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14.1 Introduction

The ordinary Fourier transform and related techniques are of
great importance in many areas of science and engineering. The
fractional Fourier transform (FRT) is a generalization of the
ordinary Fourier transform with an order (or power) parameter a.
This chapter provides an introduction to the fractional Fourier
transform and discusses some of its more important properties.
The FRT also has a growing list of applications in several areas.
An overview of applications that have received interest so far are
provided at the end of this chapter. Those interested in learning
about the transform and its applications in greater depth are
referred to [23,122,123,129].

Mathematically the ath order fractional Fourier transform
operator is the ath power of the ordinary Fourier transform
operator. (Readers not familiar with functions of operators may
think of them in analogy with functions of matrices. In the
discrete case, where the discrete ordinary and fractional Fourier
transform operators are represented by matrices, this is actually
the case.) If we denote the ordinary Fourier transform operator
by F, then the ath order fractional Fourier transform operator is
denoted by F“. The zeroth-order fractional Fourier transform

operator F° is equal to the identity operator Z. The first-order
fractional Fourier transform operator ' is equal to the ordinary
Fourier transform operator. Integer values of a correspond to
repeated application of the Fourier transform; for instance, F>
corresponds to the Fourier transform of the Fourier transform.
F~! corresponds to the inverse Fourier transform operator.
The a'th order transform of the ath order transform is equal to
the (' + a)th order transform; that is F% F* = F%*+4, a property
referred to as index additivity. For instance, the 0.5th fractional
Fourier transform operator F°, when applied twice, amounts to
ordinary Fourier transformation. Or, the 0.4th transform of the
0.3rd transform is the 0.7th transform. The order a may assume
any real value, however the operator F* is periodic in a with
period 4; that is 7™ = F* where j is any integer. This is because
F? equals the parity operator P which maps f(u) to f(—u) and F*
equals the identity operator. Therefore, the range of a is usually
restricted to (—2, 2] or [0, 4). Complex-ordered transforms have
also been discussed by some authors, although there remains
much to do in this area both in terms of theory and applications.

The same facts can also be thought of in terms of the functions
which these operators act on. For instance, the zeroth-order
fractional Fourier transform of the function f(u) is merely

* Parts of this chapter appeared in or were adapted from Ozaktas and Kutay [121].
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Magnitude of the fractional Fourier transform of the rectangle function as a function of the transform order. (From Ozaktas, H. M.

and Kutay, M. A., Proceedings of the European Control Conference. European Union Control Association and University of Porto, Porto, Portugal,

2001. With permission.)

the function itself, and the first-order transform is its ordinary
Fourier transform F(p), where p denotes the frequency domain
variable. The ath fractional Fourier transform of f(u) is denoted
by fa(u) so that fo(u) = f(u) and fi(p) = F(u) (or fi(u) = F(u)
since the functional equality does not depend on the dummy
variable employed).

An example is given in Figure 14.1, where we see the magnitude
of the fractional Fourier transforms of the rectangle function for
different values of the order a € [0, 1]. We observe that as a varies
from 0 to 1, the rectangle function evolves into a sinc function,
which is the ordinary Fourier transform of the rectangle function.

The earliest known references dealing with the transform go
back to the 1920s and 1930s; since then the transform has been
reinvented several times. It has received the attention of a few
mathematicians during the 1980s [100,106,109]. However, inter-
est in the transform really grew with its reinvention/reintroduc-
tion by researchers in the fields of optics and signal processing,
who noticed its relevance for a variety of application areas
[8,88,102,117,124,125]. A detailed account of the history of the
transform may be found in [129].

Fractionalization of the Fourier transform has led to interest in
fractionalization of other transforms [5,91,175] such as the Hilbert
transform [137] and the cosine-sine and Hartley transforms
[30,134], and extensions to the study of time-frequency distribu-
tions [130,132,143]. These will not be dealt with in this chapter.

Throughout this chapter, the imaginary unit is denoted by i
and the square root is defined such that the argument of the
result lies in the interval (—w /2,7 /2].

The first three to five sections can be read as a tutorial on the
fractional Fourier transform, and the other sections can be read
or consulted as needed.

14.2 Definition and Essential Properties

The most straightforward way of defining the fractional Fourier
transform is as a linear integral transform as follows:

fa(u) (14.1)

J Ky (u, u)f (u) dud,

Ka(u,u') = V1 — i cot o exp [im(cot awui? — 2 csc o urd

+ cot a u/z)],

a=—,
2

when a # 2j for integer j. When a = 4j the transform is defined
as K,(u,t') = 8(u — v') and when a = 4j + 2 the transform is
defined as K,(u, ') = 8(u + u'). It can be shown that the above
kernel for a # 2j indeed approaches these delta function kernels
as a approaches even integers. For 0 < |a] < 2, the factor
V1 —icota can be written as exp{—i[mwsgn(a)/4 — o/2]}/
/| sin o] where sgn(-) is the sign function. It is easy to show
that when a=1 the kernel reduces to exp (—i2muu'), corre-
sponding to the ordinary Fourier transform, and that when
a = —1 the kernel reduces to exp (i2wuu’), corresponding to
the ordinary inverse Fourier transform.

It is not easy to see from the above definition that the trans-
form is indeed the operator power of the ordinary Fourier
transform. In order to find the operator power of the ordinary
Fourier transform, we first consider its eigenvalue equation:

F,(u) = e "2y (u). (14.2)
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Here the eigenfunctions {s,,(u), n = 0,1,2... are the Hermite-
Gaussian  functions  defined as W, (u) = (21/4/v2mn!)
H,(vV2mu) exp (—mu?), where H,(u) are the standard Hermite
polynomials. exp (—in/2) is the eigenvalue associated with the
nth eigenfunction s, (1). Now, following a standard procedure
also used to define functions of matrices, the fractional Fourier
transform may be defined such that it has the same eigenfunc-
tions, but the eigenvalues raised to the ath power:

Fus,(u) = ("), (u). (14.3)

This definition is not unique for at least two reasons. First, it
depends on the choice of the Hermite-Gaussian set as the set of
eigenfunctions (which is not the only such possible set). Second,
it depends on how we resolve the ambiguity in evaluating
[exp (—inw/2)]°. The particular definition, which has so far
received the greatest attention, has the most elegant properties,
and which has found the most applications, follows from choos-
ing [exp (—inm/2)]® = exp (—ianw/2). With this choice, the
fractional Fourier transform of a square-integrable function f(u)
can be found by first expanding it in terms of the set of Hermite—
Gaussian functions {5, (1) as

flw) = i Cos,, (w), (14.4)
Cn= T U, (u)f (u) du, (14.5)
and then applying F* to both sides to obtain
Fof(u) = ; CoF s, (w), (14.6)
Jalw) = i Cue ™2, (), (14.7)
=0

Jalu) = J [Ze—"“"“%(um(w) f@)ydd (14.8)
% n=0

The final form can be shown to be equal to that given by
Equation 14.1 through a standard identity (for instance, see
Table 2.8.9 in [129]).

Alternative definitions of the transform will arise if we make
different choices regarding the eigenfunctions or in taking the
fractional powers of the eigenvalues [31,77]. For instance, if the
ambiguity in evaluating z” is resolved by choosing the principal
power of z, it turns out that the ath fractional Fourier transform
of f(u) can be expressed as a linear combination of the form

Bo(a)f (w) + By (a)F(u) + Ba(a)f (—u) + B3 (@)F(—u),  (14.9)

14-3

where
F(u) is the ordinary Fourier transform of f{u)
By (a) are the order-dependent coefficients of the linear com-
bination (page 139 of [129])

This definition is merely a linear combination of a function and
its Fourier transform (and their time-reversed versions). It is
worth emphasizing that the definition of the FRT which is the
subject of this chapter not only does not correspond to choosing
the principal powers, it does not correspond to any unambiguous
way of specifying the power function z. The special nature of
resolving the ambiguity in evaluating [ exp (—in/2)]® by taking
it equal to exp (—ianm/2) is further discussed in [129].

The fractional Fourier transform f,(u) of a function f(u) also
corresponds to the solution of the following differential equation,
with fo(u) = f(u) acting as the initial condition:

1 o , 1 .2 Ofa(u)
|:—E @—F"ﬁu —5:| fa(u) = l; Oa . (1410)
The solution to Equation 14.10 can be expressed as
70 = | Kl o) (14.11)

where K, (u, ') is the same kernel as defined in Equation 14.1, a
fact which can be shown by direct substitution. Equation 14.10 is
the quantum-mechanical harmonic oscillator differential equa-
tion, which can be obtained from the classical harmonic oscilla-
tor equation through standard procedures [84]. In this
interpretation, the order parameter a corresponds to time and
fa(u) gives us the time evolution of the wave function. The kernel
K,(u,u') is sometimes referred to as the harmonic oscillator
Green’s function: it is the response of the system to
fo(u) = 8(u — ') [95]. (To be precise, we must note that the
harmonic oscillator differential equation differs from equation
10 by the term —1/2; see [129].) Further discussion of the
relationship of the fractional Fourier transform to harmonic

oscillation may be found in [13,84].
The fractional Fourier transform operator can also be

expressed in hyperdifferential form:

Fo— efi(a'n'/Z)H)
1 (14.12)

H = w(D? + U?) -3

where
U is the coordinate multiplication operator defined as
USf (1) = uf (u)
D is the differentiation operator defined as Df(u) =
(i2m) ' df (u)/du

With these definitions, Equation 14.12 corresponds to the fol-
lowing expression in the time domain:
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1 4
flu) = FOf(u) = exp {—1(?) (‘E o %)} fw).

(14.13)

We can convince ourselves that this way of expressing the frac-
tional Fourier transform is equivalent to earlier expressions by
noting that the differential equation 10 can be written as
Hf,(u) = i(2/w)0f,(u)/0a. The solution of this equation can be
formally expressed as f,(u) = exp (—i(am/2)H)fo(u) where fo(u)
serves as the initial or boundary condition, which is the same as
Equation 14.12. In other words, Equation 14.12 is simply the
solution of the differential equation given in Equation 14.10,
expressed in hyperdifferential form.

