design and Computer Architecture RISC-V Edition (2021)

Since RISC-V is an open standard, many materials are freely available online.

As usual, taking any code without citing its origin or taking large sections of code from any source is
Plagiarism and will result in a 0x0 (zero) grade, whereas disciplinary action may be taken.

1.2 Comparison with ARM

ARM 32-bit had 16 architectural registers, with PC=R15. On the other hand, RISC-V has 32 registers
(x0 to x31), and PC is not one of these registers. Also, register0 is hardwired to zero value.

ARM had conditional instructions, but RISC-V only has conditional branches. Therefore, ALU flags
don’t need to be saved to a register. RISC-V does not have shifted operands, but it has shift instructions.

RISC-V has six types of instructions as seen in Figure 1. Instructions can be read from the rs1/rs2
registers and written to the rd register. Instruction encodings may look complicated, especially the
immediate encodings. However, these encodings reduce the number of multiplexers and are efficient to
implement in hardware.

Figure 1: RISC-V instruction types

3

https://riscv.org/wp-content/uploads/2019/12/riscv-spec-20191213.pdf

2 Project Preliminary Work (20%)

2.1 ISA to be implemented

RISC-V consists of base ISA and extensions. In this project, the Unprivileged RV32I Base Integer
Instruction Set will be implemented. Additionally, one new instruction will be added as an extension.

FENCE, ECALL, EBREAK, and HINT instructions will not be implemented, as they are irrelevant.

The list of instructions to be implemented is given in Table 1. For more information about the instruc-
tions, refer to the RISC-V specification.

Arithmetic instructions: ADD[I], SUB
Logic instructions: AND[I], OR[I], XOR[I]
Shift instructions: SLL[I], SRL[I], SRA[I]
Set if less than: SLT[I][U]
Conditional branch: BEQ, BNE, BLT[U], BGE[U]
Unconditional jump: JAL, JALR (Return-address stack push/pop functionality will not be implemented)
Load: LW, LH[U], LB[U]
Store: SW, SH, SB
Others: LUI, AUIPC
Extra instruction: XORID

Table 1: List of Instructions

2.1.1 Extra instruction

The extra instruction is XORID. It will take the xor of rs1 with an embedded constant and write the
result to rd. It has the following format:

XORID rd, rs1 rd← rs1⊕ (studentId1⊕ studentId2)

Instruction encoding details are given below:

• opcode[6:0]=0001011

• I type instruction, but immediate value will not be used

• funct3[2:0]=100

2.2 Datapath (25%)

2.2.1 Datapath Design

Design a datapath that will support all of the instructions listed above. In your report, explain your
design with appropriate visuals. It can be based on the datapath shown in Figure 2.

2.2.2 Datapath Implementation

Implement your design in Verilog HDL. Datapath must consist of submodules but should not contain
”always blocks” or direct logic. You can use the modules from laboratories or create your own.
Datapath needs to have a synchronous reset.
Show the synthesized RTL view of your datapath in your report. Explain how each instruction type is
executed in your datapath.

2.3 Controller (25%)

2.3.1 Controller Design

Design a controller that matches your datapath. In your report, explain your controller with appropriate
visuals. Explain any submodules the controller has.

4

2.3.2 Controller Implementation

Implement your design in Verilog HDL. The controller can be written in a single module, or it can have
submodules.
Show the synthesized RTL view of your controller in your report. Explain how each instruction type is
executed in your controller.

2.4 Top Level (5%)

In this part, the controller and datapath are assembled in a top module. The top module needs to have
a synchronous reset.

For debugging purposes, connect five switches to the register files debug port select. Connect debug
register output and PC register output to 7-segment displays as in previous labs.

2.5 Testbench (45%)

It is required to verify your Computer’s operation by writing a testbench.

• The testbench should read the instructions from a hex file like the HDL computer.

• It should execute all the instructions by itself and then compare its register file and PC values to
the HDL design.

• The testbench should be able to execute arbitrary RISC-V code consisting of the given RV32I
instructions.

• A proper testbench is automated, so it should indicate when something fails in the design without
needing any manual work.

Your testbench should be very similar in form to the supplied testbenches on ODTUClass. You can use
the single-cycle ARM computer testbench that was provided and modify it appropriately. For debugging
purposes, you can use prints/logs in your testbench.

Explain how you implemented your testbench and its details in your report. You’ll need to write RISC-V
program(s) that cover all instructions with their special cases. Explain your programs and how they cover
all instructions and special cases.

2.6 Important Considerations

Your codes should be clean, easily readable, and understandable. Check your indentations so that they
are obvious where a block ends. Put comments when and where needed.

Since you have almost graduated, we expect a more professional report for the project compared to some
of your laboratory reports. Your report should be proofread and structured well, and the texts in it
should not be pictures of handwriting.

If you used some online/offline tools to compile or assemble RISC-V codes, specify them in your report.

You can lose grades if your code/report is unprofessional, hard to read, etc.

Deliverables:

• PDF Report

• Python testbench codes

• HDL codes

5

3 Project Demonstration (80%)

In the demonstration, you will be given a code segment for your computer; you will first use the code
in your testbench and demonstrate it to your teachers. Then, load your processor designed in Part 2 to
the DE1-SoC board with the given instructions.

Additionally, the teachers will ask questions about the parts each student has contributed. You should
be very familiar with your work to be able to answer any questions. If a student cannot answer the
questions to the satisfaction of the teachers, you will lose grades.

You should also bring your own test codes incase the computer cannot execute the given
instructions

6

A Useful Materials

Figure 2: RISC-V Single Cycle Computer as Described in Harris&Harris

7

ELECTRICAL-ELECTRONICS ENGINEERING
DEPARTMENT

COCOTB for EE445-446 Verilog Simulations

Contents

1 Introduction 1

2 What is cocotb 1

3 Advantages of Cocotb 1

4 Installation of Cocotb and Icarus Verilog 1

5 Introduction to Cocotb 2

5.1 How Does Cocotb Work? . 2

5.2 How to Write Test-benches . 3

5.3 Running The Test-bench Examples . 3

5.4 Where to Learn Further About Cocotb? 4

1 Introduction

In the scope of the E446 laboratory, you will develop Verilog codes and embed them in
the DE0 Nano board. An important part of developing your codes is the design of test
benches to verify your designs. Up until now ModelSim simulator in tandem with Verilog
was used for the test benches but this semester you can also use cocotb.

2 What is cocotb

Cocotb is a COroutine based COsimulation TestBench environment for verifying VHDL
and SystemVerilog RTL using Python. Cocotb is completely free and hosted on github.
Cocotb works with a plethora of HDL simulators on Linux, Windows, and macOS.

3 Advantages of Cocotb

With cocotb, Verilog will only be used for your hardware design. All the verification will
be done using python which has several advantages over Verilog such as:

• Writing in Python is fast and easy.

• Interfacing with any other language or program with Python is simple.

• Python has a lot of libraries for you to use.

• Python is a much more flexible language compared to Verilog

4 Installation of Cocotb and Icarus Verilog

Cocotb is regularly updated, meaning the installation steps given in this part might get
outdated. The best way of installing cocotb is following the installation section of the
cocotb documents.

