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Inviscid (Frictionless) Flow

* Continuity and Navier-Stokes equations govern the flow of fluids.

« Forincompressible flows of Newtonian fluids they are

v-V=0
v_ ‘ﬁ+(17 V)V]— §— Vp +uv3v
P =Pl =pG—Vp+u

* These equations can be solved analytically only for a few problems.

* They can be simplified in various ways.

* Common fluids such as water and air have small viscosities.

* Neglecting the viscous term (zero shear force) gives the Euler’s equation.

ov_ .o,
Ppe=PI—Tp

« Still difficult get a general analytical solution for the unknowns p and V.

Hwater = 1073 Pas
Ugir =2x1075Pas
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Inviscid Flow (cont’d)
« Bernoulli Equation (BE) is Euler’s equation written along a streamline.
p V? .
— 4+ —— + z = constant along a streamline
pg 29
Exercise: Starting from the Euler’s equation derive the BE.
Inviscid flow away from the
object (negligible shear forces)
o ———
:’ﬁ
Airfoil —~ o, =
[ e—
—-— /I
i
~
b encs e ~gery/clss/ME22 Viscous flow close to the object and in the
wake of it (non negligible shear forces)
13

Inviscid and Irrotational Flow

« To simplify further we can assume the flow to be irrotational.

§=28=vxV =0 (irrotational flow)
Vorticity (ksi) Angular velocity

* Question: What'’s the logic behind irrotationality assumption?

< Irrotationality is about velocity gradients.

(B v\ (o w) (v e
&= ay 0z) ' "\az " ax ) T\ax T ay)* T

or
L (10Y, aVe\— (Y, AV\—  (10(Ve) 19V\—
=20 oz)- oz ")t \vTar Tae)
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Inviscid and Irrotational Flow (cont’d)

* One special irrotational flow is when all velocity gradients are zero.

« Anexample is uniform flow suchasu = U, v = 0, w = 0. y 5 u=U
— v=0
* In many flow fields there will be uniform-like flow regions. Z)_‘ XT3 w=0
4
Away from the body, flow has small velocity
= gradients (uniform-like flow), small shear
— forces and can remain irrotational.
Uniform —
approach —
velocity —» o

(irrotational) __,
Close to the body velocity gradients
are high, shear forces are high and
flow becomes rotational.

- /

@ Exercise: Sketch the developing flow inside a pipe with uniform entrance and
show the uniform and non-uniform flow regions.

Inviscid and Irrotational Flow (cont’d)

¢ Inaninviscid flow net shear force acting on a fluid element is zero.

« Only pressure and body forces act on the fluid element. But they cannot cause
rotation because

« pressure forces act perpendicular to the element’s surface.

* body forces act through element’s center of gravity.

In an inviscid flow, a fluid element

that originates from an irrotational
/ flow region will remain irrotational.

Uniform © ® ®© ®

upstream ®

ol
(irrotational) o &2 __G&

Exercise: Show how a fluid element will rotate inside the developing flow region
of a pipe with uniform entrance.

1-6

Inviscid and Irrotational Flow (cont’d)

In general, flow fields are composed of both Note: There are other

. . . . L factors that can cause
* irrotational regions with negligible shear forces

rotation, but they are
not as common as
viscous effects.

* and rotational regions with considerable shear forces

Sometimes rotational regions will be very thin such as high speed external flow
over an airfoil.

But still neglecting them and assuming the flow to be totally irrotational would
yield unrealistic results.

Assuming external flow over a body to

F. =7 HS be inviscid and irrotational everywhere
drag :

will result in zero air drag, which is not
correct. This is known as d’Alambert’s
paradox.

Exercise: What will happen if we assume pipe flow with uniform entrance to be
inviscid and irrotational?

BE for Irrotational Flow

Exercise: Repeat the exercise of Slide 1-3 (derive BE) for irrotational flow.

¢ Inanirrotational flow BE is valid between any two points of the flow field, not
necessarily two points on the same streamline.