We will conclude this section with a derivation that links
together several of the concepts presented above. Let us recall
the eigenvalue equation (Equation 14.3):

FoU, (u) = e "2 (1) = e, (u), (14.14)
where a = am/2 and () are the Hermite-Gaussian functions
satisfying the differential equation (Table 2.8.6 of [129])

[d_z 1 4m? (2” 1 uz)} U, (1) = 0.

du? 2m

(14.15)

Now, starting from the last two equations, let us seek a hyper-
differential representation for F“ of the form exp(—iaH).
Differentiating

exp (—ia ), (1) = e "™, (1) (14.16)
with respect to « and setting o = 0, we obtain
H,, (1) = mps, (), (14.17)
which upon comparison with Equation 14.15 leads to
H, (1) = (—id—2+ Tu? —l>¢n(u). (14.18)
47 du? 2

By expanding arbitrary f(u) in terms of the ¢, (1), we obtain

1 4

- (14.19)

Hf(u) = ( b — é) Fw),

by virtue of the linearity of H. Now, in abstract operator form, we
may write
1
H=w(D*+U?) — > (14.20)
precisely corresponding to Equation 14.12.
A brief list of the fractional Fourier transforms of common

functions is provided in Section 14.4. Many of the elementary
and operational properties of the FRT are collected in

Transforms and Applications Handbook

Section 14.5, which can be recognized as generalizations of the
corresponding properties of the ordinary Fourier transform.

14.3 Fractional Fourier Domains

One of the most important concepts in Fourier analysis is the
concept of the Fourier (or frequency) domain. This “domain” is
understood to be a space where the Fourier transform represen-
tation of the signal lives, with its own interpretation and qualities.
This naturally leads one to inquire into the nature of the domain
where the fractional Fourier transform representation of a func-
tion lives. This is best understood by referring to Figure 14.2,
which shows the phase space spanned by the axes u (usually
time or space) and p (temporal or spatial frequency). This phase
space is also referred to as the time—frequency or space-frequency
plane in the signal processing literature. The horizontal axis u is
simply the time or space domain, where the original function lives.
The vertical axis p is simply the frequency (or Fourier) domain
where the ordinary Fourier transform of the function lives.
Oblique axes making angle o constitute domains where the ath
order fractional Fourier transform lives, where a and « are related
through o = aw/2. Notice that this description is consistent with
the fact that the second Fourier transform is equal to the parity
operation (associated with the —u axis), the fact that the —1st
transform corresponds to the inverse Fourier transform (associ-
ated with the — axis), and the periodicity of f,() in a (adding a
multiple of 4 to a corresponds to adding a multiple of 21 to o).

For those familiar with phase spaces from a mechanics—
rather than a signal analysis—perspective, we note that the cor-
respondence between spatial frequency and momentum allows
one to construct a correspondence between the familiar mech-
anical phase space of a single degree of freedom (defined by the
space axis and the momentum axis), and the phase space of
signal analysis (defined by the space axis and the spatial fre-
quency axis). What is important to understand for the present
purpose is that the phase space or time- and/or space-frequency
planes we are talking about is essentially the same physical
construct as the classical phase space of mechanics.

a=amn/2

FIGURE 14.2 Phase space and the ath order fractional Fourier
domain. (From Ozaktas, H. M. and Kutay, M. A., Proceedings of the
European Control Conference. European Union Control Association and
University of Porto, Porto, Portugal, 2001. With permission.)
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Referring to axes making angle a = am/2 with the u axis as
the “ath fractional Fourier domain” is supported by several of the
properties of the fractional Fourier transform to be discussed
further in Section 14.5. However, the most substantial justifica-
tion is based on the fact that

fractional Fourier transformation corresponds to rotation
in phase space.

This can be formulated in many ways, the most straightforward
being to consider a phase-space distribution (or time/space-
frequency representation) of the function f(u), such as the
Wigner distribution Wy(u, ), which is defined as

Wi (u, p) = J flu+u'/2)f*(u— u [2)e 2 ! (14.21)

—0C

The many properties of the Wigner distribution [37,67] support
its interpretation as a function giving the distribution of signal
energy in phase space (the time- or space-frequency plane). That
is, the Wigner distribution answers the question “How much of
the signal energy is located near this time and frequency?”
(Naturally, the answer to this question can only be given within
limitations imposed by the uncertainty principle.) Three of the
important properties of the Wigner distribution are

2 (14.22)

J We(u, ) dp = Ro[Wr(u, w)] = |f(u)

J Wit w) dit = Rl Wy p)] = [FP,  (14.23)
J J Wi(u, w) dudp = || f||°= Signal energy. (14.24)

z

sy
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Here R, denotes the integral projection (or Radon transform)
operator which takes an integral projection of the two-dimensional
function Wy(u, u) onto an axis making angle o with the u axis,
to produce a one-dimensional function (page 56 of [129]).

Now, it is possible to show that the Wigner distribution
Wi (u, ) of fo(u) is a clockwise rotated version of the Wigner
distribution Wy (u, ) of flu). Mathematically,

Wy, (4, ) = Wy(u cos a — p sin o, u sin & + . cos a).
(14.25)

That is, the act of fractional Fourier transformation on the
original function, corresponds to rotation of the Wigner distri-
bution [88,107,117]. An immediate corollary of this result, sup-
ported by Figure 14.3, is
Ra Wy, )] = [fu(w), (14.26)

which is a generalization of Equations 14.22 and 14.23. This
equation means that the projection of the Wigner distribution
of f(u) onto the axis making angle « gives us |f,(4)|*, the squared
magnitude of the ath fractional Fourier transform of the func-
tion. Since projection onto the u axis (the time or space domain)
gives |f(u)|* and projection onto the w = u; axis (the frequency
domain) gives |[F(w)|?, it is natural to refer to the axis making
angle o as the ath order fractional Fourier domain.

Closely related to the Wigner distribution is the ambiguity
function As(i, 1) of the function f{u), defined as

Ap(, p) = Jf(u/+a/2)f*(u/—a/z)e—i“f*“’ du'.  (14.27)

Whereas the Wigner distribution is the prime example of an
energetic time-frequency representation, the ambiguity function

Wy (1)

FIGURE 14.3  (a) Projection of Wy (u, ) onto the u, axis. (b) Projection of Wr, (u, ) onto the u axis. (From Ozaktas, H. M. and Kutay, M. A., Proceedings
of the European Control Conference. European Union Control Association and University of Porto, Porto, Portugal, 2001. With permission.)
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is the prime example of a correlative time—frequency representa-
tion. The ambiguity function deserves this by virtue of the
following properties [37,67]:

o]

Ar(@,0) = SolA (@ )] = J F + af*e)d,  (14.28)
AjO.0) = Sepla ) = | FOW+ WP W) i, (1429

Ar(a, ) < Af(0,0) = ||f||2: En[f] = Signal energy, (14.30)

which say that the on-axis profiles of the ambiguity function are
equal to the autocorrelation of the signal in the time and fre-
quency domains, respectively. Here S, denotes the slice operator
that returns the slice As(p cos a, p sin ) of the two-dimensional
function A¢(u, L) (page 56 of [129]).

Now, it is possible to show that slices of the ambiguity func-
tion As(i, ju) satisfy

Sa[Af(ﬁ> @)](P) = Af(p cos o, p sin 0‘) :_](201/17(‘)) *fZ*OL/'rr(_p))
(14.31)

where * denotes ordinary convolution. Just as oblique projections
of the Wigner distribution correspond to the squared magnitudes
of the fractional Fourier transforms of the function, the oblique
slices of the ambiguity function correspond to the autocorrela-
tions of the fractional Fourier transforms of the function.

Finally, we note that the ambiguity function is related to the
Wigner distribution by what is essentially a two-dimensional
Fourier transform:

Ap(i, ) = J J Wi (u, e 2T gy dyy, (14.32)

14.4 Fractional Fourier Transforms
of Some Common Functions

Below we list the fractional Fourier transforms of some common
functions. Transforms of most other functions must usually be
computed numerically (Section 14.13).

Unit function: The fractional Fourier transform of f(u) =1 is

F1] =1+ tan qe ™ e, (14.33)

This equation is valid when a # 2j + 1 where j is an arbitrary
integer. The transform is 8(u) when a = 2j + 1.

Delta function: The fractional Fourier transform of a delta
function f(u) = d(u — up) is

]_-a[s(u o uO)] _ meiw(uz cot a—2uttg csc o+uf cot o)
(14.34)

Transforms and Applications Handbook

This expression is valid when a # 2j. The transform of 8(u — 1)
is 8(u — up) when a = 4j and d(u + uy) when a = 4j + 2.

Harmonic function: The fractional Fourier transform of a har-
monic function f(u) = exp (i2mwu) is

Fe [eiZ‘rrpu(,u] _ \/m e—iq-r(u2 tan a—2up, sec a-+ud tan o)
(14.35)

This equation is valid when a # 2j+ 1. The transform of
exp (2mwpou) is 8(u — py) when a=4j+1 and 8(u+ )
when a = 4j + 3.

General chirp function: The fractional Fourier transform of a
general chirp function f(u) = exp [im(xu® + 2£u)] is

Fe [eiﬂ(xu2+2§u)]

— 1+itan ei’rr[uz(xftana)+2u§ seca—& tana]/[14x tana]
1+ x tan o

(14.36)

This equation is valid when a— (2/m)arctany # 2j + 1.
The transform of exp (imyxu?) is +/1/(1 —ix)8(u) when
[a— (2/m)arctany] = 2j+ 1 and V1/(1 —ix)  when

[a — (2/)arctan x] = 2j.
Hermite-Gaussian functions: The fractional Fourier transform
of a Hermite-Gaussian function f(u) = ¥, (u) is

Fol,(w)] = e " P, (w). (14.37)

General Gaussian function: The fractional Fourier transform of
a general Gaussian function f(u) = exp [—w(xu* + 2£u)] is

Fe [e*"T(X“2+2§“)]

1 —icota ei’n’ cot o[t (x2—1)+2uxé sec a+£2]/[x2+cotal
X —icota

—r csc? au(uPx+2uf cos a—xE? sin? )/ (x3+cot )

X e (14.38)

Here x > 0 is required for convergence.

14.5 Basic and Operational Properties
of the Fractional Fourier Transform

Here we present a list of the more important basic and oper-
ational properties of the FRT. Readers can easily verify that the
operational properties, such as those for scaling, coordinate
multiplication, and differentiation, reduce to the corresponding
property for the ordinary Fourier transform when a=1.

Linearity: Let 7 denote the ath order fractional Fourier trans-
form operator. Then F* >, bifi(1)] = 3 bl F fi(w)].
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Integer orders: F' k—(F )k where F denotes the ordinary Four-
ier transform operator. This property states that when a is equal
to an integer k, the ath order fractional Fourier transform is
equivalent to the kth integer power of the ordinary Fourier
transform, defined by repeated application. It also follows that
F? =P (the parity operator), F 3= F 1= (F)! (the inverse
transform operator), F 4= FO =7 (the identity operator), and
j:j _ ‘7_—jm0d4.

Inverse: (F°)~' = F° In terms of the kernel, this property is
stated as K, ' (u,u') = K_,(u, /).

Unitarity: (F Ot = (FYH = F~% where ()" denotes the con-
jugate transpose of the operator. In terms of the kernel, this
property can be stated as K; ' (u,u') = K (u/, u).