Installation process for Windows as of writing this manual is as follows:

1. Install the latest miniconda version from conda.io documents, you do not need to
add miniconda to PATH but select to register it as default. This will give you a
new package management system and enviroment with Anaconda Prompt terminal.
(You can also install the full version of Anaconda instead of miniconda)

2. Open the newly installed Anaconda Prompt and use the following line to install a
compiler (GCC or Clang) and GNU Make:

conda install -c msys2 m2-base m2-make

1

https://docs.cocotb.org/en/stable/
https://docs.conda.io/en/latest/miniconda.html

3. From the Anaconda Prompt install cocotb with the following line (You may need
to install Visual Studio C++ 2014 redistributable if you don’t have it):

pip install cocotb

4. Now you need a verilog simulator for cocotb to use. For this course we will use
iverilog (Icarus Verilog), you can download iverilog from Icarus Verilog for Windows
site. Install iverilog with add to PATH option selected. If you forgot to select the
”add iverilog to PATH” option you can manually add the bin folder of iverilog to
PATH.

5. (Optional) Using Anaconda Prompt install pytest with the following line:

pip install pytest

This will make the errors shown much more detailed, you can check exactly what
it does at pytest site.

Note: For pytest to actually do its job, your test-bench files must have the name
format of test *.py or * test.py

Execute the cocotb-config command in the Anaconda prompt to check if cocotb
installed correctly.

You can try running the examples provided by the cocotb or for the EE446 course to
confirm the cocotb and Icarus Verilog is fully functional.

5 Introduction to Cocotb

Because the cocotb gets frequently updated. Its module, methods and variables can
change over time. Thus, you should read through the cocotb quickstart guide and ”How-
to Guides” section of the cocotb documents, as that will give you the most up-to-date
knowledge on how to write your test benches.

5.1 How Does Cocotb Work?

In the most basic sense, cocotb is an interface between Python and an HDL simulator.
Cocotb transfers every signal in your Verilog code to the python script as the variables of
an object representing your Verilog design. It executes your python code until no thread
is left anything to do after which it switches to the HDL simulator, changes the signal
values you changed in the python and advances the simulation time. A fundamental
example is driving the clock. You can check Figure 1 for a simple flowchart of cocotb’s
operation.

2

https://bleyer.org/icarus/
https://docs.pytest.org/
https://docs.cocotb.org/en/stable/quickstart.html
https://docs.cocotb.org/en/stable/

Figure 1: Simplified Workflow of cocotb

5.2 How to Write Test-benches

You should first read cocotb quickstart guide if you did not read it until now. All of
the code will be written in Python. Cocotb modules will be imported just like any other
library modules and be called in the code. Cocotb will call the functions marked as tests
and give your design as an argument to the function. Thus, all your signals from the
Verilog design can be accessed just like variables of an object.

For synchronous design, the first thing you need to do is create a clock, which will
be done with the Clock module of cocotb. After this point, you can either verify your
design by manually changing the signals and checking the outputs (just as you would do
in ModelSim) or you can fully automate the process. Anything doable with Python is
possible so there is no form your test-bench must take.

One thing to note is the usage of ’makefile’. As explained in cocotb quickstart guide
your makefile is simple text that will contain the name of the Verilog source codes you
want to include, the top-level module for your Verilog design, the Simulator that will be
used, and the Python test file that contains the test-benches.

For reference please check the supplied test benches on Odtuclass. You can also use
them as templates for your test benches.

5.3 Running The Test-bench Examples

Test-benches discussed in this section will be provided to you through Odtuclass. The
Verilog module that will be used for the test benches is the signed magnitude adder/sub-
tractor you learned in the EE445 lectures. Please be aware that you need to read at least
the cocotb quickstart guide to understand the code.

In the AU cocotb test.py file provided to you, there are 3 test-benches, one to show
failure, another for a basic test bench, and the last one for an advanced test bench.

To run the tests go to the directory where the test file (AU cocotb test.py) resides
using the Anaconda Prompt. You can modify the following lines and change the directory
in the Anaconda prompt.

3

https://docs.cocotb.org/en/stable/quickstart.html
https://docs.cocotb.org/en/stable/quickstart.html
https://docs.cocotb.org/en/stable/quickstart.html

cd C:\Users\ ...\AU\tests

Then simply type ’make’ to the Anaconda Prompt and hit enter. If everything is
correct you should see the result shown in Figure 2. You are highly encouraged to read
through the test-bench codes, they are well commented

Figure 2: Result of a Successful Demo

5.4 Where to Learn Further About Cocotb?

Since cocotb is a novel environment there is no good way of learning it apart from testing
things on your own and reading the documents. You can find all methods, variables,
functions, modules, etc. explained with their source codes in the cocotb documents.

4

https://docs.cocotb.org/en/stable/

Quartus® Prime Introduction
Using Verilog Designs

For Quartus® Prime 18.0

Contents

1 Introduction 2

2 Background 3

3 Getting Started 4

3.1 Quartus® Prime Online Help . 6

4 Starting a New Project 6

5 Design Entry Using Verilog Code 13

5.1 Using the Quartus® Prime Text Editor . 14

5.1.1 Using Verilog Templates . 16

5.2 Adding Design Files to a Project . 16

6 Compiling the Designed Circuit 18

6.1 Errors . 19

7 Pin Assignment 22

8 Programming and Configuring the FPGA Device 26

8.1 JTAG* Programming for the DE0-CV, DE0-Nano, DE10-Lite, and DE2-115 Boards . 26

8.2 JTAG* Programming for the DE0-Nano-SoC, DE1-SoC Board, DE10-Nano, and DE10-Standard . 28

9 Simulating the Designed Circuit 30

9.1 Performing the Simulation . 34

9.1.1 Functional Simulation . 34

9.1.2 Timing Simulation . 35

10 Testing the Designed Circuit 36

Intel Corporation - FPGA University Program
June 2018

1

https://www.altera.com/support/training/university/overview.html

QUARTUS® PRIME INTRODUCTION USING VERILOG DESIGNS For Quartus® Prime 18.0

1 Introduction

This tutorial presents an introduction to the Quartus® Prime CAD system. It gives a general overview of a typical
CAD flow for designing circuits that are implemented by using FPGA devices, and shows how this flow is realized
in the Quartus Prime software. The design process is illustrated by giving step-by-step instructions for using the
Quartus Prime software to implement a very simple circuit in an Intel® FPGA device.

The Quartus Prime system includes full support for all of the popular methods of entering a description of the desired
circuit into a CAD system. This tutorial makes use of the Verilog design entry method, in which the user specifies
the desired circuit in the Verilog hardware description language. Three versions of this tutorial are available; one
uses the Verilog hardware description language, another uses the VHDL hardware description language, and the
third is based on defining the desired circuit in the form of a schematic diagram.

The last step in the design process involves configuring the designed circuit in an actual FPGA device. To show how
this is done, it is assumed that the user has access to the Intel DE-series Development and Education board connected
to a computer that has Quartus Prime software installed. A reader who does not have access to the DE-series board
will still find the tutorial useful to learn how the FPGA programming and configuration task is performed.

The screen captures in the tutorial were obtained using the Quartus Prime version 18.0 Standard Edition; other
versions of the software may be slightly different.

2 Intel Corporation - FPGA University Program
June 2018

https://www.altera.com/support/training/university/overview.html

QUARTUS® PRIME INTRODUCTION USING VERILOG DESIGNS For Quartus® Prime 18.0

2 Background

Computer Aided Design (CAD) software makes it easy to implement a desired logic circuit by using a programmable
logic device, such as a Field-Programmable Gate Array (FPGA) chip. A typical FPGA CAD flow is illustrated in
Figure 1.

Figure 1. Typical CAD flow.