=
/f'\\.\

2
3 Inviscid, irrotational

w/_ flow over an object

p  V? p  V? p  V?
—+—+z) =|—F+7-+z) =|\—+5—-+2
pg 29 . \Pg 29 , \Pg 29 3
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Velocity Potential (¢)

« Foran irrotational flow : 7 x ¥ = 0
¢ Asstudied in ME 210, curl of the gradient of any scalar function is zero.

VX (V) =0

* Using these two equations we can define a velocity potential function (¢) as

V=4V¢p
Some books use a minus sign so that ¢
decreases in the flow direction, similar to Phi: A scalar function
temperature decreasing in the heat flow called velocity potential

direction. But we use plus in this course.

* Inanirrotational flow field, velocity vector can be expressed as the gradient of a
scalar function called the velocity potential.

Potential Flow

. i . = _ % _ %
Fora2Dflowinthe xy plane : V=V¢p - u= ox v= oy
* Fora 2D flowin the rf plane : V= Ve - Vr=‘;—f s Vo =12

T raoe
* If the irrotational flow is also incompressible (In ME 306 we’ll NOT study
compressible irrotational flows)
Continuity Equation: I - V=0
V-Vp=0

V2¢ = 0 < Laplace’s equation
V2 =V -V : Laplace operator

* Foranincompressible and irrotational flow, velocity potential satisfies the
Laplace’s equation. These flows are called potential flows.
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Velocity Potential (cont’d)

S A
Inthe xy plane: —— + a2 = 0
. V=
. 18(00), 1%
Inthe 76 plane:  ~-~ (r ar) 2592 =0

Streamfunction

« Note that the relation between V and ¢ is similar to that of V and Y.

Cauchy Riemann Equations

/\

In the xy plane In the 70 plane

_ % _% Lo, 100
U= 5% U_By T or CERRFY
o W Sl
“_ay V=T T roe o~ " or

Potential Flow Exercises

@ Exercise : Using Cauchy Riemann equations show that streamfunction also satisfies
the Laplace’s equation for incompressible, potential flows.

@ Exercise : Show that constant streamfunction lines (streamlines) are always
perpendicular to constant velocity potential lines for incompressible, potential flows.

@ Exercise : Draw constant velocity potential lines of the following flow fields for which
streamlines are shown. Constant velocity potential lines and streamlines drawn
together form a flow net. What’s the “heat transfer”” analogue of a flow net?

Flow near a corner Flow over a cylinder

e
——=—




Potential Flow Exercises (cont’d)

Exercise : The two-dimensional flow of a nonviscous, incompressible fluid in the
vicinity of a corner is described by the stream function

Y = 2r?sin(26)

where 1 has units of m2/s when r is in meters. Assume the fluid density is
1000 kg/m? and the xy plane is horizontal.

a) Determine, if possible, the corresponding velocity potential.
b) If the pressure at point 1 on the wall is 30 kPa, what is the pressure at point 2?

Reference: Munson’s book.
y

7‘ —x

Potential Flow Exercises (cont’d)

Exercise : A horizontal slice through a tornado is

modeled by two distinct regions. The inner or core Inner_
region (0 < r < R) is modeled by solid body rotation. region
The outer region (r > R)is modeled as an irrotational
region of flow. The flow is 2D in the r6-plane, and the
components of the velocity field are given by

wr 0<7r<R

V=0 , Vo =19 wR2
—_— r>R

T
where w is the magnitude of the angular
velocity in the inner region. The ambient
pressure (far away from the tornado) is
equal to p,. Obtain the shown nondimen-

sional pressure distribution.

Reference: Gengel’s book.

Inner

Outer region

region Outer region

L—]

-0.2 /
-0.4
P~ Po

pw?R% 0.6 /

-0.8 /

Superposition of Elementary Potential Flows

« Laplace’s equation is a linear PDE.

* Superposition can be applied to both velocity potential and streamfunction.