Index additivity: F2F" = F*™ 1In terms of kernels this can
be written as Kq, 44, (u, ) = [ Ko, (u, u")K,, (u”, 1) du”.

Commutativity: F2F% = F4F®,
Associativity: F@(F2FM) = (FRF®2)F".

Eigenfunctions: F°[{s,(u)] = exp (—ianmw/2)s, (u). Here s, (1)
are the Hermite-Gaussian functions defined in Section 14.2.

Parseval: [ f*(u)g(u)du = [ff (u)ga(u)du. This property is
equivalent to wunitarity. Energy or norm conservation
(En[f] = En[f,] or || f]| = |lfal]) is a special case.

Time reversal: Let P denote the parity operator: P[f(u)] =
f(—u), then

FoP = PF*
FUIf(-u)] = fu(—u)

(14.39)

(14.40)

Transform of a scaled function: Let M (M) and Q(g) denote the
scaling M(M)[f(w)] = M |71/ 2f(u/M) and chirp multiplication
Q@f(w)] = e imau f(u) operators, respectively. Here the nota-
tion M(M)[f(u)] means that the operator M (M) is applied to
the function f(u). Then

FO M(M) = Q(— cot a (1 — (cos® ') /(cos* a)))

X M(sin /M sin o) F?, (14.41)

l—icota , 2 2
FIM -1/2 w/ MY = | —— = gimu cota(1—(cos o')/(cos? @)
(1) = [ e
Mu sin o
X fu (7) (14.42)
Sin @

Here o = arctan (M % tan o) and o’ is taken to be in the same
quadrant as a. This property is the generalization of the ordinary
Fourier transform property stating that the Fourier transform of
f(u/M) is |M|F(Mp). Notice that the fractional Fourier trans-
form of f(u/M) cannot be expressed as a scaled version of f,(u)
for the same order a. Rather, the fractional Fourier transform of
f(u/M) turns out to be a scaled and chirp modulated version of
f(u) where @’ # a is a different order.
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Transform of a shifted function: Let SH(up) and PH(p,)
denote the shift SH(uo)[f(u)] = f(u + up) and the phase shift
PH(o)[f ()] = exp (i2mwpyu)f (u) operators, respectively. Then

F2SH(ug) = ™o snecoseppyy sin o) SH(up cos o) F,
(14.43)

]:“[f(u + uO)] — eifrrué sinacosaeiZ’rruugsinocﬁz(u + U Cos OL).

(14.44)

We see that the SH(uy) operator, which simply results in a
translation in the u domain, corresponds to a translation fol-
lowed by a phase shift in the ath fractional domain. The amount
of translation and phase shift is given by cosine and sine multi-
pliers which can be interpreted in terms of “projections” between
the axes.

Transform of a phase-shifted function:

FAPH() = e i sinaccosappy(y 0 cos o) SH(—p sin o) F2,
(14.45)

]_-a[ exp (zZ’rrMOu)f(u)] _ e—i’n’ug sinoccosocez'Z'ﬂ'Lq.L0 cos o

fa(u — py sin a). (14.46)
Similar to the shift operator, the phase-shift operator, which
simply results in a phase shift in the # domain, corresponds to
a translation followed by a phase shift in the ath fractional
domain. Again the amount of translation and phase shift are
given by cosine and sine multipliers.

Transform of a coordinate multiplied function: Let ¢/ and D
denote the coordinate multiplication U[f(u)] = uf(u) and
differentiation D[f(u)] = (i2m) 'df(u)/du operators, respect-
ively. Then

F*U" = [cos ald — sin a D]"F*, (14.47)

Folu"f(u)] = [cos au — sin a (i2m)'d/du]"f,(u). (14.48)
When a =1, the transform of a coordinate multiplied function
uf (u) is the derivative of the transform of the original function
f(u), a well-known property of the Fourier transform. For arbi-
trary values of a, we see that the transform of uf(u) is a linear
combination of the coordinate-multiplied transform of the ori-
ginal function and the derivative of the transform of the original
function. The coefficients in the linear combination are cos o
and —sin o. As a approaches 0, there is more uf(u) and less
df (u)/du in the linear combination. As a approaches 1, there is
more df (u)/du and less uf (u).

Transform of the derivative of a function:

F*D" = [sin ald + cos a D" F*, (14.49)

Foll(i2m) " d/du]"f (u)] = [sin au + cos o (i2m) "' d/du]"f,(u).
(14.50)
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When a=1 the transform of the derivative of a function
df (u)/du is the coordinate-multiplied transform of the original
function. For arbitrary values of g, we see that the transform is
again a linear combination of the coordinate-multiplied trans-
form of the original function and the derivative of the transform
of the original function.

Transform of a coordinate divided function:

Fofw)/u] = —i cse o ¢ cota Tfa(u,)e<m,zcom) dud.
h (14.51)
Transform of the integral of a function:
Fe J fG)du | = sec ae ™ tane J fult )™ gy
) ) (14.52)
A few additional properties are
FAf )] = f*a(u), (14.53)
FUAFw) +f(=u)/2] = (fal) + fa(=uw)/2, (14.54)
FAG ) = f(=w)/2] = (fo(w) — fa(=u))/2. (14.55)

It is also possible to write convolution and multiplication
properties for the fractional Fourier transform, though these are
not of great simplicity (page 157 of [129] and [9,174]).

A function and its ath order fractional Fourier transform
satisfy an “uncertainty relation,” stating that the product of the
spread of the two functions, as measured by their standard
deviations, cannot be less than | sin (am/2)|/4m [116].

We may finally note that the transform is continuous in the
order a. That is, small changes in the order a correspond to small
changes in the transform f,(u). Nevertheless, care is always
required in dealing with cases where a approaches an even
integer, since in this case the kernel approaches a delta function.

14.6 Dual Operators and Their Fractional
Generalizations

The dual of the operator A will be denoted by .A” and satisfies

AP = F1AF. (14.56)
AP performs the same action on the frequency-domain repre-
sentation F(w), that A performs on the time-domain represen-
tation f(u). For instance, if A represents the operation of
multiplying with the coordinate variable u, then the dual A"
represents the operation of multiplying F(p) with w, which
in the time domain corresponds to the operator (i2m) 'd/du.
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The fractional operators we deal with in this section perform the
same action in a fractional domain:

As = FOAF°. (14.57)
This equation generalizes Equation 14.56 and reduces to it when
a=1 with A; = AP. If again A corresponds to the multiplica-
tion of f(u) with u, then A, corresponds to the multiplication of
fa(ua) with u,, where u, denotes the coordinate variable
associated with the ath fractional Fourier domain. The effect
of A, in the ordinary time domain can be expressed as
cos auf (u) + sin o (i2m) 'df (u)/du (see “Transform of a
coordinate multiplied function” in Section 14.5).

To distinguish the kind of fractional operators discussed in
this section from the ath operator power of .4 which is denoted
by A% we are denoting them by A,. The FRT is the ath operator
power of the ordinary Fourier transform, but the fractional
operators here are operators that perform the same action, such
as coordinate multiplication, in different fractional Fourier
domains. To further emphasize the difference, we note that for
a=0, Ay = A while A°=7; and for a=1, A; = AP while
A' = A. In other words, A, interpolates between the operator
A and its dual A", gradually evolving from one member of the
dual pair to the other as the fractional order goes from zero to
one. On the other hand, A" interpolates between the identity
operator and the operator A.

The first pair of dual operators we will consider are the coord-
inate multiplication U/ and differentiation D operators, whose
effects in the time domain are to take a function f(u) to uf(u)
and (i2m) ' df (u)/du, respectively. The fractional forms of these
operators U, and D, are defined so as to have the same functional
effect in the ath domain; they take f,(u,) to wu.f,(u,) and
(i2ﬂ)_ldﬁ(uu)duu, respectively. In the time domain these oper-
ations correspond to taking f(u) to cos o uf(u) + sin a (i2m) 7!
df (u)/duand — sin a uf (1) + cos o (i2) ' df (u) /du, respectively.
(These and similar results are a consequence of the operational
properties presented in Section 14.5.) These relationships can be
captured elegantly in the following operator form:

U, = cos ald + sin a D,
. (14.58)
D, = —sin ald + cos aD.

The phase shift operator PH(m) and the translation operator
SH(&) are also duals which are defined in terms of the U
and D operators as PH(m) = exp (2mmU) and SH(E) =
exp (i2wED). (Such expressions are meant to be interpreted
in terms of their series expansions.) These operators take f(u)
to exp (2mmu)f(u) and f(u + &), respectively. The fractional
forms of these operators are defined as PH,(n) = exp (i2mni,)
and SH,(§) = exp (i2wED,) and satisfy

PHa(m) = exp (imm? sin a cos o) PH(M cos a)SH(n sin o),
SH,(E) = exp (—imé? sin o cos a)PH(—E sin a)SH(E cos o).
(14.59)
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The scaling operator M(M) can be defined as M(M) =
exp [—im(In M)(UD + DU)] where M > 0. It takes flu) to
V1/Mf(u/M). This operator is its own dual in the sense that
scaling in the time domain corresponds to descaling in the
frequency domain: the Fourier transform of /1/Mf(u/M) is
VM F(Mp). The fractional form is defined as M, (M) =
exp [—im(In M)(U,D, + D,U,)] and satisfies

M(M) = FMM)F". (14.60)

The dual chirp multiplication Q(g) and chirp convolution
R(r) operators are defined as Q(gq) = exp (—im qblz) and
R(r) = exp (—imrD?*). In the time domain they take f(u) to
exp (—im qu?)f(u) and exp(—i*rr/4)\/17r exp (im u? /1)+f (w),
respectively.  Their fractional forms are defined as
Q.(q) = exp (—i‘rrqlz{i) and R,(r) = exp(—iTeri) and satisfy

Q.(g9) = R(—tan a) Q(q cos* o) R(tan a),

(14.61)
Ra(r) = Q(—tan a) R(r cos” a) Q(tan ).

We now turn our attention to the final pair of dual operators
we will discuss. The discretization DZ(Ap) and periodization
PE(Au) operators can be defined in terms of the phase shift
and translation operators: DZ(Aw) =7 _ PH(kAp) and
PEAu) =Y 5o SH(kAu). The parameters Au >0 and
Ap > 0 correspond to the period of replication in the time
and frequency domains, respectively. Unlike the other operators
defined above, these operators do not in general have inverses.
Since sampling in the time domain corresponds to periodic
replication in the frequency domain and vice versa, we also
define du = 1/Ap and dp = 1/Au, denoting the sampling inter-
val in the time and frequency domains, respectively. It is possible
to show that the discretization and periodization operators take
fw) to dud s d(u— kdu)f (kdu) and D> 0 f(u — kAuw),
respectively. In the time domain, the discretization operator
corresponds to multiplication with an impulse train, and the
periodization operator corresponds to convolution with an
impulse train (and vice versa in the frequency domain). Discre-
tization in the time domain corresponds to periodization in
the frequency domain and periodization in the time domain
corresponds to discretization in the frequency domain. This is
what is meant by the duality of these two operators. The frac-
tional versions of these operators can be defined as
DIZ,(Ap) = >0 PHa(kAp)  and  PE(Au) =00
SHa(kAu) and satisfy

DI (Ap) = R(—tan o) DI(Ap cos o) R(tan a),
PE,(Au) = Q(—tan o) PE(Au cos o) Q(tan «).