The CAD flow involves the following steps:

• Design Entry – the desired circuit is specified either by means of a schematic diagram, or by using a hardware
description language, such as Verilog or VHDL

• Synthesis – the entered design is synthesized into a circuit that consists of the logic elements (LEs) provided
in the FPGA chip

• Functional Simulation – the synthesized circuit is tested to verify its functional correctness; this simulation
does not take into account any timing issues

Intel Corporation - FPGA University Program
June 2018

3

https://www.altera.com/support/training/university/overview.html

QUARTUS® PRIME INTRODUCTION USING VERILOG DESIGNS For Quartus® Prime 18.0

• Fitting – the CAD Fitter tool determines the placement of the LEs defined in the netlist into the LEs in an
actual FPGA chip; it also chooses routing wires in the chip to make the required connections between specific
LEs

• Timing Analysis – propagation delays along the various paths in the fitted circuit are analyzed to provide an
indication of the expected performance of the circuit

• Timing Simulation – the fitted circuit is tested to verify both its functional correctness and timing

• Programming and Configuration – the designed circuit is implemented in a physical FPGA chip by pro-
gramming the configuration switches that configure the LEs and establish the required wiring connections

This tutorial introduces the basic features of the Quartus Prime software. It shows how the software can be used to
design and implement a circuit specified by using the Verilog hardware description language. It makes use of the
graphical user interface to invoke the Quartus Prime commands. Doing this tutorial, the reader will learn about:

• Creating a project

• Design entry using Verilog code

• Synthesizing a circuit specified in Verilog code

• Fitting a synthesized circuit into an Intel FPGA

• Assigning the circuit inputs and outputs to specific pins on the FPGA

• Simulating the designed circuit

• Programming and configuring the FPGA chip on Intel’s DE-series board

3 Getting Started

Each logic circuit, or subcircuit, being designed with Quartus Prime software is called a project. The software works
on one project at a time and keeps all information for that project in a single directory (folder) in the file system. To
begin a new logic circuit design, the first step is to create a directory to hold its files. To hold the design files for this
tutorial, we will use a directory introtutorial. The running example for this tutorial is a simple circuit for two-way
light control.

Start the Quartus Prime software. You should see a display similar to the one in Figure 2. This display consists
of several windows that provide access to all the features of Quartus Prime software, which the user selects with
the computer mouse. Most of the commands provided by Quartus Prime software can be accessed by using a set
of menus that are located below the title bar. For example, in Figure 2 clicking the left mouse button on the menu
named File opens the menu shown in Figure 3. Clicking the left mouse button on the entry Exit exits from Quartus
Prime software. In general, whenever the mouse is used to select something, the left button is used. Hence we will
not normally specify which button to press. In the few cases when it is necessary to use the right mouse button, it
will be specified explicitly.

4 Intel Corporation - FPGA University Program
June 2018

https://www.altera.com/support/training/university/overview.html

QUARTUS® PRIME INTRODUCTION USING VERILOG DESIGNS For Quartus® Prime 18.0

Figure 2. The main Quartus Prime display.

Figure 3. An example of the File menu.

Intel Corporation - FPGA University Program
June 2018

5

https://www.altera.com/support/training/university/overview.html

QUARTUS® PRIME INTRODUCTION USING VERILOG DESIGNS For Quartus® Prime 18.0

For some commands it is necessary to access two or more menus in sequence. We use the convention Menu1 >
Menu2 > Item to indicate that to select the desired command the user should first click the left mouse button on
Menu1, then within this menu click on Menu2, and then within Menu2 click on Item. For example, File > Exit
uses the mouse to exit from the system. Many commands can be invoked by clicking on an icon displayed in one of
the toolbars. To see the command associated with an icon, position the mouse over the icon and the command name
will be shown in the status bar at the bottom of the screen.

3.1 Quartus® Prime Online Help

Quartus Prime software provides comprehensive online documentation that answers many of the questions that may
arise when using the software. The documentation is accessed from the Help menu. To get some idea of the extent
of documentation provided, it is worthwhile for the reader to browse through the Help menu.

The user can quickly search through the Help topics by using the search box in the top right corner of the main
Quartus display. Another method, context-sensitive help, is provided for quickly finding documentation for specific
topics. While using most applications, pressing the F1 function key on the keyboard opens a Help display that shows
the commands available for the application.

4 Starting a New Project

To start working on a new design we first have to define a new design project. Quartus Prime software makes the
designer’s task easy by providing support in the form of a wizard. Create a new project as follows:

1. Select File > New Project Wizard and click Next to reach the window in Figure 4, which asks for the name
and directory of the project.

2. Set the working directory to be introtutorial; of course, you can use some other directory name of your choice
if you prefer. The project must have a name, which is usually the same as the top-level design entity that will
be included in the project. Choose light as the name for both the project and the top-level entity, as shown
in Figure 4. Press Next. Since we have not yet created the directory introtutorial, Quartus Prime software
displays the pop-up box in Figure 5 asking if it should create the desired directory. Click Yes, which leads to
the window in Figure 6.

6 Intel Corporation - FPGA University Program
June 2018

https://www.altera.com/support/training/university/overview.html

QUARTUS® PRIME INTRODUCTION USING VERILOG DESIGNS For Quartus® Prime 18.0

Figure 4. Creation of a new project.

Figure 5. Quartus Prime software can create a new directory for the project.

Intel Corporation - FPGA University Program
June 2018

7

https://www.altera.com/support/training/university/overview.html

QUARTUS® PRIME INTRODUCTION USING VERILOG DESIGNS For Quartus® Prime 18.0

Figure 6. Choosing the project type.

3. The Project Type window, shown in Figure 6, allows you to choose from the Empty project and the Project
template options. For this tutorial, choose Empty project as we will be creating a project from scratch, and
press Next which leads to the window in Figure 7.

8 Intel Corporation - FPGA University Program
June 2018

https://www.altera.com/support/training/university/overview.html

QUARTUS® PRIME INTRODUCTION USING VERILOG DESIGNS For Quartus® Prime 18.0

Figure 7. The wizard can include user-specified design files.

4. The wizard makes it easy to specify which existing files (if any) should be included in the project. Assuming
that we do not have any existing files, click Next, which leads to the window in Figure 8.

Intel Corporation - FPGA University Program
June 2018

9

https://www.altera.com/support/training/university/overview.html

QUARTUS® PRIME INTRODUCTION USING VERILOG DESIGNS For Quartus® Prime 18.0

Figure 8. Choose the device family and a specific device.

5. We have to specify the type of device in which the designed circuit will be implemented. Choose the Cyclone®

series device family for your DE-series board. We can let Quartus Prime software select a specific device in
the family, or we can choose the device explicitly. We will take the latter approach. From the list of available
devices, choose the appropriate device name for your DE-series board. A list of devices names on DE-series
boards can be found in Table 1. Press Next, which opens the window in Figure 9.

10 Intel Corporation - FPGA University Program
June 2018

https://www.altera.com/support/training/university/overview.html

QUARTUS® PRIME INTRODUCTION USING VERILOG DESIGNS For Quartus® Prime 18.0

Board Device Name
DE0-CV Cyclone V 5CEBA4F23C7

DE0-Nano Cyclone IVE EP4CE22F17C6
DE0-Nano-SoC Cyclone V SoC 5CSEMA4U23C6

DE1-SoC Cyclone V SoC 5CSEMA5F31C6
DE2-115 Cyclone IVE EP4CE115F29C7

DE10-Lite Max 10 10M50DAF484C7G
DE10-Standard Cyclone V SoC 5CSXFC6D6F31C6

DE10-Nano Cyclone V SE 5CSEBA6U2317

Table 1. DE-series FPGA device names

Figure 9. Other EDA tools can be specified.