==

Potential flow 2
N )T

Vi+ V=V

Potential flow 1

e

N

C prtda=¢3s .  Pi+yYP=19Y; ,

* To obtain complicated flow fields we can combine elementary ones such as
¢ Uniform flow
* Line source/sink

* Vortex

0 1 2 3 5
r/R 1-14
1. Uniform Flow
* Consider uniform flow in the xy plane in +x direction.
u=U , v=0
* Let’s find the equation for velocity potential.
9¢ 99
=—=L U=-—" =U.
= o O b=UxHfO)
d 0 d
v=—¢ - O=—¢ - —f=0 - f = constant
ay ay dy
« Taking f = 0 for simplicity
¢ =Ux
* Constant ¢ lines correspond to constant x lines, i.e. lines parallel to the y axis.
Exercise : Show that streamfunction equationis ) = Uy
1-16




1. Uniform Flow (cont’d)

« Constant ¢ and constant y lines are shown below.

T

2. Line Source at the Origin

« Consider the 2D flow emerging at the origin of the xy plane and going radially
outward in all directions with a total flow rate per depth of q.

Ay View from the top

N\ . P
AN

\ \ ;X

\ < > !

\ ~1- /
\ /

%q : Flow rate per depth s S~ -7 Constant
(Strength of source [m*/s]) ¢ lines
. V=L V=0
« Conservation of mass: ¢ = 2nr)V, - T 2nr ’ 6=

* V., decreases with r, i.e. effect of source diminishes with r.

* Origin is a singular point with ;. = oo, which is not physical, so don’t get too close.

/ T~ \ Streamlines
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Exercise : Determine the equations of ¢ and ¥ y
@ for uniform flow in a direction making an angle x
of B with the x axis. B
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2. Line Source (cont’d)
« Let’s find the equation for velocity potential.
99 q _0¢ q
=t t 7 =
Vr ar - 2nr  Or - ¢ 2 n() +£(9)
10 1d d
Vo = ;% - = ;d—g - é =0 - f = constant
* Taking f = 0 for simplicity
q
=—1
¢ =5-In(r)
* Constant ¢ lines correspond to constant r lines as shown in the previous slide.
Exercise : Show that the streamfunction equationis ¢ = % 6
* To study a line sink for which the flow is radially inward towards a point, simply
use a negative g value.
1-19

2. Line Source (cont’d)

* Consider a line source that is located NOT at the origin.

* Equations for ¢ and ¥ change as follows
q
¢ =5 In(r)

=4
Y=o_0

or equivalently using x and y coordinates

b= Ln([G= O ?)

q y—>b Some useful relations
V= Eamtan xX—a x = rcos(8)

y = rsin(@)

r= Ty

6 = arctan (%)




3. Irrotational Vortex

* Studied in ME 305 as free vortex. Its velocity components are Vo= K/r
Vg = K V.=0
[ r ’ r =

* Using Cauchy Riemann relations we get

¢ =Ko , P =—-KIn(r)

* Compared to a line source, streamlines and constant potential lines are interchanged.

Streamlines o X .
Similar to a line source/sink,

origin is a singular point,
where the velocity shoots to

/ & lines infinity.
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3. Irrotational Vortex (cont’d)

« Strength of a vortex is not given by K. Instead we use its circulation T'.

« Circulation is the line integral of the tangential component of the velocity vector
around a closed curve. It is related to the rotationality of the flow.

y Closed
curve C

—b7.A2 2
F—ﬁV ds [m?/s]

Differential vector

Closed path of along the path of

integration integration
x
* For the 2D flow in the xy plane V=uitvj
shown above . . . ['= ¢ (udx + vdy)
ds = dxi + dyj ¢
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3. Irrotational Vortex (cont’d)

Exercise: Calculate the circulation of an irrotational vortex for the following curve C
y
Curve C Vo =K/r

X

* Irrotational vortex is irrotational everywhere except the origin. All the circulation is
squeezed into the origin, which is a singular point.

