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Abstract—We present a method for the design of mismatched
filters minimizing the interference from unwanted targets (point
target or clutter) under the constraint of matched filtering loss.
The method method seeks to find the optimum filter minimizing
the interference and having a desired cross-correlation with a
given transmitter waveform. The method is applied to get the
minimum integrated side-lobe level filters and to optimize the
receivers of the pulse diversity systems.

Index Terms—Mismatched filter, integrated side-lobe level,
pulse diversity, Hadamard codes, complementary codes.

I. I NTRODUCTION

The optimal detector for the detection of a single target
under Gaussian white noise is the matched filter. When the
target is observed in the presence of Gaussian clutter and
noise, the optimal receiver is the whitened matched filter. With
the assumption of slowly time-varying clutter, an accurate
estimation of its covariance function and the implementation of
the whitened matched can be possible. When multiple targets
are present, the signal received is the superposition of returns
from each target in addition to clutter and noise. For this case,
the received signal can be written as follows:

r =
√

Ethkbk +
√

Et

K∑

k′=1, k′ 6=k

hk′bk′ + w

︸ ︷︷ ︸
colored noise

Here r, w and hk are N × 1 vectors. The vectorr is the
collection of slow-time samples from the range-bin of interest,
[1]. The vectorhk is the slow-time samples of the return signal
from the kth target with an unknown Doppler shift and delay.
The parameterbk is due to the reflection coefficient of an
individual target.

We may interpretbk as a random variable and denote its
variance asσ2

bk
. If the distribution ofbk is taken as independent

complex Gaussian variables, as in Swerling-1 case; then the
term labeled as colored noise becomes Gaussian distributed
with zero mean and covariance matrixCcn = HΛbHH +
N0I whereH = [h1 h2 . . . hk−1 hk+1 . . . hK] and Λb =
diag(σ2

b1
, σ2

b2
, . . . , σ2

bk−1
, σ2
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, . . . , σ2

bK
).

The optimal receiver for themultiple target scenariowith
Rayleigh distributed power returns is again the whitened
matched filter. It should be noted that to implement the

whitened matched filter, the average power from each inter-
fering target,σ2

bK
along with its delay and Doppler shift,

hk′ , should be known a-priori and these parameters should
not change during the estimation and coherent processing
interval. Even though, such an operation can be feasible in
some scenarios; it is a indeed challenging to implement for
many targets of interest, [2].

The optimal receiver described for the multi-target scenario
can also be labeled as a mismatched filter. The mismatched
filters are designed to improve the detection statistics of
the target of interest by sacrificing some of the coherent
combination gain (matched filter gain). In other words, the
mismatched receivers reduce the effect of interference at a
cost of losing perfect correlation with the incoming signal.

Since the realization of the optimal mismatched filters is
difficult, the sub-optimal filters are designed to reduce the
effect of interfering targets known to reside in a pre-defined
region in the ambiguity plane. Such applications may arise
especially in tracking systems. The goal of mismatch filter
design for these applications is to find a filter which has the
smallest possible cross-ambiguity surface volume over a pre-
defined region, while sustaining an acceptable correlation with
the signal of interest.

In [3], the mismatched filters are constrained to have a
correlation coefficient ofρ with the incoming signal and
designed to have a minimum possible total energy over a
desired region in the ambiguity plane. Here we revisit the
problem of Stutt as in [3] and present a novel method for its
solution and extend the discussion to mismatch filter design
for pulse diversity systems.

In [5] a set of codes and mismatched filters have been
designed to have good auto-correlation and cross-correlation
values. In [6], [7], the peak side lobe level of the codes
has been minimized through iterative algorithms. The mini-
mization of the integrated side lobe level is appropriate when
the scatters causing interference have homogeneous reflection
powers. The peak side lobe level minimization can be more
suitable when interferes are discrete in nature and have varying
powers which can be the case for high resolution systems. In
[8], [9], the same problem has been examined in the context
of SIR (signal-to-interference ratio) maximization.

In this paper, we present a study on mismatched filter



design following the formalism of Stoica, [8], [9]. In the next
section, we illustrate the design procedure for the case where
Doppler frequency shift between interfering targets and target
of interest is zero. In the following section, we modify the
procedure to include the effect of Doppler frequency shift and
extend the earlier results to the pulse diversity systems. In this
paper, we use the pulse diversity term to refer to the change
of pulse shape (code) at every pulse repetition interval (PRI)
of coherent processing time (CPI) as in [4].