(14.62)

Equations 14.58 through 14.62 all express the fractional oper-
ators in terms of their non-fractional counterparts. Equations 14.58
through 14.60 are directly related to the corresponding operational
properties presented in Section 14.5, and may be considered
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abstract ways of expressing them (transform of a coordinate multi-
plied or differentiated function, transform of a phase-shifted or
shifted function, transform of a scaled function, respectively).

The fractional operators in Equation 14.62 interpolate between
periodicity and discreteness with the smooth transition being
governed by the parameter a. However, this is not the only
significance of the fractional periodicity and discreteness oper-
ators. In practice, one cannot realize infinite periodic replication;
any periodic replication must be limited to a finite number of
periods. This corresponds to multiplying the infinite periodic
replication operator with a window function, and will be referred
to as partial periodization. Likewise, one cannot realize discreti-
zation with true impulses; any discretization will involve finite-
width sampling pulses. This corresponds to convolving a true
impulse sampling operator with a window function, and will be
referred to as partial discretization. Thus, the partial periodiza-
tion and discretization operations represent practical real-life
replication and sampling operations. It has been shown that
fractional periodization and discretization operators can be
expressed in terms of partial periodization and discretization
operators [128]. Therefore, the fractional periodization and dis-
cretization operators are also related to real-life sampling and
periodic replication.

The subject matter of this section is further discussed in
[128,156].

14.7 Time-Order and Space-Order
Representations

Interpreting the fractional Fourier transforms f,(u) of a function
flu) for different values of the order a as a two-dimensional
function of u and a leads to the concept of time-order (or
space-order) signal representations. Just like other time-
frequency and time-scale (or space-frequency and space-scale)
signal representations, they constitute an alternative way of dis-
playing the content of a signal. These representations are redun-
dant in that the information of a one-dimensional signal is
displayed in two dimensions. There are two variations of the
time-order representation, the rectangular time-order represen-
tation and the polar time-order representation.

For the rectangular time-order representation, f,(u) is inter-
preted as a two-dimensional function, with u the horizontal
coordinate and a the vertical coordinate. As such, the represen-
tations of the signal f(u) in all fractional domains are displayed
simultaneously. Mathematically, the rectangular time-order rep-
resentation Tf(u,a) of a signal f is defined as

Tr(u, a) = fo(u). (14.63)

Figure 14.4 illustrates the definition of the rectangular time-order
representation. Such a display of the fractional Fourier trans-
forms of the rectangle function is shown in Figure 14.1.

For the polar time-order representation, f,(u) = fou/m(p) is
interpreted as a polar two-dimensional function where p is the
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Srau)
Sro(w)
Sos(w)
Soo(w)
fga)
Foelt)
So0(®)
So1.4(u)

FIGURE 14.4 The rectangular time-order representation. (From
Ozaktas, H. M. and Kutay M. A., Technical Report BU-CE-0005, Bilkent
University, Department of Computer Engineering, Ankara, January
2000; Ozaktas, H. M., Zalevsky, Z., and Kutay, M. A., The Fractional
Fourier Transform with Applications in Optics and Signal Processing.
John Wiley & Sons, New York, 2001. With permission.)

radial coordinate and « is the angular coordinate. As such, all the
fractional Fourier transforms of f{u) are displayed such that f,(p)
lies along the radial line making angle o = am/2 with the hori-
zontal axis. Mathematically, the polar time-order representation
T¢(p, o) of a signal fis defined as

Tf(P, o) ZfZ(x/'n'(p)' (14.64)
T¢(p, ) is periodic in o with period 21t as a result of the fact that

fa(p) is periodic in a with period 4. T¢(p, ) can be consistently
defined for negative values of p as well by using the property

Sio(P)

fis ()

fis(p)

S0

FIGURE 14.5 The polar time-order representation. (From Ozaktas,
H. M. and Kutay M. A., Technical Report BU-CE-0005, Bilkent Univer-
sity, Department of Computer Engineering, Ankara, January 2000;
Ozaktas, H. M., Zalevsky, Z., and Kutay, M. A., The Fractional Fourier
Transform with Applications in Optics and Signal Processing. John Wiley
& Sons, New York, 2001. With permission.)
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from which it also follows

fax2(p) = fa(—p), that
Tr(p, ) = Ty(—p, o £ 7). Figure 14.5 illustrates the definition
of the polar time-order representation.

As a consequence of its definition, there is a direct relation
between the polar time-order representation and the concept of
fractional Fourier domains. Each fractional Fourier transform
fa(p) of the signal f “lives” in the ath domain, defined by the
radial line making angle o = aw/2 with the u axis. The polar
time-order representation can be considered as a time-frequency
space since the horizontal and vertical axes correspond to time
and frequency. The oblique slices of the polar representation are
simply equal to the fractional Fourier transforms. The slice at
o =0 is the time-domain representation f(p), the slice at
a =/2 is the frequency-domain representation F(p), and
other slices correspond to fractional transforms of other orders.

We now discuss a number of properties of the polar time-
order representation. The original function is obtained from the
distribution as

fw) = fo(u) = T¢(u, 0). (14.65)

The time-order representation of the a’th fractional Fourier

transform of a function is simply a rotated version of the time-

order representation of the original function

Ty, (p, o) = Tp(p, e + o), (14.66)

where o' = a’w/2. Since the time-order representation is linear,

the representation of any linear combination of functions is the
same as the linear combination of their representations.

We now discuss the relationship of time-order representations
with the Wigner distribution and the ambiguity function. We
had already encountered the Radon transform of the Wigner
distribution:

Rl Wit WIP) = o= 0)* = |Trp ). (14.67)
Thus, the Radon transform of the Wigner distribution, inter-
preted as a polar function, corresponds to the absolute square
of the polar time-order representation. We also already en-
countered the following result, which is a consequence of the
projection-slice theorem (page 56 of [129]):

SalAs(@, 1)](p) = As(p cos a,p sin )
= Tf(P)a)*TF(_p’a) :ﬁa/ﬁ(p)*ﬁ)‘&/w(_p))
(14.68)

where » denotes ordinary convolution. The Radon transforms
and slices of the Wigner distribution and the ambiguity function
are summarized in Table 14.1. For both the Wigner distribution
and the ambiguity function, the Radon transform is of product
form and the slice is of convolution form. The essential difference
between the Wigner distribution and the ambiguity function lies
in the scaling of p by 2 or 1/2 on the right-hand side.
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TABLE 14.1 Radon Transforms and Slices of the Wigner Distribution
and the Ambiguity Function

RDN [ Wy 1)](p) =
RDN o[Ar(@ 1)](p)
SLCL Wy, ](p) =
SLC. 1A ()] (p) =

Sooym(PYfoasm(p) = Tr(p, ) Tf (p, )

= fra/n(®/2fsa/n(—p/2) = T(p/2, ) Tf (—p/2, @)
2fra/m(20)*2f30/=(2p) = 2T;(2p, ) 2Tf (2p, @)
Srayu(P)fraym(—p) = Tr(p, )* T (—p, @)

Sources: From Ozaktas, H. M. and Kutay, M. A., Technical Report BU-CE-
0005, Bilkent University, Department of Computer Engineering, Ankara,
January 2000; Ozaktas, H. M., et al., The Fractional Fourier Transforms
with Applications in Optics and Signal Processing. John Wiley & Sons,
New York, 2001. With permission.)

Note: The upper row can also be expressed as ma/w(p)\z = |Tf(p,a)\2.

Analogous expressions for the Radon transforms and slices of
the polar time-order representation Ty(p, ) and its two-dimen-
sional Fourier transform T (p, @) are given in Table 14.2. The slice
of Ty(p,a) at a certain angle is simply equal to the fractional
Fourier transform f,(p) by definition (with o = aw/2). The
Radon transform of Tf(ﬁ,&) at an angle ¢ is given by f,41(p) or
Tf(p,d +7/2), a w/2 rotated version of Tr(p,a) (with
¢ = bw/2). We already know that the time-frequency representa-
tion whose projections are equal to |f,(u)|* is the Wigner distribu-
tion. We now see that the time—frequency representation whose
projections are equal to f,(u) is the two-dimensional Fourier trans-
form of the polar time-order representation (within a rotation).

Thus in Tables 14.1 and 14.2 we present a total of eight
expressions for the Radon transforms and slices of the Wigner
distribution and its two-dimensional Fourier transform (the
ambiguity function), and the Radon transforms and slices of
the polar time-order representation and its two-dimensional
Fourier transform.

The polar time-order representation is a linear time-frequency
representation, unlike the Wigner distribution and ambiguity
function which are quadratic. Its importance stems from the
fact that the Radon transforms (integral projections) and slices
of the Wigner distribution and the ambiguity function can be
expressed in terms of products or convolutions of various scaled
forms of the time-order representation and its two-dimensional

TABLE 14.2 Radon Transforms and Slices of the Polar
Time-Order Representation and Its Two-Dimensional
Fourier Transform

RDN [ Ts(ps )](Q) = f:/rz/z Faw+0y/m(Q sec B) @ sec” 6d6

R'DNd,[Tf(P, 1(@) = fap/m+1(Q)
SLEC[Tr(p, )](Q) = fo/=(Q)
(

S£C¢[Tf(ﬁ,5<)] 0) =4+ Lw/zfz(¢+e)/n+1 (0 cos 0) sec 040

)
@)

Sources: From Ozaktas, H. M. and Kutay, M. A,
Technical Report BU-CE-0005, Bilkent University,
Department of Computer Engineering, Ankara, January
2000; Ozaktas, H. M., et al, The Fractional Fourier
Transforms with Applications in Optics and Signal
Processing. John Wiley & Sons, New York, 2001. With
permission.)
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Fourier transform. These representations are discussed in greater
detail in Chapter 5 of [129].

14.8 Linear Canonical Transforms

Linear canonical transforms (LCTs) are a three-parameter family
of linear integral transforms. Many important operations and
transforms including the FRT are special cases of linear canonical
transforms. Readers wishing to learn more than we can cover
here are referred to [129,164].