 Circulation T' = 27K can be understood as the strength of the vortex. It’s in m?/s.

. 6 I 1
¢= 21 ! V= 2m n()
* Direction of the vortex is determined as I' >0 : CCW (+z) rotating vortex

<0 : CW (—z) rotating vortex

3. Irrotational Vortex (cont’d)

Exercise: A liquid drains from a large tank through a small opening as illustrated. A
" vortex forms, whose velocity distribution away from the opening can be
approximated as that of a free vortex. Determine an expression relating the surface
shape to the strength of the vortex I'.

Reference: Munson’s book

- Patm




Exercises for Elementary Potential Flows

Exercise : Elementary components of a potential flow of water is shown below.

&~ Find the velocity and pressure at point A if the pressure at infinity is 100 kPa.

§§§§S§ g U= 3mys

a = 30°
A q =10m?/s
a b a=08m
* < x b=06m
Source (q) Sink (—q)

Exercise : For the previous problem determine the equations of velocity potential

&/ and streamfunction by superimposing elementary flows. Find the velocity at point

A by differentiating both ¢ and ¥ equation.
1-25

Source in a Uniform Flow
(Flow Past a Half Body)

Exercise: Study the flow obtained by the combination of uniform flow in x

2/ direction and a source at the origin. Obtain the location of the stagnation point(s)

and draw the stagnation streamline.

U y
—_—
—
x
- - q
—_—

Uniformflow: u=U , v=0 , ¢=Ux , Pp=Uy

Source: V,=-L , Vg=0 , qb:%ln(r) , p==Lg

2nr

Flow Past a Half Body (cont’d)

\ Stagnation
X streamline
/ ¥=a/2
Stagnation point
= a/2n0 Movie

Flow Over Half Body

Flow outside the stagnation streamline resembles a flow over ?
a body with a blunt nose. _C
Equation of the half body is given by the equation of the s -

stagnation streamline.
127

Flow Past a Half Body (cont’d)

Exercise : Consider the top part of a half body. Draw speed vs. 8 and pressure vs. 8

&/ using the following values: p = 1000 kg/m®, U =5m/s, q =10m?/s and

P = 100 kPa.

Exercise: A 64 km/h wind blows toward a hill that can be approximated with the

’ top part of a half body. The maximum height of the hill approaches 60 m.

a) What is the air speed at a point directly above the origin (at point 2)?
b) What is the elevation of point 2?
c) Whatis the pressure difference between point 2 and point 1 far from the hill?

Reference: Munson’s book

64 km/h 4
g
— 5 60 m
.
.
T X
1




A Source and a Sink in Uniform Flow
(Flow Past a Rankine oval)

e Superposition of

U y
* asource of strength g atx = —c, —
* asink of strength —q at x = ¢ and — \l/
» X
* uniform flow of magnitude U. /‘T\
c c ‘
* ¢ = Puni + Psou + Psink = Ux +%ln(r1) - %h](TZ)
Y =Yuni + Psou + Psink = Uy +£91 - %92
X
1-29

Flow Past a Rankine oval (cont’d)

y

e ——

@ Exercise : Determine the location of the stagnation points of the shown Rankine
oval. Determine its length and thickness of the oval. Plot the variation of speed
and pressure (with respect to p,,) on it as a function of 6.

1-30

Doublet
* Superposition of
* asource of strength q at the orgin (moved from - x axis to the origin),
* asink of strength —q at the origin (moved from +x axis to the origin),

* Consider the limiting case of the source and sink of Slide 1-29 approaching to the
origin. Skipping the details we can get

d d .
Pdoublet = Z_MCOS(B) , Yaoubtet = _ﬁsm(a)

where d is the strength of the doublet.

* Velocity field is given by Y

/ Streamlines
- o - d Constant ¢ lines
= ar —  2mr? cos(9) /

104 d @ R
Vo = 290" " omez sin(8) ‘ P
1-31

A Doublet in Uniform Flow (Flow Past a Cylinder)

* Superposition of
* adoublet of strength d at the origin.