II. M ISMATCHED FILTER DESIGN (ZERO DOPPLERCASE)

We start with the preliminary definitions. Thekth cross-
correlation lag of vectorss and w is denoted asrws(k) =∑

w[n]s∗[n− k]. When vectorss andw are of finite dimen-
sions,rws(k) can be expressed as the inner product of two
finite dimensional vectors,rws(k) = (Jks)Hw. Here Jk is
the shift matrix.

The matrix given below shows a 5 dimensionalJ2 matrix
shifting the input by 2 units, that isJ2[a b c d e ]T =
[0 0 a b c ]T :

J2 =




0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0




As an example, the second auto-correlation lag ofs =
[a b c d e ]T can be written as(J2s)Hs = sHJH

2 s = ca∗ +
db∗ + ec∗.

Following [9], we can write the total interference of an
unwanted targets atk1, k2, . . . , kL range cells away from the
target of interest as follows:

Itotal =
L∑

i=1

|rws(ki)|2︸ ︷︷ ︸
Ii

=
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|(Jki
s)Hw|2

=
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wH(Jki
s)(Jki

s)Hw

= wHRw (1)

where

R =
L∑

i=1

(Jki
s)(Jki

s)H =
L∑

i=1

Jki
ssHJki

H. (2)

Herew is the filter used at the receiver, and whenw = s, we
have the matched filter. As noted before, in this section we
assume that all targets (wanted and unwanted) have the same
Doppler frequency shift, this unrealistic assumption for radar
systems is removed in the next section.

The mismatched filter design problem can be posed as the
minimization of the interference level given in (1) under the
constraints ofwHw = 1 and |wHs|2 = ρ2 (|ρ| ≤ 1). Here it
is assumed thats is normalized such that||s||2 = sHs = 1,

therefore|ρ| is the correlation coefficient or the cosine of the
angle between vectorss andw:

min
w

wHRw s.t. |wHs|2 = ρ2 where |ρ| ≤ 1
wHw = 1 (3)

A solution for the problem can be produced as follows: Let
w be the solution of the problem, thenw can be written as
follows:

w = ρs + x1u1 + x2u2 + . . . + xN−1uN−1 (4)

The vectors{s,u1, . . . ,uN−1} form an orthonormal basis for
the N dimensional vector space. Such a basis can be easily
generated using Gram-Schmidt procedure.

Note that whenw is decomposed as in (4) then the con-
straint of |wHs|2 = ρ2 is immediately satisfied. The second
constraintwHw = 1 under this decomposition reduces to
wHw = ρ2 + xHx = 1. Here x is (N − 1) dimensional
column vector composed of{x1, x2, . . . , xN−1} coefficients
given in (4).

The optimization problem reduces to the following problem:

min
x

(ρs + Ux)HR(ρs + Ux) s.t. xHx = 1− ρ2 (5)

Once the optimalx can be found, the optimal mismatched
filter can be written using (4).

The constrained optimization problem can also be expressed
as an unconstrained optimization problem using Lagrange
multipliers:

J(x, γ) = (ρs + Ux)HR(ρs + Ux) + γ
(
xHx− (1− ρ2)

)
(6)

Here γ is the Lagrange multiplier. When gradient ofJ(x, γ)
is calculated (with respect tox) and equated to zero, we get
the following condition for the optimal weights:

(UHRU + γI)x = ρUHRs (7)

The equation (7) has different solutions for different values
of Lagrange multiplierγ. Theγ parameter should be selected
such that the constraint ofxHx = 1 − ρ2 is satisfied and at
the same time the overall cost is minimized.

To facilitate the calculation ofγ, we decompose the ma-
trix UHRU into its eigenvalues and eigenvectors, that is
UHRU = VΛVH. Due to the symmetry ofUHRU, the
matrix V is unitary andΛ is a diagonal matrix with real
entries. Then equation (7) can be written as follows:

V(Λ + γI)VHx︸ ︷︷ ︸bx = ρUHRs (8)

Then x̂ is equal to

(Λ + γI)x̂ = ρVHUHRs︸ ︷︷ ︸
b

(9)

and

x̂ = ρ(Λ + γI)−1b (10)

Note that right hand side of (10) except theγ parameter can
be calculated from known data. To calculate theγ parameter
we need to make use of the constraintxHx = 1− ρ2.