6. The user can specify any third-party tools that should be used. A commonly used term for CAD software for
electronic circuits is EDA tools, where the acronym stands for Electronic Design Automation. This term is
used in Quartus Prime messages that refer to third-party tools, which are the tools developed and marketed by
companies other than Intel. Since we will rely solely on Quartus Prime tools, we will not choose any other
tools. Press Next.

Intel Corporation - FPGA University Program
June 2018

11

https://www.altera.com/support/training/university/overview.html

QUARTUS® PRIME INTRODUCTION USING VERILOG DESIGNS For Quartus® Prime 18.0

7. A summary of the chosen settings appears in the screen shown in Figure 10. Press Finish, which returns to
the main Quartus Prime window, but with light specified as the new project, in the title bar, as indicated in
Figure 11.

Figure 10. Summary of project settings.

12 Intel Corporation - FPGA University Program
June 2018

https://www.altera.com/support/training/university/overview.html

QUARTUS® PRIME INTRODUCTION USING VERILOG DESIGNS For Quartus® Prime 18.0

Figure 11. The Quartus Prime window for a created project.

5 Design Entry Using Verilog Code

As a design example, we will use the two-way light controller circuit shown in Figure 12. The circuit can be used
to control a single light from either of the two switches, x1 and x2, where a closed switch corresponds to the logic
value 1. The truth table for the circuit is also given in the figure. Note that this is just the Exclusive-OR function of
the inputs x1 and x2, but we will specify it using the gates shown.

Figure 12. The light controller circuit.

Intel Corporation - FPGA University Program
June 2018

13

https://www.altera.com/support/training/university/overview.html

QUARTUS® PRIME INTRODUCTION USING VERILOG DESIGNS For Quartus® Prime 18.0

The required circuit is described by the Verilog code in Figure 13. Note that the Verilog module is called light to
match the name given in Figure 4, which was specified when the project was created. This code can be typed into a
file by using any text editor that stores ASCII files, or by using the Quartus Prime text editing facilities. While the
file can be given any name, it is a common designers’ practice to use the same name as the name of the top-level
Verilog module. The file name must include the extension v , which indicates a Verilog file. So, we will use the name
light.v.

module light (x1, x2, f);
input x1, x2;
output f;
assign f = (x1 & ~x2)|(~x1 & x2);

endmodule

Figure 13. Verilog code for the circuit in Figure 11.

5.1 Using the Quartus® Prime Text Editor

This section shows how to use the Quartus Prime Text Editor. You can skip this section if you prefer to use some
other text editor to create the Verilog source code file, which we will name light.v.

Select File > New to get the window in Figure 14, choose Verilog HDL File, and click OK. This opens the Text
Editor window. The first step is to specify a name for the file that will be created. Select File > Save As to open the
pop-up box depicted in Figure 15. In the box labeled Save as type choose Verilog HDL File. In the box labeled
File name type light. Put a checkmark in the box Add file to current project. Click Save, which puts the file
into the directory introtutorial and leads to the Text Editor window shown in Figure 16. Enter the Verilog code in
Figure 13 into the Text Editor and save the file by typing File > Save, or by typing the shortcut Ctrl-s.

Most of the commands available in the Text Editor are self-explanatory. Text is entered at the insertion point, which
is indicated by a thin vertical line. The insertion point can be moved either by using the keyboard arrow keys or by
using the mouse. Two features of the Text Editor are especially convenient for typing Verilog code. First, the editor
can display different types of Verilog statements in different colors, which is the default choice. Second, the editor
can automatically indent the text on a new line so that it matches the previous line. Such options can be controlled
by the settings in Tools > Options > Text Editor.

14 Intel Corporation - FPGA University Program
June 2018

https://www.altera.com/support/training/university/overview.html

QUARTUS® PRIME INTRODUCTION USING VERILOG DESIGNS For Quartus® Prime 18.0

Figure 14. Choose to prepare a Verilog file.

Figure 15. Name the file.

Intel Corporation - FPGA University Program
June 2018

15

https://www.altera.com/support/training/university/overview.html

QUARTUS® PRIME INTRODUCTION USING VERILOG DESIGNS For Quartus® Prime 18.0

Figure 16. Text Editor window.

5.1.1 Using Verilog Templates

The syntax of Verilog code is sometimes difficult for a designer to remember. To help with this issue, the Text Editor
provides a collection of Verilog templates. The templates provide examples of various types of Verilog statements,
such as a module declaration, an always block, and assignment statements. It is worthwhile to browse through the
templates by selecting Edit > Insert Template > Verilog HDL to become familiar with this resource.

5.2 Adding Design Files to a Project

As we indicated when discussing Figure 7, you can tell Quartus Prime software which design files it should use
as part of the current project. To see the list of files already included in the light project, select Assignments >
Settings, which leads to the window in Figure 17. As indicated on the left side of the figure, click on the item Files.
An alternative way of making this selection is to choose Project > Add/Remove Files in Project.

If you used the Quartus Prime Text Editor to create the file and checked the box labeled Add file to current project,
as described in Section 5.1, then the light.v file is already a part of the project and will be listed in the window in
Figure 17. Otherwise, the file must be added to the project. So, if you did not use the Quartus Prime Text Editor,
then place a copy of the file light.v, which you created using some other text editor, into the directory introtutorial.
To add this file to the project, click on the ... button next to the box labeled File name in Figure 17 to get the pop-up

16 Intel Corporation - FPGA University Program
June 2018

https://www.altera.com/support/training/university/overview.html

QUARTUS® PRIME INTRODUCTION USING VERILOG DESIGNS For Quartus® Prime 18.0

window in Figure 18. Select the light.v file and click Open. The selected file is now indicated in the File name box
in Figure 17. Click Add then OK to include the light.v file in the project. We should mention that in many cases the
Quartus Prime software is able to automatically find the right files to use for each entity referenced in Verilog code,
even if the file has not been explicitly added to the project. However, for complex projects that involve many files it
is a good design practice to specifically add the needed files to the project, as described above.

Figure 17. Settings window.

Intel Corporation - FPGA University Program
June 2018

17

https://www.altera.com/support/training/university/overview.html

QUARTUS® PRIME INTRODUCTION USING VERILOG DESIGNS For Quartus® Prime 18.0

Figure 18. Select the file.

6 Compiling the Designed Circuit

The Verilog code in the file light.v is processed by several Quartus Prime tools that analyze the code, synthesize
the circuit, and generate an implementation of it for the target chip. These tools are controlled by the application
program called the Compiler.

Run the Compiler by selecting Processing > Start Compilation, or by clicking on the toolbar icon that looks
like a blue triangle. Your project must be saved before compiling. As the compilation moves through various stages,
its progress is reported in a window on the left side of the Quartus Prime display. In the message window, at the
bottom of the figure, various messages are displayed throughout the compilation process. In case of errors, there
will be appropriate messages given.

When the compilation is finished, a compilation report is produced. A tab showing this report is opened automat-
ically, as seen in Figure 21. The tab can be closed in the normal way, and it can be opened at any time either by
selecting Processing > Compilation Report or by clicking on the icon . The report includes a number of sec-
tions listed on the left side. Figure 21 displays the Compiler Flow Summary section, which indicates that only one
logic element and three pins are needed to implement this tiny circuit on the selected FPGA chip.

18 Intel Corporation - FPGA University Program
June 2018

https://www.altera.com/support/training/university/overview.html

QUARTUS® PRIME INTRODUCTION USING VERILOG DESIGNS For Quartus® Prime 18.0

Figure 19. Display after a successful compilation.