* uniform flow of magnitude U in +x direction.

y
U
—
—
x
I d
—

d
* ¢ = buni + Paoubter = Ux + ;COS(Q)

d .
Y = Yuni + Yaoubter = Uy — ESIH(Q)




Important results are as follows y

Velocity components are

R? R? x
V.=U (1 - T_Z) cos(6) , Vg =-U (1 + r_Z) sin(0) d
with R =/d/U

Stagnation points are located at (=R, 0) and (R, 0).

Stagnation streamline is a circle of radius R.

Velocity distribution on the cylinder is 2

_ . Voey
Voey = —2U sin(0) % 1
0 0 m/2 T
2] 1-33

Flow Past a Cylinder (cont’d)

Flow Past a Cylinder (cont’d)

Flow Past a Cylinder (cont’d)

As seen from the above exercise potential flow theory predicts ZERO DRAG FORCE
on the cylinder.

* Actually this is the case for any closed body, irrespective of its shape.
« This result is not physical and it is known as d’Alembert paradox (1752).

* Inareal viscous flow

* shear stresses inside the boundary layer will cause a frictional drag force.

* viscous action will cause separation & the pressure at the front and back of the
cylinder would not be symmetric.

Movie Movie
Potential vs. Viscous

Flow with Separation

U
* Pressure distribution on the cylinder is - ﬁ\( O
(using BE with Vo, = U and pe,) -
pU? !
Peyl = Poo +T(1 — 4sin?(6))
0 Experimental
* Pressure on the cylinder is symmetric \ -
with respect to both x and y axis. Peyt — Poo 4
= * 1 1
* Pressure does not create any drag "TUZ \ /)
force (in x direction) or any lift force 2 N ,’
) - ,
(in y direction). \~7" /Potential
-3
0 /2 T
2n B
Farqg = — Dyt cos(A)Rd6 =0
0
2n
Fift == | Peyisin(6)Rd6 =0
0
1-34
Flow Past a Cylinder (cont’d)
Rep =15 7 ) Rep =26

Rep = 10000

“An Album of Fluid Motion”, by M. Van Dyke




Flow Past a Cylinder (cont’d)

@ Exercise : When a small circular cylinder is placed in a uniform stream, a

&/ stagnation point is created on the cylinder. If a small hole is located at this point,
the stagnation pressure, can be measured and used to determine the approach
velocity, U (similar to a Pitot tube).

a) Show how pgqg and U are related. Pressure far away is pe,.

b) If the cylinder is misaligned by an angle a, but the measured pressure is still
interpreted as the stagnation pressure, use potential flow theory to determine an
expression for the ratio of the true velocity, U, to the predicted velocity, U'. Plot
this ratio as a function of a for the range 0° < a < 20°.

Reference: Munson’s book.

_,< R

Stagnation point

Flow Past a Rotating Cylinder

¢ Superposition of

1-37
Flow Past a Rotating Cylinder (cont’d)
U, g
r
— N dl~ o x
Exercise : For the flow shown above, obtain the following results
_ . r
Vgcyl = —2Usin(8) + nR
u? 2r r \?
Peyt = Poo + pT[l —4sin?(0) + Msin(ﬂ) - (ZnUR) ]
Integrate the above pressure distribution to get the following results
Farag =0 Fiife U | (per unit depth)
1-39

y
* adoublet of strength d located at the origin, _U,
¢ CCW rotating irrotational vortex of strength ' — dl\r .
located at the origin, .
* uniform flow of magnitude U. —
e This will result in
—ur(148 ©)+-6
¢ =Ur 2 cos o
with R =,/d/U
R?\ . r
Y =Ur (1 - r_z) sin(@) — %ln(r)
* This is the potential flow that resembles the flow over a rotating cylinder of
radius R.
138
Flow Past a Rotating Cylinder (cont’d)
* Streamlines and stagnation points for different circulation values.
r <1
4nUR
r >1
4nUR




Magnus Effect
Magnus Effect: A rotating body in a uniform flow will have a net lift force on it (1853).