SinceV matrix is unitary,xHx = x̂Hx̂ and therefore we
can immediately use (10) for the calculation ofγ:

x̂Hx̂ =
N−1∑

k=1

ρ2|bk|2
(λk + γ)2

= 1− ρ2 = xHx (11)

The last equation can be written as in a bit more tidy form as
follows:

N−1∑

k=1

|bk|2
(λk + γ)2

=
1− ρ2

ρ2
(12)

The values forγ satisfying the equality of LHS and RHS of
(12) establishes the second constraint.

Among the gamma values, the one minimizes the cost
function should be selected to achieve the goal of minimizing
the equation (6). Once the optimalγ value is found, the
mismatched filter can be written asw = ρs + Vx̂ =
ρs + ρV(Λ + γI)−1b.

III. M ISMATCHED FILTER DESIGN (NON-ZERO DOPPLER

CASE)

In this section, we examine the effect of Doppler shift or
equivalently radial velocity difference between wanted and
unwanted targets. We examine the cases of single pulse, group
of identical pulses and, group of diverse pulses.

Effect on a Single Pulse:The change of the signal phase
due to Doppler frequency shift for the duration of radar
waveform is2πvrTp/λ. Herevr is the radial velocity of the
target,Tp is the pulse duration andλ is the wavelength of
the radar system. In many scenarios,Tp is on the order of
micro seconds andλ is on the order of centimeters. Hence
unlessvr is extraordinarily large, i.e. on the order of104 m/s,
the phase change over the pulse duration is insignificant for
pulse-Doppler radar systems. In these applications, the effect
of Doppler frequency shift on the individual transmissions can
be neglected.

Effect on a Group of Identical Pulses:In a conventional
pulse-Doppler radar system, a pulse is repeatedly transmitted
and the target is detected by coherently combining these recep-
tions. Assuming thatN pulses are transmitted during coherent
processing interval, then the interference from a target atki

cells away from the range cell of interest and having a phase
increment ofφ per PRI interval, i.e.φi = 2πvr(PRI)/λ, can
be written as

Ii =

∣∣∣∣∣
N−1∑
p=0

ejpφi(Jki
s)Hw

∣∣∣∣∣

2

=
∣∣(Jki
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∣∣2

∣∣∣∣∣
N−1∑
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ejpφi

∣∣∣∣∣

2

(13)

=
∣∣(Jki

s)Hw
∣∣2

∣∣∣∣
sin(Nφi/2)
sin(φi/2)

∣∣∣∣
2

When there areL interfering targets, the total interference can
be written asItotal = wHRw (similar to (1)) whereR is

R =
L∑

i=1

(Jki
s)(Jki

s)H
∣∣∣∣
sin(Nφi/2)
sin(φi/2)

∣∣∣∣
2

. (14)
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Fig. 1. Cells used for mismatched filtering.

Effect on a Group of Diverse Pulses:A system with pulse
diversity is capable of usingN different pulses during coherent
processing interval. We denote thekth pulse in the train ofN
pulses withsk. The receiver processes the individual returns
from a range cell withwk and coherently adds them.

The interference from a target atki cells away from the
range cell of interest and having a phase incrementφ per PRI
interval is given in equation (15) (which is on the top of the
next page).

When there areL interfering targets, the total interference
can be written asItotal = wHRw whereR matrix for this
case is

R =
L∑

i=1

vivi
H (16)

wherevi is given in (15).
It can be observed that by substitutingR matrix from (14)

or (16) into the mismatched filter design procedure described
for the zero-Doppler shift, we get the procedure for non-zero
Doppler shift.

IV. N UMERICAL COMPARISONS

In the first experiment, the integrated sidelobe level (ISL)
of Barker code of length 13 is optimized using mismatched
filters. In ISL optimization the Doppler shift of cell under test
(CUT) and interfering cells are taken as zero. The definition
of ISL is given as follows:

ISL =
N+M−1∑

k=−(N+M−1),k 6=0

|rws(k)|2 (17)

Here N is the length of the code which is 13 for Barker
sequence andM is the number of auxiliary cells which appear
before and after the return signal from the CUT as shown in
Figure1. The auxiliary cells are used to reject the interference
from neighboring targets. In ISL calculation, every cell shown
in Figure 1, except CUT, is implicitly assumed to have an
equal power interfering target.