6.1 Errors

Quartus Prime software displays messages produced during compilation in the Messages window. If the Verilog
design file is correct, one of the messages will state that the compilation was successful and that there are no errors.

If the Compiler does not report zero errors, then there is at least one mistake in the Verilog code. In this case
a message corresponding to each error found will be displayed in the Messages window. Double-clicking on an
error message will highlight the offending statement in the Verilog code in the Text Editor window. Similarly, the
Compiler may display some warning messages. Their details can be explored in the same way as in the case of error
messages. The user can obtain more information about a specific error or warning message by selecting the message
and pressing the F1 function key.

To see the effect of an error, open the file light.v. Remove the semicolon in the assign statement, illustrating a
typographical error that is easily made. Compile the erroneous design file by clicking on the icon. A pop-up
box will ask if the changes made to the light.v file should be saved; click Yes. After trying to compile the circuit,
Quartus Prime software will display error messages in the Messages window, and show that the compilation failed
in the Analysis & Synthesis stage of the compilation process. The compilation report summary, given in Figure 20,
confirms the failed result. In the Table of Contents panel, expand the Analysis & Synthesis part of the report
and then select Messages to have the messages displayed as shown in Figure 21. The Compilation Report can

Intel Corporation - FPGA University Program
June 2018

19

https://www.altera.com/support/training/university/overview.html

QUARTUS® PRIME INTRODUCTION USING VERILOG DESIGNS For Quartus® Prime 18.0

be displayed as a separate window as in Figure 21 by right-clicking its tab and selecting Detach Window, and
can be reattached by clicking Window > Attach Window. Double-click on the first error message. Quartus Prime
software responds by opening the light.v file and highlighting the statement which is affected by the error, as shown
in Figure 22. Correct the error and recompile the design.

Figure 20. Compilation report for the failed design.

20 Intel Corporation - FPGA University Program
June 2018

https://www.altera.com/support/training/university/overview.html

QUARTUS® PRIME INTRODUCTION USING VERILOG DESIGNS For Quartus® Prime 18.0

Figure 21. Error messages.

Figure 22. Identifying the location of the error.

Intel Corporation - FPGA University Program
June 2018

21

https://www.altera.com/support/training/university/overview.html

QUARTUS® PRIME INTRODUCTION USING VERILOG DESIGNS For Quartus® Prime 18.0

7 Pin Assignment

During the compilation above, the Quartus Prime Compiler was free to choose any pins on the selected FPGA to
serve as inputs and outputs. However, the DE-series board has hardwired connections between the FPGA pins and
the other components on the board. We will use two toggle switches, labeled SW0 and SW1, to provide the external
inputs, x1 and x2, to our example circuit. These switches are connected to the FPGA pins listed in Table 2. We will
connect the output f to a light-emitting diode on your DE-series board. For the DE2-115 we will use a green LED:
LEDG0. On the DE0-CV, DE1-SoC, DE-10 Lite and DE10-Standard we will use LEDR0. On the DE0-Nano and
DE0-Nano-SoC, we will use LED0 The FPGA pin assignment for the LEDs can also be found in Table 2.

Component SW0 SW1 LEDG0, LED0, or LEDR0

DE0-CV PIN_U13 PIN_V13 PIN_AA2
DE0-Nano PIN_M1 PIN_T8 PIN_A1

DE0-Nano-SoC PIN_L10 PIN_L9 PIN_W15
DE2-115 PIN_AB28 PIN_AC28 PIN_E21
DE1-SoC PIN_AB12 PIN_AC12 PIN_V16
DE10-Lite PIN_C10 PIN_C11 PIN_A8

DE10-Standard PIN_AB30 PIN_AB28 PIN_AA24
DE10-Nano PIN_Y24 PIN_W24 PIN_W15

Table 2. DE-Series Pin Assignments

Figure 23. The Assignment Editor window.

Pin assignments are made by using the Assignment Editor. Select Assignments > Assignment Editor to reach the
window in Figure 23 (shown here as a detached window). In the Category drop-down menu select All. Click on
the <<new>> button located near the top left corner to make a new item appear in the table. Double click the box

22 Intel Corporation - FPGA University Program
June 2018

https://www.altera.com/support/training/university/overview.html

QUARTUS® PRIME INTRODUCTION USING VERILOG DESIGNS For Quartus® Prime 18.0

under the column labeled To so that the Node Finder button appears. Click on the button (not the drop down
arrow) to reach the window in Figure 24. Click on and to show or hide more search options. In the Filter
drop-down menu select Pins: all. Then click the List button to display the input and output pins to be assigned: f ,
x1, and x2. Click on x1 as the first pin to be assigned and click the > button; this will enter x1 in the Selected Nodes
box. Click OK. x1 will now appear in the box under the column labeled To. Alternatively, the node name can be
entered directly by double-clicking the box under the To column and typing in the node name.

Follow this by double-clicking on the box to the right of this new x1 entry, in the column labeled Assignment Name.
Now, the drop-down menu in Figure 25 appears. Scroll down and select Location (Accepts wildcards/groups).
Instead of scrolling down the menu to find the desired item, you can just type the first letter of the item in the
Assignment Name box. In this case the desired item happens to be the first item beginning with L. Finally, double-
click the box in the column labeled Value. Type the pin assignment corresponding to SW0 for your DE-series board,
as listed in Table 2.

Use the same procedure to assign input x2 and output f to the appropriate pins listed in Table 2. An example
using a DE1-SoC board is shown in Figure 26. To save the assignments made, choose File > Save. You can also
simply close the Assignment Editor window, in which case a pop-up box will ask if you want to save the changes to
assignments; click Yes. Recompile the circuit, so that it will be compiled with the correct pin assignments.

Figure 24. The Node Finder displays the input and output names.

Intel Corporation - FPGA University Program
June 2018

23

https://www.altera.com/support/training/university/overview.html

QUARTUS® PRIME INTRODUCTION USING VERILOG DESIGNS For Quartus® Prime 18.0

Figure 25. The available assignment names for a DE-series board.

Figure 26. The complete assignment.

The DE-series board has fixed pin assignments. Having finished one design, the user will want to use the same pin
assignment for subsequent designs. Going through the procedure described above becomes tedious if there are many
pins used in the design. A useful Quartus Prime feature allows the user to both export and import the pin assignments
from a special file format, rather than creating them manually using the Assignment Editor. A simple file format that
can be used for this purpose is the Quartus Settings File (QSF) format. The format for the file for our simple project
(on a DE1-SoC board) is

set_location_assignment PIN_AB12 -to x1
set_location_assignment PIN_AC12 -to x2
set_location_assignment PIN_V16 -to f

By adding lines to the file, any number of pin assignments can be created. Such qsf files can be imported into any
design project.

If you created a pin assignment for a particular project, you can export it for use in a different project. To see how
this is done, open again the Assignment Editor to reach the window in Figure 26. Select Assignments > Export

24 Intel Corporation - FPGA University Program
June 2018

https://www.altera.com/support/training/university/overview.html

QUARTUS® PRIME INTRODUCTION USING VERILOG DESIGNS For Quartus® Prime 18.0

Assignment which leads to the window in Figure 27. Here, the file light.qsf is available for export. Click on OK. If
you now look in the directory, you will see that the file light.qsf has been created.

Figure 27. Exporting the pin assignment.

You can import a pin assignment by choosing Assignments > Import Assignments. This opens the dialogue in
Figure 28 to select the file to import. Type the name of the file, including the qsf extension and the full path to the
directory that holds the file, in the File Name box and press OK. Of course, you can also browse to find the desired
file.