Direction of the lift force depends on the direction of U and T'.

[}

Bottom
r

r
Vemp =x2U+ 27R U Vobottom :<U/+ 2R

[\)

Opposite signs = 1 pru Same signs
Velocity is low. Velocity is high.

Pressure is high. Pressure is low.

-—
Exercise: Determine the direction of
. ?
the lift force. ! l
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Magnus Effect (cont’d)

@ Exercise : Magnus effect acts not only on cylinders but also on other rotating bodies

o such as spheres. It can be used to explain how a spinning ball moves in a curved
trajectory. A football player wants to make a penalty kick as sketched below. Will a
CW or a CCW spin do the trick?

Exercise : Watch the following movies

) https://www.youtube.com/watch?v=20SrvzZNW9IFE (Suprising applications of Magnus effect)
http://www.youtube.com/watch?v=23f1jvGUWJs (Magnus force on Veritasium channel)
http://www.youtube.com/watch?v=2pQga7ixAvc (Enercon's rotor ship. Audio in German)
http://www.youtube.com/watch?v=wb5tc nnMUw (Roberto Carlos knows the Magnus force)
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Magnus Effect (cont’d)

Warning: Although potential flow theory can predict the direction of lift force
due to Magnus effect correctly, it may give quite inaccurate values for its
magnitude. We’'ll come back to this in the next chapter.

Exercise: In 1920s Anton Flettner built a series of rotor ships that are propelled
by rotating cylinders driven by electric motors. Read about Flettner’s ship at
rexresearch.com/flettner/flettner.htm and understand how it works.

Kutta Condition (Lift on an Airfoil)

* Magnus effect applies not only to cylinders but any closed shape.
* Consider the flow over a slender body with a sharp trailing edge, such as an airfoil.

* Anairfoil is designed to generate small drag and high lift force.

* There are two stagnation points, s; and s;.

¢ Experiments show that the streamlines leave the trailing edge smoothly as shown
above, known as the Kutta condition.



https://www.youtube.com/watch?v=2OSrvzNW9FE
http://www.youtube.com/watch?v=23f1jvGUWJs
http://www.youtube.com/watch?v=2pQga7jxAyc
http://www.youtube.com/watch?v=wb5tc_nnMUw
http://www.rexresearch.com/flettner/flettner.htm
https://en.wikipedia.org/wiki/E-Ship_1

Lift on an Airfoil (cont’d)

‘._/\\
‘>_/\\

m
* Itisimpossible for streamlines to make ‘—._/Q_‘.A\\
such a sharp turn at the trailing edge. ‘ff\

* If we add the correct amount of CW vortex to this flow field we can bring point s,
down to the trailing edge and obtain the correct streamline pattern.

— A
T 4 =
=30

Wrong Correct

* Potential flow theory will predict an
unphysical location for point s,.

* The magnitude, I', of the necessary vortex can be used to calculate the lift force
generated on the airfoil.

Flift =plU T Kutta-Joukowski Law (1902)

Simulating Flows Near Walls using Mirror Images

Consider a line source located at a distance b to a solid wall.
Fluid cannot pass across the wall and therefore it is a streamline.

The effect of the wall can be simulated by using another source, which is the
mirror image of the original one with respect to the wall.

Flow
source

Flow
source

Floor l Floor

Gengel's book
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Simulating Flows Near Walls using Mirror Images (cont’d)
@ Exercise : Consider a source of strength g located close to two walls forming a 90°
corner.
a) How many and where the mirror images need to be placed to simulate
existence of the walls?
b) Locate the stagnation point(s). y
c) Draw the streamlines.
Source (q)
o
} P
a
Exercise : Repeat the previous exercise by replacing the source with a clockwise
vortex of strength T'.
1-47

Superposition Exercises

Exercise : We want to study the potential flow over the following bodies. If
possible, which elementary flows need to be superimposed to get the desired
shape?




