ODTÜ METU Insights from Swift J0243.6+6124 during its 2017-2018 outburst EBERHARD KARLS UNIVERSITÄT TÜBINGEN

M. Miraç Serim¹, Çağatay Kerem Dönmez², Danjela Serim¹, ¹ University of Tübingen, Germany Lorenzo Ducci¹, Altan Baykal², Andrea Santangelo¹ ² Middle East Technical University, Ankara, Turkey

 \checkmark Uncovered a new transition at L_{coul} , consistent with B ~ 5×10^{12} G and d = 5.2 kpc. \checkmark Found elevated timing noise strengths above super-Eddington levels, may originate from emerging quadrupole fields.

Source

- Discovered in 2017. Outbursts in 2017-2018 & 2023.
- Be X-ray binary with $P_{spin} \sim 9.8$ sec, $P_{orbit} \sim 27.7$ d ^{[a][b]}
- Studied in detail: 25+ articles so far!
- 2017-18 outburst: X-ray luminosity varying by 5 orders of magnitude!
- First detected ultraluminous X-ray pulsar (ULX) in the Milky Way! L_{peak} ~ 1×10³⁹ erg/s at 5.2 kpc ^[c]
- Highest-energy CRSF ~ 120-146 keV \rightarrow B ~1.6×10¹³ G, too high! Associated with multipole fields? ^[c]

Pulse Timing

• Strong spin-up at the outburst beginning \rightarrow phase-coherent timing technique unfavorable. So, we used this approach:

Timing Noise

1 When torque fluctuations are...

• We used the Gaia EDR3

distance: 5.2 ± 0.3 kpc (revised

from 6.8 kpc by Gaia EDR2)

...uncorrelated, wind accretion \rightarrow white noise (flat, $\Gamma = 0$)

Data

- 480 ks NICER/XTI observations: MJD 58030-58530
- Public Fermi/GBM pulse frequency & Swift/BAT daily light curve histories

Figure 1: Spin frequencies, timing solutions and corresponding *NICER* phase residuals

Previously, 2 transitional luminosity levels reported: L₁ & L₂ ^[c]

- ...correlated, disk accretion \rightarrow red noise (Γ = -2)
- Generated two power density spectra (PDS) of frequency derivatives via the rms-value technique ^[f] (Figure 3)
- Along with the standard method, we applied a torqueluminosity model to spin frequencies and then used the residual frequencies \rightarrow minimizes the disk accretion contribution to noise levels
- Standard method: Red noise component has $\Gamma = -3.36 \pm 0.64$, steeper than similar sources
- Modified method: $\Gamma = -0.91 \pm 0.38$, luminosity-dependent model removed most (but not all) the red noise component

Figure 3: PDS of spin frequency derivatives with broken power law fits

Figure 4: Luminosity dependence of timing noise strengths

- We also checked the luminosity dependence of timing noise strengths using the standard method (Figure 4)
- At the highest luminosities, torque interactions become less efficient & noisier \rightarrow supports the previous deductions of interactions with quadrupole components of magnetic field [c]

• L ~ 7×10^{36} erg/s \rightarrow Consistent with L_{coul} of Becker's model ^[d]: pencil beam to mixed pencil & fan beam

 $L \rightarrow B \sim 4.7 \times 10^{12} \text{ G}$ all consistent $L_1 \rightarrow B \sim 5.3 \times 10^{12} \text{ G}$ at d = 5.2 kpc!

1 Below L_{coul}, Coulomb interactions cannot stop the accretion flow: gas shock only.

more \rightarrow more luminosity **1** Torque-Luminosity Model: accretion \rightarrow more torque on NS \Rightarrow more spin-up/down!

• Ghosh-Lamb model ^[g]: $\dot{v} \propto L^{6/7}$ (We used $\dot{v}_{model} = \beta L^{\alpha} + \dot{v}_0$)

References

[a] Kennea et al. 2017, <u>ATel</u> #10809 [b] gammaray.nsstc.nasa.gov/qbm/science/ pulsars/lightcurves/swiftj0243.html [c] Doroshenko et al. 2020, MNRAS, 491, 1857

[d] Becker et al. 2012, <u>A&A</u>, 544, A123 [e] Kong et al. 2022, ApJ, 933, L3 [f] Deeter 1984, <u>Apl</u>, 281, 482 [g] Ghosh & Lamb 1979, <u>ApJ</u>, 234, 296

This work has been supported by The Scientific and Technological Research Council of Türkiye (TÜBİTAK) under the project MFAG-118F037.