Figure 28. Importing the pin assignment.

For convenience when using large designs, all relevant pin assignments for the DE-series board are given in indi-
vidual files. For example, the DE1-SoC pin assignments can be found in the DE1_SoC.qsf file, which is available
from Intel’s FPGA University Program website. This file uses the names found in the DE1-SoC User Manual. If
we wanted to make the pin assignments for our example circuit by importing this file, then we would have to use
the same names in our Block Diagram/Schematic design file; namely, SW[0], SW[1] and LEDG[0] for x1, x2 and
f, respectively. Since these signals are specified in the DE1_SoC.qsf file as elements of vectors SW and LEDG, we
must refer to them in the same way in our design file. For example, in the DE1_SoC.qsf file the 10 toggle switches
are called SW[9] to SW[0]. In a design file they can also be referred to as a vector SW[9..0].

Intel Corporation - FPGA University Program
June 2018

25

https://www.altera.com/support/training/university/overview.html

QUARTUS® PRIME INTRODUCTION USING VERILOG DESIGNS For Quartus® Prime 18.0

8 Programming and Configuring the FPGA Device

The FPGA device must be programmed and configured to implement the designed circuit. The required config-
uration file is generated by the Quartus Prime Compiler’s Assembler module. Intel’s DE-series board allows the
configuration to be done in two different ways, known as JTAG* and AS modes. The configuration data is trans-
ferred from the host computer (which runs the Quartus Prime software) to the board by means of a cable that connects
a USB port on the host computer to the USB-Blaster connector on the board. To use this connection, it is necessary
to have the USB-Blaster driver installed. If this driver is not already installed, consult the tutorial Getting Started
with Intel’s DE-Series Boards for information about installing the driver. Before using the board, make sure that the
USB cable is properly connected and turn on the power supply switch on the board.

In the JTAG mode, the configuration data is loaded directly into the FPGA device. The acronym JTAG stands for
Joint Test Action Group. This group defined a simple way for testing digital circuits and loading data into them,
which became an IEEE* standard. If the FPGA is configured in this manner, it will retain its configuration as long
as the power remains turned on. The configuration information is lost when the power is turned off. The second
possibility is to use the Active Serial (AS) mode. In this case, a configuration device that includes some flash memory
is used to store the configuration data. Quartus Prime software places the configuration data into the configuration
device on the DE-series board. Then, this data is loaded into the FPGA upon power-up or reconfiguration. Thus, the
FPGA need not be configured by the Quartus Prime software if the power is turned off and on. The choice between
the two modes is made by switches on the DE-series board. Consult your manual for the location of this switch on
your DE-series board. The boards should be set to JTAG mode by default. This tutorial discusses only the JTAG
programming mode.

8.1 JTAG* Programming for the DE0-CV, DE0-Nano, DE10-Lite, and DE2-115 Boards

For the DE0-CV, DE0-Nano, DE10-Lite, and DE2-115 Boards, the programming and configuration task is per-
formed as follows. If using the DE1-SoC board, then the instructions in the following section should be followed.
To program the FPGA chip, the RUN/PROG switch on the board must be in the RUN position. Select Tools >
Programmer to reach the window in Figure 29. Here it is necessary to specify the programming hardware and the
mode that should be used. If not already chosen by default, select JTAG in the Mode box. Also, if the USB-Blaster
is not chosen by default, press the Hardware Setup... button and select the USB-Blaster in the window that pops
up, as shown in Figure 30.

26 Intel Corporation - FPGA University Program
June 2018

https://www.altera.com/support/training/university/overview.html

QUARTUS® PRIME INTRODUCTION USING VERILOG DESIGNS For Quartus® Prime 18.0

Figure 29. The Programmer window.

Observe that the configuration file light.sof is listed in the window in Figure 29. If the file is not already listed,
then click Add File and select it. This is a binary file produced by the Compiler’s Assembler module, which
contains the data needed to configure the FPGA device. The extension .sof stands for SRAM Object File. Ensure
the Program/Configure check box is ticked, as shown in Figure 29.

Intel Corporation - FPGA University Program
June 2018

27

https://www.altera.com/support/training/university/overview.html

QUARTUS® PRIME INTRODUCTION USING VERILOG DESIGNS For Quartus® Prime 18.0

Figure 30. The Hardware Setup window.

Now, press Start in the window in Figure 29. An LED on the board will light up corresponding to the programming
operation. If you see an error reported by Quartus Prime software indicating that programming failed, then check to
ensure that the board is properly powered on.

8.2 JTAG* Programming for the DE0-Nano-SoC, DE1-SoC Board, DE10-Nano, and DE10-Standard

For the DE0-Nano-SoC, DE1-SoC Board, DE10-Nano, and DE10-Standard boards, the following steps should be
used for programming. Select Tools > Programmer to reach the window in Figure 31 (if the SOCVHPS device
is missing, it can be added through the Add Device menu under the Soc Series V family). Here it is necessary to
specify the programming hardware and the mode that should be used. If not already chosen by default, select JTAG
in the Mode box. Also, if DE-SoC is not chosen by default as the programming hardware, then press the Hardware
Setup... button and select the DE-SoC in the window that pops up, as shown in Figure 32.

28 Intel Corporation - FPGA University Program
June 2018

https://www.altera.com/support/training/university/overview.html

QUARTUS® PRIME INTRODUCTION USING VERILOG DESIGNS For Quartus® Prime 18.0

Figure 31. The Programmer window.

Observe that the configuration file light.sof in directory output_files is listed in the window in Figure 31. If the file
is not already listed, then click Add File and select it. This is a binary file produced by the Compiler’s Assembler
module, which contains the data needed to configure the FPGA device. The extension .sof stands for SRAM Object
File. Ensure the Program/Configure box is checked. This setting is used to select the FPGA in the Cyclone V SoC
chip for programming. If the SOCVHPS device is not shown as in Figure 31, click Add Device > SoC Series V >
SOCVHPS then click OK. Ensure that your device order is consistent with Figure 31 by clicking on a device and
then clicking or .

Intel Corporation - FPGA University Program
June 2018

29

https://www.altera.com/support/training/university/overview.html

QUARTUS® PRIME INTRODUCTION USING VERILOG DESIGNS For Quartus® Prime 18.0

Figure 32. The Hardware Setup window.

Now, press Start in the Programmer. An LED on the board will light up while the FPGA device is being pro-
grammed. If you see an error reported by Quartus Prime software indicating that programming failed, then check to
ensure that the board is properly powered on.

9 Simulating the Designed Circuit

Before implementing the designed circuit in the FPGA chip on the DE-series board, it is prudent to simulate it to
ascertain its correctness. Quartus Prime’s Simulation Waveform Editor tool can be used to simulate the behavior of
a designed circuit. Before the circuit can be simulated, it is necessary to create the desired waveforms, called test
vectors, to represent the input signals. It is also necessary to specify which outputs, as well as possible internal points
in the circuit, the designer wishes to observe. The simulator applies the test vectors to a model of the implemented
circuit and determines the expected response. We will use the Simulation Waveform Editor to draw the test vectors,
as follows:

1. In the main Quartus Prime window, select File > New > Verification/Debugging Files > University Pro-
gram VWF to open the Simulation Waveform Editor. Alternatively, select an existing VWF file using File >
Open to reopen the Simulation Waveform Editor using that file.