The linear canonical transform fy (1) of f{u1) with parameter M
is most conveniently defined as

(@) di, (14.69)

) = J o,

Cmu, ) = /B e ™ exp [im(au® — 2Bur + yu )],
where a, B, and y are real parameters. The label M represents
the three parameters o, B, and «y which completely specify the
transform. Linear canonical transforms are unitary; that is, the
inverse transform kernel is the Hermitian conjugate of the ori-
ginal transform kernel: Cy;' (u, ') = Ci(u/, u).

The composition of any two linear canonical transforms is
another linear canonical transform. In other words, the effect of
consecutively applying two linear canonical transforms with dif-
ferent parameters is equivalent to applying another linear canon-
ical transform whose parameters are related to those of the first
two. (Actually this is strictly true only within a + sign factor
[129,164].) Such compositions are not in general commutative,
but they are associative.

Finding the parameters of the composite transform is made
easier if we define a 2 X 2 unit-determinant matrix to represent
the parameters of the transform. We let the symbol M (which
until now denoted the three parameters «, 3, 'y) now be defined
as a matrix of the form

M:{é g]:[—sﬁv/s iﬁg}:[s—aﬁ/s el
(14.70)

with determinant AD — BC = 1. The three original parameters
can be expressed in terms of the matrix elements as « = D/B,
B =1/B, and vy = A/B, and the definition of linear canonical
transforms can be rewritten as

(W) (14.71)

- J Cunlu ) () i,

; D
Cm(u, ') = \/1/Be ™ * exp [i’rr (—

1 A

2 ! 2
—2—ud += .
u uu u ):|

Now, it is easy to show the following results: The matrix M;
corresponding to the composition of two systems is the matrix
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product of the matrices M, and M; corresponding to the indi-
vidual systems. That is,

M; = M,M,, (14.72)
where

M, is the matrix of the transform that is applied first
M, is the matrix of the transform that is applied next

Furthermore, the matrix corresponding to the inverse of a linear
canonical transform is the inverse of the matrix corresponding to
the original transform.

The set of linear canonical transforms satisfies all the axioms
of a noncommutative group (closure, associativity, existence of
identity, inverse of each element), just like the set of all unit-
determinant 2 X 2 matrices (again within a = sign). Certain sub-
sets of the set of linear canonical transforms are groups in
themselves and thus are subgroups. Some of them will be
discussed below. For example, the fractional Fourier transform
is a subgroup with one real parameter.

The effect of linear canonical transforms on the Wigner dis-
tribution of a function can be expressed quite elegantly in terms
of the elements of the matrix M:

Wi, (Au + B, Cu + D) = We(u, ), (14.73)

Wi, (u, n) = Wy(Du — Bu, —Cu + Ap.). (14.74)
A similar relationship holds for the ambiguity function as
well. The above result means that the Wigner distribution of
the transformed function is simply a linearly distorted form
of the Wigner distribution of the original function, with the
value of the Wigner distribution at each time/space-frequency
point being mapped to another time/space-frequency point. Since
the determinant of M is equal to unity, this pointwise geometrical
distortion or deformation is area preserving; it distorts but does
not concentrate or deconcentrate the Wigner distribution.

We now discuss several special cases of linear canonical
transforms that correspond to specific forms of the matrix M.
The last of these special cases will be the fractional Fourier
transform which corresponds to the case where M is the rota-
tion matrix.

The scaling operation takes flu) to +/1/Mf(u/M). The
inverse of a scaling operation with parameter M > 0 is a scaling
operation with parameter 1/M. The M matrix is of the form

M 0

0 1/M
and the Wigner distribution of the scaled function is
Wy(u/M, M) (Figure 14.6b shows how the Wigner distribution
is scaled for M =2).

Let us now consider chirp multiplication which takes f{u) to
—imqu

(14.75)

e ’ f(u). The inverse of this operation with parameter q has
the same form but with parameter — g. Its M matrix is
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FIGURE 14.6 (a) Rectangular region in the time/space-frequency
plane, in which most of the signal energy is assumed to be concentrated.
Effect of (b) scaling with M = 2, (c) chirp multiplication with ¢ = 1, (d)
chirp convolution with r = 1, (e) Fourier transformation, (f) fractional
Fourier transformation with a = 0.5. (From Ozaktas, H. M., Zalevsky,
Z.,and Kutay, M. A., The Fractional Fourier Transform with Applications
in Optics and Signal Processing. John Wiley & Sons, New York, 2001.

With permission.)
1 0
—q 1

and the Wigner distribution of the chirp multiplied function is
Wy (u, .+ qu) (Figure 14.6c shows this vertical shearing for
q=1).

Now consider chirp convolution which takes f(u) to
e /4 /1/r exp (imu? /r)+f(u). The inverse of this operation
with parameter r has the same form but with parameter —r.
Its M matrix is

(14.76)

(14.77)
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and the Wigner distribution of the chirp convolved function is
Wi(u — r, ) (Figure 14.6d shows this horizontal shearing for
r=1).

The  ordinary takes flu) to
ffcoo f@ Ye~i2mud g/ However, the Fourier transform that is a
special case of linear canonical transforms has a slightly modified
definition, taking f(u) to e~ "™/* [ f(u')e 2™ du/'. The M matrix is

0 1
o
and the Wigner distribution of the Fourier transformed function
is Wy(—p, u) (Figure 14.6e shows this /2 rotation).
Finally, we turn our attention to the fractional Fourier trans-
form, which takes f(u) to f,(u) as defined in Equation 14.1. The

inverse of the ath order FRT is the —ath order FRT. The M
matrix is

Fourier  transform

(14.78)

cos (am/2)
—sin (am/2)

sin (am/2)
cos (am/2) (14.79)
and the Wigner distribution of the Fourier transformed
function is

Wl cos (am/2) u — sin (am/2) w, sin (aw/2) u 4 cos (aw/2) w].
(14.80)

We have already encountered this expression before in Equation
14.25 (Figure 14.6f shows this rotation by angle a = aw/2 when
a=0.5).

To summarize, we see that fractional Fourier transforms con-
stitute a one-parameter subgroup of linear canonical transforms
corresponding to the case where the M matrix is the rotation
matrix, and the fractional order parameter corresponds to the
angle of rotation. Fractional Fourier transformation corresponds
to rotation of the Wigner distribution in the time/space-
frequency plane (phase space). The ordinary Fourier transform
is a special case of the fractional Fourier transform, which is in
turn a special case of linear canonical transforms.

The matrix formalism not only allows one to easily determine
the parameters of the concatenation (composition) of several
LCTs, it also allows a given LCT to be decomposed into more
elementary operations such as scaling, chirp multiplication and
convolution, and the fractional Fourier transform. This is often
useful for both analytical and numerical purposes. Of the many
such possible decompositions here we list only a few (see page
104 of [129]):

o R A | P Ay

(14.81)

[ 1 o)1 B 10
:_(D—l)/B l:||:() 1}{(14_1)/3 1:|. (14.82)
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Such decompositions usually show how an arbitrary LCT can be
expressed in terms of its special cases. Specifically, the above two
decompositions show how any unit-determinant matrix can be
written as the product of lower and upper triangular matrices,
which we have seen correspond to chirp multiplication and
convolution operations.

Another important decomposition is the decomposition of an
arbitrary LCT into a fractional Fourier transformation followed
by scaling followed by chirp multiplication:

A B| |1 0||M ©0 cosa  sin
C D| |—-q 1||0 1/M||-sina cosa|’
(14.83)
where
a = arccot(A/B), (14.84)
M = sgn(A)VA? + B?, (14.85)
= A _D (14.86)
1=Bar+p) B '

where sgn(A) is the sign of A. The ranges of the square root and
the arccotangent both lie in (—m/2,w/2]. Equation 14.83 can be
interpreted geometrically as follows: any linear distortion in the
time/space-frequency plane can be realized as a rotation fol-
lowed by scaling followed by shearing. This decomposition is
important because it forms the basis of a fast and accurate
algorithm for digitally computing arbitrary linear canonical
transforms [76,119]. These algorithms compute LCTs with a
performance similar to that of the fast Fourier transform (FFT)
algorithm in computing the Fourier transform, both in terms of
speed and accuracy. Further discussion of decompositions of the
type of Equation 14.83 may be found in [4]. Other works on the
computation of LCT's include [64,65].

Many of the elementary and operational properties of LCTs
are collected in Section 14.9, which can be recognized as
generalizations of the corresponding properties of the fractional
Fourier transform.

14.9 Basic and Operational Properties
of Linear Canonical Transforms

Here we present a list of the more important basic and oper-
ational properties of the LCTs. Readers can easily verify that
the operational properties reduce to the corresponding property
for the fractional Fourier transform when M is the rotation
matrix.

Linearity: Let Cy denote the linear canonical transform operator
with  parameter matrix M. Then Cum[)> ), bifi(w)] =
>k belCufk(w)].

Inverse: (Cpy) ! = Cy--

Unitarity: Cw) =)t = Cyp-t where OY denotes the con-
jugate transpose of the operator.
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Associativity: (Cy,Cwm,)Cym, = Cwm, (Cum,Cwm,)-
Eigenfunctions: Eigenfunctions of linear canonical transforms

are discussed in [133].

Parseval: [ f*(u)g(u)du = [ fyi(u)gm(u)du. This property is
equivalent to wunitarity. Energy or norm conservation
(En[f] = En[ful] or || f|| = |fml]) is a special case.

Time reversal: Let P denote the parity operator:
Plf(w)] = f(—u), then
CmP = PCwm, (14.87)
Culf(=)] = fun(—u). (14.88)
Transform of a scaled function:
Cml K| f(u/K)] = Co [f ()] = far (). (14.89)

Here M’ is the matrix that corresponds to the parameters o' = «,
B’ = KB, and v = K?v.

Transform of a shifted function:

Cmlf (u — up)] = exp [im(RuuyC — u%AC)]fM(u — Auyg).
(14.90)

Here u, is real.

Transform of a phase-shifted function:

Cual exp (2o} ()] = exp [iming D21 — poB)fyr(u — Buy).

(14.91)
Here p,, is real.
Transform of a coordinate multiplied function:
Cumlu"f(w)] = [Du — B(i2mw) ' d/du]"fu(u). (14.92)

Here n is a positive integer.

Transform of the derivative of a function:

Cul [(2m) " d/dul"f (u)] = [—Cu + A(i2m) " d/dul" fu(u).