Numerical Solution of Potential Flow

Obtaining complicated flow fields by superposing elementary ones is limited.

To study potential flows on arbitrary geometries one can perform a numerical
solution.

Consider a flow inside an expanding duct (coordinates are in meters).

(0,2) (3,2)
10 m/s
(01) (1,1 5m/s

YLX o (3,0)

Potential flow inside the duct can be obtained by solving Laplace’s equation

P %

Fp% + 3y? 0, with proper boundary conditions
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Numerical Solution of Potential Flow (cont’d)

* Boundary conditions are (study in the given order)

Top wall is a streamline. 1 should be constant
there. In order to have 10 m?/s flow rate per

At the inlet u = 10. depth between the top and bottom walls

Therefore 2 = 10.
dy

1 varies linearly from 0 to 10.

Ylere = 10y — 10

T~

At the exitu = 5.

]

Therefore Tw =5.
Bottom wall is a streamline. 1
should be constant there. Let’s set Py

it to zero.

Y varies linearly from 0 to 10.
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Numerical Solution of Potential Flow (cont’d)

Finite Difference Method can be used to get the numerical solution.
First we discretize the problem domain into a set of nodes.

Following mesh has 55 nodes with Ax = Ay = 1/3.

27 of the nodes are at the boundaries and v is known at these nodes.

28 of the nodes are inside the domain and ¥ needs to be calculated at them.

5 point computational stencil

Lj+1
oK
oo )
Ay ] S e i—1,j i+1,)
e o o o
.o
Ax i,j—1

Numerical Solution of Potential Flow (cont’d)

» Discretized form of the Laplace’s equation at node (i, j) is

Yivrj— 2¢j + i Yijo1— 2¢j + i1

@02 @y)? =0
oy Y
ax?| ay?|

Lj LJ

* For Ax = Ay, discretized equation for node (i, j) becomes

Yiv,j + Yic1j + Pijer +Pijoa — 4 ;=0

* This equation needs to be written for all non-boundary nodes.

* For nodes with boundary neighbors, some 1 values are known and they need to be
transferred to the right-hand-side of the equation.

* At the end we’ll get a system of 28 equations for 28 unknowns and solve it.




~

Numerical Solution of Potential Flow (cont’d)

Following solution is obtained using a mesh with Ax = Ay = 0.2.

.

~
1 =10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00
8.00 802 804 807 812 820 830 841 852

862 871 879 885 891 895 9.00
6.00 603 606 612 622 637 658 682 7.05 726 744 759 771 782 791 8.00

593 619 641 659 674 688 7.00

465 500 528 550 569 585 6.00
133 222 292 345 387 419 445 466

400 403 407 413 426 448 484 524 561
200 202 205 209 220 244 308 3.69 422
P=0.00 0.00 0.00 »0.00 0.00 _0.00

484  5.00
100 177 237 283 318 345 366 3.84 4.00
000 080 142 190 224 250 270 286 3.00
0.00 063 109 140 161 177 189 2.00
Q.00 044 066 079 087 094 1.00
0.00 000 000 000 0.0 0.00

Red ones are

boundary values ek emes e

calculated

White's book )

After obtaining the 1 values at the nodes, velocity components can be obtained

W L _Yun Vi
ay w 20y
% Yy iy
ox v 2Ax

Different formulas need to be used at the boundary nodes.
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Numerical Solution of Potential Flow (cont’d)

After obtaining u and v, pressures w=10
can be calculated using the Bernoulli Vin %
equation. \ Pin \
White’s book
2
For irregular geometries 4
modifications need to be done.
_ P — Pin
P pVa/2
° 1.0
o0.8F > 075
0.6[- Upper :
04r  wall
. . 0.2 \
Red node is NOT at Ax distance from 0.0
the central node. What can be done? -0.21-
0.4 Lower wall
-0.6
-0.8
& J
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