2. The Simulation Waveform Editor window is depicted in Figure 33. Save the file under the name light.vwf,
and then refresh the project settings by clicking Simulation > Simulation Settings > Restore Defaults. Set
the desired simulation to run from 0 to 200 ns by selecting Edit > Set End Time and entering 200 ns in the

30 Intel Corporation - FPGA University Program
June 2018

https://www.altera.com/support/training/university/overview.html

QUARTUS® PRIME INTRODUCTION USING VERILOG DESIGNS For Quartus® Prime 18.0

dialog box that pops up. Selecting View > Fit in Window displays the entire simulation range of 0 to 200 ns
in the window, as shown in Figure 34. You may wish to resize the window to its maximum size.

Figure 33. The Waveform Editor window.

Figure 34. The augmented Waveform Editor window.

3. Next, we want to include the input and output nodes of the circuit to be simulated. Click Edit > Insert >
Insert Node or Bus to open the window in Figure 35. It is possible to type the name of a signal (pin) into the
Name box, or use the Node Finder to search your project for the signals. Click on the button labeled Node
Finder to open the window in Figure 36. The Node Finder utility has a filter used to indicate what type of

Intel Corporation - FPGA University Program
June 2018

31

https://www.altera.com/support/training/university/overview.html

QUARTUS® PRIME INTRODUCTION USING VERILOG DESIGNS For Quartus® Prime 18.0

nodes are to be found. Since we are interested in input and output pins, set the filter to Pins: all. Click the
List button to find the input and output nodes as indicated on the left side of the figure.

Figure 35. The Insert Node or Bus dialogue.

Figure 36. Selecting nodes to insert into the Waveform Editor.

Click on the x1 signal in the Nodes Found box in Figure 36, and then click the > sign to add it to the Selected
Nodes box on the right side of the figure. Do the same for x2 and f. Click OK to close the Node Finder window,
and then click OK in the window of Figure 35. This leaves a fully displayed Waveform Editor window, as
shown in Figure 37. If you did not select the nodes in the same order as displayed in Figure 37, it is possible
to rearrange them. To move a waveform up or down in the Waveform Editor window, click within the node’s
row (i.e. on its name, icon, or value) and drag it up or down in the Waveform Editor.

32 Intel Corporation - FPGA University Program
June 2018

https://www.altera.com/support/training/university/overview.html

QUARTUS® PRIME INTRODUCTION USING VERILOG DESIGNS For Quartus® Prime 18.0

Figure 37. The nodes needed for simulation.

4. We will now specify the logic values to be used for the input signals x1 and x2 during simulation. The logic
values at the output f will be generated automatically by the simulator. To make it easy to draw the desired
waveforms, the Waveform Editor displays (by default) vertical guidelines and provides a drawing feature that
snaps on these lines (which can otherwise be invoked by choosing Edit > Snap to Grid). Observe also a solid
vertical line, which can be moved by pointing to its top and dragging it horizontally. This reference line is
used in analyzing the timing of a circuit; move it to the time = 0 position. The waveforms can be drawn using
the Selection Tool, which is activated by selecting the icon in the toolbar.

To simulate the behavior of a large circuit, it is necessary to apply a sufficient number of input valuations
and observe the expected values of the outputs. In a large circuit the number of possible input valuations
may be huge, so in practice we choose a relatively small (but representative) sample of these input valuations.
However, for our tiny circuit we can simulate all four input valuations given in Figure 12. We will use four
50-ns time intervals to apply the four test vectors.

We can generate the desired input waveforms as follows. Click on the waveform for the x1 node. Once a
waveform is selected, the editing commands in the Waveform Editor can be used to draw the desired wave-
forms. Commands are available for setting a selected signal to 0, 1, unknown (X), high impedance (Z), weak
low (L), weak high (H), a count value (C), an arbitrary value, a random value (R), inverting its existing value
(INV), or defining a clock waveform. Each command can be activated by using the Edit > Value command,
or via the toolbar for the Waveform Editor. The Value menu can also be opened by right-clicking on a selected
waveform.

Set x1 to 0 in the time interval 0 to 100 ns, which is probably already set by default. Next, set x1 to 1 in the
time interval 100 to 200 ns. Do this by pressing the mouse at the start of the interval and dragging it to its end,
which highlights the selected interval, and choosing the logic value 1 in the toolbar. Make x2 = 1 from 50 to
100 ns and also from 150 to 200 ns, which corresponds to the truth table in Figure 12. This should produce
the image in Figure 38. Observe that the output f is displayed as having an unknown value at this time, which
is indicated by a hashed pattern; its value will be determined during simulation. Save the file.

Intel Corporation - FPGA University Program
June 2018

33

https://www.altera.com/support/training/university/overview.html

QUARTUS® PRIME INTRODUCTION USING VERILOG DESIGNS For Quartus® Prime 18.0

Figure 38. Setting of test values.

9.1 Performing the Simulation

A designed circuit can be simulated in two ways. The simplest way is to assume that logic elements and intercon-
nection wires in the FPGA are perfect, thus causing no delay in propagation of signals through the circuit. This is
called functional simulation. A more complex alternative is to take all propagation delays into account, which leads
to timing simulation. Typically, functional simulation is used to verify the functional correctness of a circuit as it is
being designed.

9.1.1 Functional Simulation

Before running a functional simulation it is necessary to run Analysis and Synthesis on your design by selecting
the icon in the main Quartus Prime window. Note that Analysis and Synthesis gets run as a part of the main
compilation flow. If you compiled your design in Section 6, then it is not necessary to run Analysis and Synthesis
again.

To perform the functional simulation, select Simulation > Run Functional Simulation or select the icon in the
Simulation Waveform Editor window. A pop-up window will show the progress of the simulation then automatically
close when it is complete. At the end of the simulation, a second Waveform Editor window will open the results of
the simulation as illustrated in Figure 39. Observe that the output f is as specified in the truth table of Figure 12.

34 Intel Corporation - FPGA University Program
June 2018

https://www.altera.com/support/training/university/overview.html

QUARTUS® PRIME INTRODUCTION USING VERILOG DESIGNS For Quartus® Prime 18.0

Figure 39. The result of functional simulation.

9.1.2 Timing Simulation

Having ascertained that the designed circuit is functionally correct, we should now perform the timing simulation
to see how it will behave when it is actually implemented in the chosen FPGA device. Before running a timing
simulation, it is necessary to compile your design by selecting the icon in the main Quartus Prime window.
Unlike functional simulations, timing simulations require the full compilation of your design, not just Analysis and
Synthesis.

To perform the timing simulation, select Simulation > Run Timing Simulation or select the icon in the Simu-
lation Waveform Editor window. The simulation should produce the waveforms in Figure 40. Observe that there is
a delay of about 5 ns in producing a change in the signal f from the time when the input signals, x1 and x2, change
their values. This delay is due to the propagation delays in the logic element and the wires in the FPGA device.

Note: timing simulations are only supported by Cyclone® IV and Stratix® IV FPGAs. If your DE-series board
does not have a Cyclone IV or Stratix IV FPGA, the result of a timing simulation will be identical to the functional
simulation.

Intel Corporation - FPGA University Program
June 2018

35

https://www.altera.com/support/training/university/overview.html

QUARTUS® PRIME INTRODUCTION USING VERILOG DESIGNS For Quartus® Prime 18.0

Figure 40. The result of timing simulation.

10 Testing the Designed Circuit

Having downloaded the configuration data into the FPGA device, you can now test the implemented circuit. Try all
four valuations of the input variables x1 and x2, by setting the corresponding states of the switches SW1 and SW0.
Verify that the circuit implements the truth table in Figure 12.

If you want to make changes in the designed circuit, first close the Programmer window. Then make the desired
changes in the Verilog design file, compile the circuit, and program the board as explained above.