(14.93)
Here 1 is a positive integer.
A few additional properties are
Culf*(W)] = fyp1(w), (14.94)
Cul(f(w) + f(=w)/2] = (fm(w) + fu(—1))/2, (14.95)
Cul(f(w) — f(=w)/2] = (fu() — fu(—w))/2. (14.96)

A function and its linear canonical transform satisfy an
“uncertainty relation,” stating that the product of the spread of
the two functions, as measured by their standard deviations,
cannot be less than |B|/4m [129].
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14.10 Filtering in Fractional Fourier
Domains

Filtering, as conventionally understood, involves taking the Four-
ier transform of a signal, multiplying it with a Fourier-domain
transfer function, and inverse transforming the result (Figure
14.7a). Here, we consider filtering in fractional Fourier domains,
where we take the fractional Fourier transform, apply a filter
function in the fractional Fourier domain, and inverse transform
to the original domain (Figure 14.7b). Formally the filter output
is written as

fsingle(’/‘) = [-7:751 Ah falf(u) = Tsinglef(u)> (14-97)

where
F*? is the ath order fractional Fourier transform operator
Ay, denotes the operator corresponding to multiplication by
the filter function h(u)
T ingle is the operator representing the overall filtering config-
uration

To understand the basic motivation for filtering in fractional
Fourier domains, consider Figure 14.8, where the Wigner distri-
butions of a desired signal and an undesired noise term are
superimposed. We observe that the signal and noise overlap in
both the Oth and 1st domains, but they do not overlap in the
0.5th domain (consider the projections onto the uy = u, u; = ,
and u, 5 axes). Although it is not possible to eliminate the noise
in the time or frequency domains, we can eliminate it easily by
using a simple amplitude mask in the 0.5th domain.

Fractional Fourier domain filtering can be applied to the
problem of signal recovery or estimation from observations,
where the signal to be recovered has been degraded by a
known distortion or blur, and the observations are noisy. The
problem is to reduce or eliminate these degradations and noise.
The solution of such problems depends on the observation
model and the prior knowledge available about the desired signal,
degradation process, and noise. A commonly used observation
model is

g(u) = Jhd(u, () du' + n(u), (14.98)

where
ha(u, ') is the kernel of the linear system that distorts or blurs
the desired signal f(u)
n(u) is an additive noise term

The problem is to find an estimation operator represented by the
kernel h(u, '), such that the estimated signal

Flt) = jh(u, gl dl (14.99)
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FIGURE 14.7 (a) Filtering in the frequency domain; (b) filtering in the ath order fractional Fourier domain; (c) multi-stage (series) filtering;

(d) multi-channel (parallel) filtering.

optimizes some criteria. Despite its limitations, one of the most
commonly used objectives is to minimize the mean square error

2
o¢,. defined as

O = <J fest () — fw)]? du>, (14.100)
i
A Noise
7 . N
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FIGURE 14.8 Filtering in a fractional Fourier domain as observed in
the time- or space-frequency plane. a = 0.5 as drawn. (From Ozaktas,
H. M, et al, ] Opt Soc Am A-Opt Image Sci Vis, 11:547-559, 1994.
With permission.)

where the angle brackets denote an ensemble average. The esti-
mation or recovery operator minimizing o2, is known as the

optimal Wiener filter. The kernel h(u,u’) of this optimal filter
satisfies the following relation [87]:

Ry(u,u') = Jh(u, U R (", ') du”  for allu, v/,  (14.101)

where
Ry (u, u') is the statistical cross-correlation of f{u) and g(u)
Ree(u, u') is the statistical autocorrelation of g(u)

In the general case hq(u, 1) represents a time varying system, and
there is no fast algorithm for obtaining fes(u4).

We can formulate the problem of obtaining an estimate
fest() = fsingle (1) of flu) by using the ath order fractional Fourier
domain filtering configuration (Equation 14.97). As we will see in
Section 14.13, the fractional Fourier transform can be efficiently
computed with an ~ Nlog N algorithm similar to the fast Fourier
transform algorithm used to compute the ordinary Fourier trans-
form. Therefore, the fractional Fourier transform can be imple-
mented nearly as efficiently as the ordinary Fourier transform,
and the cost of fractional Fourier domain filtering is approxi-
mately the same as the cost of ordinary Fourier domain filtering.
The optimal multiplicative filter function h(u) for a given order a
that minimizes the mean square error defined in Equation 14.100
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for the filtering configuration represented by Equation 14.97 is
given by [85]:

JJ Ka(tta, w)K_g(thas ') Reg (u, ') dut’ dus

h(ua) = J-J‘ Ka(ua) U)K_a(ua’ u/)Rgg(u, L{/) du/ du >

(14.102)

where the statistical cross-correlation and autocorrelation func-
tions R (u, u') and Ree(u, u') can be obtained from the functions
Ry(u,u') and R,,(u, u'), which are assumed to be known. The
corresponding mean square error can be calculated from Equa-
tion 14.100 for different values of a, and the value of a resulting
in the smallest error can be determined.

Generalizations of the ath order fractional Fourier domain
filtering configuration are the multistage (repeated or serial)
and the multichannel (parallel) filtering configurations. These
systems consist of M single-domain fractional Fourier filtering
stages in series or in parallel (Figure 14.7). M =1 corresponds to
single-domain filtering in both cases. In the multistage system
shown in Figure 14.7c, the input is first transformed into the a;th
domain where it is multiplied by a filter h; (u). The result is then
transformed back into the original domain and the same process
is repeated M times consecutively. This amounts to sequentially
visiting the domains ay,ay,4ds, . . ., and applying a filter in each.
On the other hand, the multichannel system consists of M single-
domain blocks in parallel (Figure 14.7d). For each channel k, the
input is transformed to the a;th domain, multiplied with a filter
hi(u), and then transformed back. If these configurations are
used to obtain an estimate fir(1) or foa(u) of f(u) in terms of
g(u), we have

fser(u) = [f_uMAhM te faz_alAhI}—ul}g(u) = Tserg(u)>

(14.103)
M
foar(u) = [Z}"“Mkk}""k ) = Tpurg(u),  (14.104)
k=1
where
F* represents the aith order fractional Fourier transform
operator

Ay, denotes the operator corresponding to multiplication by
the filter function hy(u)

T ser» T par are the operators representing the overall filtering
configurations

Both of these equations reduce to Equation 14.97 for M= 1.
Multistage and multichannel filtering systems as described
above are a subclass of the class of general linear systems whose
input-output relation is given in Equation 14.99. Such linear
systems have in general N* degrees of freedom, where N is the
time-bandwidth product of the signals. Obtaining the output
from the input normally takes ~N? time, unless the system
kernel h(u, 1) has some special structure which can be exploited.
Shift-invariant (time- or space-invariant) systems are also a
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subclass of general linear systems whose system kernels h(u, u')
can always be expressed in the form h(u,u’) = h(u — u'). They
are a restricted subclass with only N degrees of freedom, but
can be implemented in ~NlogN time in the ordinary Fourier
domain.

We may think of shift-invariant systems and general linear
systems as representing two extremes in a cost-performance
trade-off. Shift-invariant systems exhibit low cost and low
performance, whereas general linear systems exhibit high cost
and high performance. Sometimes use of shift-invariant
systems may be inadequate, but at the same time use of general
linear systems may be an overkill and prohibitively costly.
Multistage and multichannel fractional Fourier domain filter-
ing configurations interpolate between these two extremes,
offering greater flexibility in trading off between cost and
performance.

Both filtering configurations have at most MN + M degrees of
freedom. Their digital implementation will take O(MN logN)
time since the fractional Fourier transform can be implemented
in ~Nlog N time. These configurations interpolate between gen-
eral linear systems and shift-invariant systems both in terms of
cost and flexibility. If we choose M to be small, cost and flexibility
are both low; M =1 corresponds to single-stage filtering. If we
choose M to be larger, cost and flexibility are both higher; as M
approaches N, the number of degrees of freedom approaches that
of a general linear system.

Increasing M allows us to better approximate a given linear
system. For a given value of M, we can approximate this system
with a certain degree of accuracy (or error). For instance, a shift-
invariant system can be realized with perfect accuracy with
M =1. In general, there will be a finite accuracy for each value
of M. As M is increased, the accuracy will usually increase (but
never decrease). In dealing with a specific application, we can
seek the minimum value of M which results in the desired
accuracy, or the highest accuracy that can be achieved for
given M. Thus these systems give us considerable freedom in
trading off efficiency and greater accuracy, enabling us to seek the
best performance for a given cost, or the least cost for a given
performance. In a given application, this flexibility may allow us
to realize a system which is acceptable in terms of both cost and
performance.

The cost-accuracy trade-off is illustrated in Figure 14.9, where
we have plotted both the cost and the error as functions of the
number of filters M for a hypothetical application. The two plots
show how the cost increases and the error decreases as we
increase M. Eliminating M from these two graphs leads us to a
graph of error versus cost.

The multistage and multichannel configurations may be fur-
ther extended to generalized filtering configurations or generalized
filter circuits where we combine the serial and parallel filtering
configurations in an arbitrary manner (Figure 14.10).

Having discussed quite generally the subject of filtering in
fractional Fourier domains, we now discuss the closely related
concepts of fractional convolution and fractional multiplication
[108,117]. The convolution of two signals h and f in the
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FIGURE 14.9 (a) Cost versus M, (b) error versus M, (c) error versus
cost. (From Kutay, M. A., PhD thesis, Bilkent University, Ankara, 1999;
Ozaktas, H. M., et al., The Fractional Fourier Transform with Applica-
tions in Optics and Signal Processing. John Wiley & Sons, New York,
2001. With permission.)
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FIGURE 14.10 Generalized filter circuits; each block is of the form
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ath fractional Fourier domain is defined such that their ath order
fractional Fourier domain representations h,(u,) and f,(u,) are
convolved to give the corresponding representation of some new
signal g:

ga(uu) = ha(u,) *fu(ua), (14.105)
where + denotes ordinary convolution. Likewise, multipli-
cation of two signals in the ath fractional Fourier domain is
defined as

gﬂ(url) = ha(uu)f;z(uu)~ (14.106)
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Of course, convolution (or multiplication) in the a=0th
domain is ordinary convolution (or multiplication) and convo-
lution (or multiplication) in the a=1st domain is ordinary
multiplication (or convolution). More generally, convolution
(or multiplication) in the ath domain is multiplication (or
convolution) in the (a & 1)th domain (which is orthogonal to
the ath domain), and convolution (or multiplication) in the ath
domain is again convolution (or multiplication) in the (a £ 2)th
domain (the sign-flipped version of the ath domain). Convolu-
tion or multiplication in an arbitrary ath domain is an oper-
ation “interpolating” between the ordinary convolution and
multiplication operations [129]. In light of these definitions,
filtering in the ath fractional Fourier domain corresponds to
the multiplication of two signals in the ath fractional Fourier
domain or equivalently the convolution of two signals in the
a &£ 1th fractional Fourier domain.