When noise in the system is negligible in comparison to the
clutter, i.e. the variance of noise in (1) is small in comparison
to the power return from unwanted targets; then the signal
to clutter ratio (SCR) is the factor determining the detection
performance,SCR = |wHs|2

wHRw
. For this case,wHRw is the

ISL defined in (17). The optimumw maximizing the SCR is
R−1s and the achievable maximum SCR issHR−1s, [8], [9].

Figure 2 shows the ISL improvement factor and matched
filtering loss curve for the procedure defined in this paper.
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(The ISL improvement factor is defined as the ratio of the
ISL level achieved by matched filtering and the ISL level
achieved by mismatched filtering. Matched filtering loss (MF
loss) is the loss due to the mismatch ofw and s and it is
expressed in decibels as20 log10(|ρ|).) In the same figure, the
ISL improvement of maximum SCR filter [8] is also shown.
The SCR improvement over matched filtering is the ISL
improvement factor minus matched filtering loss (in decibels).
As can be noted from Figure2, ISL improvement factor
remains at negative values (no improvement) at insufficient
MF loss values. ISL improvement suddenly changes to the
maximum position at an incremental amount of additional MF
loss indicating the non-linearity of the optimization procedure.
We would like to mention that maximum SCR filter of [8] is
a unique filter defined byR−1s whose MF loss amount can
not be controlled. The filters designed through the proposed
method has adjustable MF loss amount and these filters are
identical to the maximum SCR filter for a particular value of
MF loss value as seen from Figure2.

Figure 3 shows the cross-correlation of mismatched filter
and Barker-13 code at three different MF Loss values. The
selected MF Loss values are shown with circles in Figure2.
As can be noted from Figure3, insufficient MF loss amount
can be more harmful to ISL level than beneficial.

In the second experiment, the effect of Doppler frequency
difference in the design of mismatched filters are examined.
The radar waveform is composed of the columns of Hadamard
matrix. It is known that the columns of Hadamard matrix form
an orthogonal set and have complementary auto-correlation,
[4, p.269]. In this experiment we use16×16 Hadamard matrix
and design a mismatched filter of length 26 for each column
of Hadamard matrix.

Figure4 shows the magnitude of the ambiguity function for
16× 16 Hadamard code. The ambiguity function used in the
experiment is defined as follows:

Asw(k, φ) =
Np∑
p=1

(
ejφp

N∑

k=1

sk[n]w∗[n− k]

)
(18)

Here the phase progression during the pulse duration is as-
sumed to be negligible as discussed before.Np is the number
of pulses in CPI andN is the length of the code. For16× 16
Hadamard system, both parameters are equal to 16. When we
take s[n] = w[n] in (18), the resulting expression is called
the self-ambiguity function and the cross-ambiguity function
otherwise.

From Figure41 it can be observed that the self-ambiguity
function contains localized peaks. Such a peaky characteristic
is a set back on the applicability of the pulse diversity systems.
In Figure5, a mismatched filter has been designed to suppress
the components of the 4th lag in the self-ambiguity figure.
The design has 1.51 dB matched filtering loss, but suppresses
the interference caused by the 4th lag components by 52 dB.
In Figure 6, another mismatched filter has been designed to
suppress components of both 4th and 8th lags. This design
has 2.51 dB matched filtering loss, but suppresses the overall
contribution from both 4th and 8th lags by 90 dB.

V. CONCLUSION

We have presented a method for the design of mismatched
filters. The method allows to set a desired value for the
matched filtering loss and minimizes the interference by un-
wanted targets (or clutter) under this constraint. The proposed
method provides a mechanism to explicitly control the loss
due to mismatch of transmit waveform and receiver filter.
The method can be useful for the systems where the matched
filtering loss along with the signal to clutter ratio is of concern.
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Fig. 2. ISL Improvement factor at different levels of tolerable matched filter loss for Barker waveform of length 13. Circles denote the designs selected for
Figure3.
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Fig. 4. Self-ambiguity function of 16 x 16 Hadamard code.[URL link for figure].

Fig. 5. Cross-ambiguity function of 16 x 16 Hadamard code with the
mismatched filter designed to suppress the contributions from the 4th lag,[URL
link for figure].

Fig. 6. Cross-ambiguity function of 16 x 16 Hadamard code with the
mismatched filter designed to suppress the contributions from 4th and 8th lags.
[URL link for figure].
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