36 Intel Corporation - FPGA University Program
June 2018

https://www.altera.com/support/training/university/overview.html

QUARTUS® PRIME INTRODUCTION USING VERILOG DESIGNS For Quartus® Prime 18.0

Copyright © Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Avalon, Cyclone, Enpirion,
MAX, Nios, Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S.
and/or other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications
in accordance with Intel’s standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel customers
are advised to obtain the latest version of device specifications before relying on any published information and
before placing orders for products or services.

*Other names and brands may be claimed as the property of others.

Intel Corporation - FPGA University Program
June 2018

37

https://www.altera.com/support/training/university/overview.html

	EE446_Laboratory_Manual
	Laboratory Regulations
	Rules
	Cheating
	Remarks and Evaluation

	General Information about Laboratory
	Experimental Setup

	Quartus Software
	Simulation Software
	Simulation using cocotb

	Some Useful How-to Items
	How to create a Verilog module with parameters
	How to initialize the Memory on FPGA
	Problems with running Cocotb
	Path Issues
	"I give up" error

	Making your Code Compile Faster
	Avoiding Latches

	DE1-SoC_User_manual_revf
	Chapter 1 DE1-SoC Development Kit
	1.1 Package Contents
	1.2 DE1-SoC System CD
	1.3 Getting Help

	Chapter 2 Introduction of the DE1-SoC Board
	2.1 Layout and Components
	2.2 Block Diagram of the DE1-SoC Board

	Chapter 3 Using the DE1-SoC Board
	3.1 Settings of FPGA Configuration Mode
	3.2 Configuration of Cyclone V SoC FPGA on DE1-SoC
	3.3 Board Status Elements
	3.4 Board Reset Elements
	3.5 Clock Circuitry
	3.6 Peripherals Connected to the FPGA
	3.6.1 User Push-buttons, Switches and LEDs
	3.6.2 7-segment Displays
	3.6.3 2x20 GPIO Expansion Headers
	3.6.4 24-bit Audio CODEC
	3.6.5 I2C Multiplexer
	3.6.6 VGA
	3.6.7 TV Decoder
	3.6.8 IR Receiver
	3.6.9 IR Emitter LED
	3.6.10 SDRAM Memory
	3.6.11 PS/2 Serial Port
	3.6.12 A/D Converter and 2x5 Header
	3.7 Peripherals Connected to Hard Processor System (HPS)
	3.7.1 User Push-buttons and LEDs
	3.7.2 Gigabit Ethernet
	3.7.3 UART
	3.7.4 DDR3 Memory
	3.7.5 Micro SD Card Socket
	3.7.6 2-port USB Host
	3.7.7 G-sensor
	3.7.8 LTC Connector

	Chapter 4 DE1-SoC System Builder
	4.1 Introduction
	4.2 Design Flow
	4.3 Using DE1-SoC System Builder

	Chapter 5 Examples For FPGA
	5.1 DE1-SoC Factory Configuration
	5.2 Audio Recording and Playing
	5.3 Karaoke Machine
	5.4 SDRAM Test in Nios II
	5.5 SDRAM Test in Verilog
	5.6 TV Box Demonstration
	5.7 PS/2 Mouse Demonstration
	5.8 IR Emitter LED and Receiver Demonstration
	5.9 ADC Reading

	Chapter 6 Examples for HPS SoC
	6.1 Hello Program
	6.2 Users LED and KEY
	6.3 I2C Interfaced G-sensor
	6.4 I2C MUX Test

	Chapter 7 Examples for using both HPS SoC and FGPA
	7.1 HPS Control LED and HEX
	7.2 DE1-SoC Control Panel
	7.3 DE1-SoC Linux Frame Buffer Project

	Chapter 8 Programming the EPCS Device
	8.1 Before Programming Begins
	8.2 Convert .SOF File to .JIC File
	8.3 Write JIC File into the EPCS Device
	8.4 Erase the EPCS Device
	8.5 Nios II Boot from EPCS Device in Quartus II v16.0

	Chapter 9 Appendix
	9.1 Revision History
	9.2 Copyright Statement

	How_to_pack_the_FPGA_back_into_its_box
	EE446_Experiment_1
	Preliminary Work
	Reading Assignment
	Module Design with Verilog HDL (40% Credits)
	Decoder (2% Credits)
	Multiplexers (2% Credits)
	Combinational Shifter (7% Credits)
	Arithmetic Logic Unit (ALU) (10% Credits)
	Registers (8% Credits)
	Memory Unit (10% Credits)
	7-Segment Display Converter(1% Credits)

	Register File (20% Credits)
	Datapath Design for an Architecture (40% Credits)

	Experimental Work
	Register File (40% Credits)
	Datapath Design (60% Credits)

	Parts List

	EE446_Experiment_2_New
	Preliminary Work
	Reading Assignment
	Single Cycle Processor Design with Verilog HDL (100% Credits)
	Datapath Design (30% Credits)
	Controller Design (40% Credits)
	Top level for Tests (10% Credits)
	Testbench (20% Credits)

	Experimental Work
	Single Cycle Processor (100% Credits)

	Parts List

	EE446_Experiment_3_v1
	Preliminary Work
	Reading Assignment
	Multi Cycle Processor Design with Verilog HDL (100% Credits)
	Datapath Design (30% Credits)
	Controller Design (40% Credits)
	Top level for Tests (10% Credits)
	Testbench (20% Credits)

	Experimental Work
	Multi Cycle Processor (100% Credits)

	Parts List

	EE446_Experiment_4_
	Preliminary Work
	Reading Assignment
	Pipelined Processor Design with Verilog HDL (100% Credits)
	Datapath Design (20% Credits)
	Controller Design (30% Credits)
	Hazard Unit (25%)
	Top level for Tests (5% Credits)
	Testbench (20% Credits)

	Experimental Work
	Pipelined Processor (100% Credits)

	Parts List

	EE446_Project_2024
	Introduction
	Reading Assignment
	Comparison with ARM

	Project Preliminary Work (20%)
	ISA to be implemented
	Extra instruction

	Datapath (25%)
	Datapath Design
	Datapath Implementation

	Controller (25%)
	Controller Design
	Controller Implementation

	Top Level (5%)
	Testbench (45%)
	Important Considerations

	Project Demonstration (80%)
	Useful Materials

	Cocotb Introduction
	Introduction
	What is cocotb
	Advantages of Cocotb
	Installation of Cocotb and Icarus Verilog
	Introduction to Cocotb
	How Does Cocotb Work?
	How to Write Test-benches
	Running The Test-bench Examples
	Where to Learn Further About Cocotb?

	Quartus Prime Introduction w Verilog
	1 Introduction
	2 Background
	3 Getting Started
	3.1 Quartus® Prime Online Help

	4 Starting a New Project
	5 Design Entry Using Verilog Code
	5.1 Using the Quartus® Prime Text Editor
	5.1.1 Using Verilog Templates

	5.2 Adding Design Files to a Project

	6 Compiling the Designed Circuit
	6.1 Errors

	7 Pin Assignment
	8 Programming and Configuring the FPGA Device
	8.1 JTAG* Programming for the DE0-CV, DE0-Nano, DE10-Lite, and DE2-115 Boards
	8.2 JTAG* Programming for the DE0-Nano-SoC, DE1-SoC Board, DE10-Nano, and DE10-Standard

	9 Simulating the Designed Circuit
	9.1 Performing the Simulation
	9.1.1 Functional Simulation
	9.1.2 Timing Simulation

	10 Testing the Designed Circuit