14.11 Fractional Fourier Domain
Decompositions

The fractional Fourier domain decomposition (FFDD) [86] is
closely related to multichannel filtering and is analogous to the
singular-value decomposition in linear algebra [68,154].
The SVD of an arbitrary Ny X Nj, complex matrix H is

HN N = UNostNow 2 Now N VN s> (14.107)
where U and V are unitary matrices whose columns are the
eigenvectors of HH and H'H, respectively. The superscript H
denotes Hermitian transpose. %, is a diagonal matrix whose
elements A; (the singular values) are the nonnegative square
roots of the eigenvalues of HHY and H'H. The number of
strictly positive singular values is equal to the rank R of H. The
SVD can also be written in the form of an outer product (or
spectral) expansion

R
H= Ny, (14.108)
k
k=1

where u; and v are the columns of U and V. It is common to
assume that the A are ordered in decreasing value.

Let F§, denotes the N-point ath order discrete fractional Four-
ier transform matrix. The discrete fractional Fourier transform
will be defined in Section 14.12. For the purpose of this section, it
will suffice to think of this transform in analogy with the ordin-
ary discrete Fourier transform. The discrete Fourier transform of
a discrete signal represented by a vector of length N can be
obtained by multiplying the vector by the N-point discrete Four-
ier transform matrix Fy. Likewise, the ath order discrete frac-
tional Fourier transform of a vector is obtained by multiplying it
by F{. The discrete transforms can be used to approximately
compute the continuous transforms.

The columns of the inverse discrete fractional Fourier trans-
form matrix Fy® constitute an orthonormal basis for the ath
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domain, just as the columns of the identity matrix constitute a
basis for the time domain and the columns of the ordinary
inverse DFT matrix constitute a basis for the frequency domain.
Now, let H be a complex Ny X Ni, matrix and {a;,ay,...,an} a
set of N = max (Nyy, Ny,) distinct real numbers such that
—1<a <ap; <--- <ay < 1. For instance, a;s may be chosen
uniformly spaced in this interval. We define the FFDD of H
as [86]

N
—a _anH
Hyon, = 9By (Ao, (By)™ (14.109)
k=1
where the Ap, are Ny X Nj, diagonal matrices with

N’ = min (Nout, Nin) complex elements. Starting from the upper
left corner, the Ith diagonal element of Ay, is denoted as hy,
I=1,2,...,N (the lth element of the column vector h;). When
H is Hermitian (skew Hermitian), hy is real (imaginary). We also
recall that (F;,:lk)H: Fy . The FFDD always exists and is
unique [129].

If we compare one term in the summation on the right-hand side
of Equation 14.109 with the right-hand side of Equation 14.107, we
see that they are similar in that they both consist of three terms of
corresponding dimensionality, the first and third being unitary
matrices and the second being a diagonal matrix. Whereas the
columns of U and V constitute orthonormal bases specific to H,
the columns of Fy™* and F™ constitute orthonormal bases for the
aith fractional Fourier domain. Customization of FFDD is achieved
through the coefficients hy; and/or perhaps also the orders .

When H is a square matrix of dimension N, the FFDD
becomes

N
H = Z F % Ahk(F_ak)H,
k=1

(14.110)

where all matrices are of dimension N. The continuous counter-
part of the FFDD is similar to this equation, with the summation
being replaced by an integral over a [167].

Equation 14.109 represents a decomposition of a matrix H
into N terms. Each term corresponds to filtering in the aith
fractional Fourier domain (see Equation 14.97). All terms taken
together, the FFDD can be interpreted as the decomposition of a
matrix into fractional Fourier domain filters of different orders.
An arbitrary matrix H will in general not correspond to multi-
plicative filtering in the time or frequency domain or in any other
single fractional Fourier domain. However, H can always be
expressed as a combination of filtering operations in different
fractional domains.

A sufficient number of different-ordered fractional Fourier
domain filtering operations “span” the space of all linear
operations.

The fundamental importance of the FFDD is that it shows how
an arbitrary linear system can be decomposed into this complete
set of domains in the time-frequency plane.
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Truncating some of the singular values in SVD of H has many
applications [68,154]. Similary we can eliminate domains for
which the coefficients hy;, hya, . . ., gy are small. This procedure,
which we refer to as pruning the FFDD, is the counterpart of
truncating the SVD. An alternative to this procedure will be
referred to as sparsening, in which one simply employs a more
coarsely spaced set of domains. In any event, the resulting smal-
ler number of domains will be denoted by M < N. The upper
limit of the summation in equation 109 is replaced by M and the
equality is replaced by approximate equality. The equation
H = Ph is likewise replaced by H ~ Ph. If we solve this in the
least-squares sense, minimizing || H — Ph ||, we can find the filter
coefficients resulting in the best M-domain approximation to H.
(This procedure amounts to projecting H onto the subspace
spanned by the MN’ basis matrices, which now do not span the
whole space.) The correspondence between the pruned FFDD
and multichannel filtering configurations is evident; it is possible
to interpret multichannel filtering configurations as pruned
FFDDs. These concepts have found application in to image
compression [166].

14.12 Discrete Fractional Fourier
Transforms

Ideally, a discrete version of a transform should exhibit a high
level of analogy with its continuous counterpart. This analogy
should include basic structural similarity and analogy of oper-
ational properties. Furthermore, it is desirable for the discrete
transform to usefully approximate the samples of the continuous
transform, so that it can provide a basis for digital computation
of the continuous transform. The following can be posed as a
minimal set of properties that we would like to see in a definition
of the discrete fractional Fourier transform (DFRT):

1. Unitarity

2. Index additivity

3. Reduction to the ordinary discrete Fourier transform
(DFT) whena=1

4. Approximation of the samples of the continuous FRT

Several definitions of the DFRT have been proposed in the
literature. Some of these correspond to totally distinct continuous
transforms. For example, one proposal was based on the power
series expansion of the DFT matrix and employed the Cayley-
Hamilton theorem [147]. If we let F* be the N x N matrix
representing the discrete fractional Fourier transform, this defin-
ition can be stated as follows:

sin w(n — a)

3
3

F* = j— — —— F, 14.111

;exp <]417(n a)> 4 sin $m(n — a) ( )

where F" is the nth (integer) power of the DFT matrix. This
definition satisfies all the desired properties listed above, except
the critical fourth one: it can not be used to approximate the
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samples of the continuous fractional Fourier transform which is
the subject of this chapter. Rather, it corresponds to the continu-
ous fractional Fourier transform based on principal powers of the
eigenvalues discussed in Equation 14.9.

In the rest of this section, we focus on discrete fractional
Fourier transforms that correspond to the continuous FRT
defined in this chapter. The main task is to first find an eigen-
vector set of the DFT matrix which can serve as discrete versions
of the Hermite—Gaussian functions. Such Hermite-Gaussian vec-
tors have been defined in [26] based on [136]. It can be shown
that [26] as h — 0 the difference equation

fu+h) —2f(u) + f(u—h) 2(cos(2mwhu) — 1)
h? + h?

f(w) = M(u)
(14.112)

approximates the Hermite-Gaussian generating differential
equation

d*f (1)

o — AT = M.

(14.113)

1
When h = — the difference equation (Equation 14.112) has
JN q q
periodic coefficients. Therefore the solutions of the difference
equation is also periodic and can be written as the eigenvectors

of the following matrix, denoted by S:

2 1 0 ... 0 1
1 2cos(2m/N) 1 0 0
2 cos (2m2/N) 0 0

s_ |0 1
1 0 0 1 2cos(2m(N —1)/N)
(14.114)

In other words, the difference equation can be written as Sf = \f.
It can also been shown that S commutes with DFT matrix. Since
two commuting matrices share a common eigenvector set [154],
the eigenvectors of S are also eigenvectors of the DFT matrix.
Thus the eigenvectors of S constitute an orthogonal eigenvector
set of the DFT matrix which are analogous to and which approxi-
mate the Hermite—Gaussian functions. Further details such as the
distinctness of the eigenvectors and enumeration of the eigen-
vectors with respect to the continuous Hermite-Gaussian func-
tions are discussed in [26].

Having obtained an appropriate set of eigenvectors, the dis-
crete fractional Fourier transform matrix can now be defined as
follows:

when N even

14.115
when N odd ( )

Zka . T

N —iZka, T
F— Zk:o,k;&N—luke L5y,
= e -
Zk:o,kﬂv uge 2y,

where uy corresponds to the eigenvector of the S matrix with k
zero-crossings [26]. The necessity of separately writing the sum-
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mation in equation 14.115 for even and odd dimensions N is a
consequence of the eigenvalue multiplicity of the ordinary DFT
matrix [26]. This definition of the fractional DFT satisfies all four
of the desirable properties we had set out at the beginning. A
complementary perspective to this line of development may be
found in [13].

A MATLAB®™ routine “dFRT” for the calculation of the
discrete fractional Fourier transform matrix defined above is
available [25]. The following steps show how to use the routine
to compute and plot the samples of the ath order FRT of a
continuous function f{u):

h = 1/+/N; tsamples = (—N /2 * h):h: (N/2 — 1) * h;

. {0 =f(tsamples);

. fOshifted = fftshift(f0);

. Fa=dFRT(N,a,order); {order can be any number in
(2,N—1]}

5. fashifted = Fa*fOshifted;

6. fa = fftshift(fashifted);

7. plot(tsamples,fa);

el S

The “fftshift” operations are needed since the DFRT matrix
follows the well-known circular indexing rule of the DFT matrix.
Normally the approximation “order” is set to 2; higher values
correspond to higher-order approximations to the continuous
transform than have been discussed here. The approximation
order should not be confused with the fractional Fourier trans-
form order a. Figure 14.11 compares the N =64 samples calcu-
lated with this routine with the continuous fractional Fourier
transform of the example function f(u) = sin (2u)rect(u). This
function can be interpreted as the windowed version of a single
period of the sine waveform between —0.5 and 0.5. As can be
seen, the discrete transform fairly closely approximates the
continuous one.

A number of other definitions of the discrete FRT which are
still compatible with the continuous FRT discussed in this
chapter have been proposed. In [138], the authors start with
vectors formed by sampling the continuous Hermite-Gaussian
functions. These are neither orthogonal nor eigenvectors of the
DFT matrix. The authors orthogonalize these through a
Gram-Schmidt process involving the S matrix. These orthog-
onal vectors are then used to define the fractional DFRT. We
find this method less desirable in that it is based on a numer-
ical rather than an analytical approach. The approach of [101]
is similar, but here the eigenvectors of the DFT matrix are
constructed by sampling periodically replicated versions of
the Hermite-Gaussian functions (which are not orthogonal
either).

In [12] another finite dimensional approximation to the Four-
ier transform similar to the DFT is proposed. This transform has
strong connections with the Fourier transform within a group
theoretical framework [165]. Furthermore, analytical expressions
for the transform can be written in terms of the so-called
Kravchuk polynomials, which are known to approximate the
Hermite polynomials. A major disadvantage of this approach
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is that the discrete FRT thus defined does not reduce to the
ordinary DFT when a=1.

In [26,61,135,148] yet other definitions are proposed based on
the commuting matrices approach already discussed in relation
to the S matrix. These matrices can be interpreted as higher-
order approximation matrices which can be used to obtain
increasingly accurate approximations to the continuous trans-
form. A comparison of such matrices is given in [27].

14.13 Digital Computation of the
Fractional Fourier Transform

The FRT of a continuous function whose time- or space-bandwidth
product is N can be computed in the order of Nlog N time [115],
similar to the ordinary Fourier transform. Therefore, if in some
application any improvements can be obtained by using the FRT
instead of the ordinary Fourier transform, these improvements
come at no additional cost.

The following formula allows one to compute the samples of
the fractional Fourier transform f,(u) of a function f(u), in terms
of the samples of f(u), in ~Nlog N time where N = Au?, under
the assumption that Wigner distribution of f(u) is approximately
confined to a circle of diameter Au:

-4 -2 0 2 4
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im( cot aa—csc ot)(k/ZAu)2

The summation is recognizable as a convolution, which can be
computed in ~Nlog N time by using the fast Fourier transform
(FFT). The result is then obtained by a final chirp multiplication.
The overall procedure takes ~NlogN time. A MATLAB code
based on this formula may be found in [79]. A broader discus-
sion of computational issues may be found in [115].

Note that this method is distinct from that discussed in
Section 12. There, the discrete fractional Fourier transform was
defined. The samples of the fractional Fourier transform of a
function are then found by multiplying the discrete fractional
Fourier transform matrix with the sample vector of the function
to be transformed. Since a method for calculating this matrix
product in ~NlogN time is presently not available, the
operation will take ~N? time. The approach in this section
does not involve a definition of the discrete fractional Fourier
transform, and can be viewed as a method to numerically com-
pute the fractional Fourier transform integral.
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14.14 Applications

The purpose of this section is to highlight some of the applica-
tions of the fractional Fourier transform which have received
greater interest so far. The reader may consult [23,122,123,129]
for further references.

The fractional Fourier transform is of potential usefulness in
every area in which the ordinary Fourier transform is used.
The typical pattern of discovery of a new application is to
concentrate on an application where the ordinary Fourier trans-
form is used and ask if any improvement or generalization might
be possible by using the fractional Fourier transform instead. The
additional order parameter often allows better performance or
greater generality because it provides an additional degree of
freedom over which to optimize.

Typically, improvements are observed or are greater when
dealing with time/space-variant signals or systems. Furthermore,
very large degrees of improvement often becomes possible when
signals of a chirped nature or with nearly linearly increasing
frequencies are in question, since chirp signals are the basis
functions associated with the fractional Fourier transform
(just as harmonic functions are the basis functions associated
with the ordinary Fourier transform). Fractional Fourier trans-
forms are also of special use when dealing with integral trans-
forms whose kernels are of quadratic-exponential type, the
diffraction integral being the most common example.

14.14.1 Applications in Signal and Image
Processing

The FRT has found widespread application in signal and image
processing, some of which are reviewed here (also see [157]).

One of the most striking applications is that of filtering in
fractional Fourier domains, whose foundations have been discussed
in Section 14.10 [117]. In traditional filtering, one takes the Fourier
transform of a signal, multiplies it with a Fourier-domain transfer
function, and inverse transforms the result. Here, one takes the
fractional Fourier transform, applies a filter function in the frac-
tional Fourier domain, and inverse transforms to the original
domain. It has been shown that considerable improvement in
performance is possible by exploiting the additional degree of
freedom coming from the order parameter a. This improvement
comes at no additional cost since computing the fractional Fourier
transform is not more expensive than computing the ordinary
Fourier transform (Section 14.13). The concept has been general-
ized to multistage and multichannel filtering systems which employ
several fractional Fourier domain filters of different orders [81,82].
These schemes provide flexible and cost-efficient means of design-
ing time/space-variant filtering systems to meet desired objectives.
Fractional Fourier domain filtering has been useful in optical signal
separation [43] and signal and image recovery and restoration in
the presence of time/space-varying distortions such as space-vary-
ing blurs and nonstationary noise, with application to compensa-
tion of nonconstant velocity camera motion and atmospheric
turbulence [48,50,83,85].
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The FRT has also found many applications in pattern recog-
nition and detection. Correlation is the underlying operation in
matched filtering, which is used to detect signals. Fractional
correlation has been defined in a number of different ways
[71,92,103,180]. It has been shown how to control the degree of
shift-invariance by adjusting the order a, which in turn allows
one to design systems which detect objects within a certain
region but reject them otherwise [92]. Joint-transform correl-
ation is a well-known optical correlation technique, whose frac-
tional version has received considerable attention [78,90]. The
FRT has been studied as a preprocessing unit for neural network
object recognition [14]. Some other applications in the pattern
recognition area are face recognition [72] and realization and
improvement of navigational tasks [149].

The windowed fractional Fourier transform has been studied
in [29,46,104]. The possibility of changing the fractional order as
the window is moved and/or choosing different orders in the two
dimensions makes this a very flexible tool suited for various
pattern recognition tasks, such as fingerprint recognition [171]
or detection of targets in specific locations [59]. A review of
applications of the FRT to pattern recognition as of 1998 is
presented in [105].

The FRT has found a number of applications in radar signal
processing. In [2], detection of linear frequency modulated sig-
nals is studied. In [69], radar return transients are analyzed in
fractional domains. In [35,155], detection of moving targets for
airborne radar systems is studied. In [11,10], synthetic aperture
radar image reconstruction algorithms have been developed
using the fractional Fourier transform.

The transform has found application to interpolation [53,150]
and superresolution of multidimensional signals [32,62,151],
phase retrieval from two or more intensity measurements
[6,7,41,54,55], system and transform synthesis [50], processing
of chirplets [22], signal and image compression [117,162,166],
watermarking [40,112], speech processing [176], acoustic signal
processing [60,173], ultrasound imaging [17], and antenna
beamforming [168]. A large number of publications discuss the
application of the FRT to encryption; for instance, see
(33,63,66,111,161].

14.14.2 Applications in Communications

The FRT has found applications in spread spectrum communi-
cations systems [1], multicarrier communications systems [97],
in the processing of time-varying channels [110], and beamform-
ing for next generation wireless communication systems [75].

The concept of multiplexing in fractional Fourier domains,
which generalizes time-domain and frequency-domain multi-
plexing, has been proposed in [117].

14.14.3 Applications in Optics and Wave
Propagation

The fractional Fourier transform has received a great deal
of interest in the area of optics and especially optical signal
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processing (also known as Fourier optics or information optics)
(5,18,91,118,127,129,139,159]. Optical signal processing is an
analog signal processing method which relies on the representa-
tion of signals by light fields and their manipulation with optical
elements such as lenses, prisms, transparencies, holograms, and
so forth. Its key component is the optical Fourier transformer
which can be realized using one or two lenses separated by
certain distances from the input and output planes. It has been
shown that the fractional Fourier transform can be optically
implemented with equal ease as the ordinary Fourier transform
[88,124,127,146], allowing a generalization of conventional
approaches and results to their more flexible or general fractional
counterparts.

The fractional Fourier transform has also been shown to be
intimately related to wave and beam propagation and diffraction.
The process of diffraction of light in free space (or any other
disturbance satisfying a similar wave equation) has been shown
to be nothing but a process of continual fractional Fourier trans-
formation; the distribution of light becomes fractional Fourier
transformed as it propagates, evolving through continuously
increasing orders [118,126,127,139].

More generally, it is well known that a rather broad class of
optical systems can be modeled as linear canonical transforms,
which were discussed in Section 14.8 [15,129]. These include
optical systems consisting of arbitrary concatenations of thin
lenses and sections of free space, as well as sections of quadratic
graded-index media. It has been shown that all such systems can
be expressed in the form of a fractional Fourier transform oper-
ation followed by appropriate scaling and a residual chirp factor,
which can be interpreted as a change in the radius of curvature of
the output plane (Equation 14.83) [118,119]. Therefore, all such
optical systems can be interpreted as fractional Fourier trans-
formers [16,118,127], and the propagation of light through such
systems can be viewed as a process of continual fractional Fourier
transformation with the fractional transform order monotonic-
ally increasing as light propagates through the system. The case
of free-space optical diffraction in the Fresnel approximation,
discussed in the previous paragraph, is a special case of this
more general result, and rests on expressing the Fresnel integral
in terms of the FRT. Similar results hold for other wave and beam
propagation modalities that satisfy a similar wave equation as the
optical wave equation, or an equation similar to that of the
quantum-mechanical harmonic oscillator, including electromag-
netic and acoustic waves [47].

As noted above, the fractional Fourier transform plays a cen-
tral role in the study of optical systems consisting of arbitrary
sequences of lenses. Also of interest are systems in which thin
optical filters (masks) are inserted at various points along the
optical axis. Such systems can be modeled as multistage frac-
tional Fourier domain filtering systems with multiplicative filters
inserted between fractional Fourier transform stages, which were
discussed in Section 14.10.

The fractional Fourier transform has also found application in
the study of laser resonators and laser beams. The order of the
fractional transform has been shown to be proportional to the
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Gouy phase shift accumulated during Gaussian beam propagation
[49,126] and also to be related to laser resonator stability
[126,140,179]. Other laser applications have also been reported [94].

The FRT has also found use in increasing the resolution of
low-resolution wave fields [32], optical phase retrieval from
two or more intensity measurements [41,54,55], coherent and
partially coherent wave field reconstruction using phase-space
tomography [99,144,145], optical beam characterization and
shaping [3,38,44,172,177], synthesis of mutual intensity func-
tions [52], and the study of partially coherent light
[20,24,51,153,160,163].

It has found further use in quantum optics [170], studies of the
human eye [141,142], lens design problems [42], diffractive optics
[58,158], optical profilometry [181], speckle photography [131]
and metrology [73], holographic interferometry [152], holo-
graphic data storage [70], digital holography [34,36,178],
holographic three-dimensional television [113,114], temporal
pulse processing [21,45,89], solitons [39], and fiber Bragg
gratings [98].

14.14.4 Other Applications

The fractional Fourier transform has found several other appli-
cations not falling under the above categories. We discuss some
of these here.

The FRT has been employed in quantum mechanics
[56,57,93,96]. It has been shown that certain kinds of time-varying
second-order differential equations (with nonconstant coefficients)
can be solved by exploiting the additional degree of freedom
associated with the fractional order parameter a [74,100,109].
Based on the relationship of the fractional Fourier transform to
harmonic oscillation (Section 14.2), it may be expected to play an
important role in the study of vibrating systems [84]. It has so far
received only limited attention in the area of control theory and
systems [28], but we believe it has considerable potential for use in
this field. The FRT has been shown to be related to perspective
projections [169]. The transform has been employed to realize
free-space optical interconnection architectures [50].
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