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Abstract

A new class of linear phase, infinite impulse response digital wideband integrators based on

the numerical integration rules is presented. Different from similar integrators in the literature, the

proposed integrators exactly match the desired phase response of the continuous-time integrator (after

group delay compensation) and can approximate the magnitude response as closely as desired by

increasing the number of system zeros of the system, which is called the order of the system. The

low order integrators (up to 4th degree) generated by this technique can be immediately utilized in

many applications such as strapdown inertial navigation systems, sampled data systems and other

applications, especially in control area, which require long term integration.

Index Terms

Digital Integrators, Numerical Integration, Quadrature, Newton-Cotes, Lagrange Interpolation.

I. INTRODUCTION

The digital integrators are utilized in many applications including the navigation and control systems

for which a high degree of accuracy can be required, [1]. In this paper, we present a new class of

discrete-time, infinite impulse response filters whose frequency response approximates the frequency

response of the continuous-time integrator as accurately as it is desired, that is

H(ejω) ≈ 1
jω

= D(ejω), where− π < ω < π.

In the equation shown above, H(ejω) denotes the digital integrator; D(ejω) denotes the desired

response.
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Several digital integrators designs have been proposed in the literature,[2], [3], [4], [5], [6], [7], [8],

[9]. Among these the zero-order hold1, H(z) = 1
1−z−1 , and the trapezoidal rule, H(z) = (1+z−1)

2(1−z−1) , are

the simplest and the most well known approximations to the desired response. It can be easily observed

that as ω approaches zero, H(ejω) → 1
jω for both of these approximations. These approximations

can be good enough for the over-sampled signals (signals sampled much above the Nyquist rate),

but a closer inspection shows that there is still room for better designs especially when the signals

are critically sampled at the Nyquist rate. In this paper, we present a method exactly matching the

phase response of the continuous-time integrator and closely approximating the desired magnitude

response. Our approach can be considered as an adaptation of the numerical integration (quadrature)

rules to the integrator design problem.

Recently, Ngo and Tseng have suggested the usage of quadrature rules, such as the Newton-Cotes

rule and the Gauss-Legendre rule, for the digital integrator design, [4], [5], [6]. The integrators based

on the Newton-Cotes rules can be expressed in the following general form, [4]:

H(z) = GN (z)
1

1− z−1
(1)

GN (z) appearing in the equation above is an N th order causal, finite impulse response (FIR) filter.

Previously discussed the zero-order hold and the trapezoidal rule filters can be put in this form by

selecting GN (z) appropriately, [4].

The Newton-Cotes quadrature is based on finding the N th order polynomial passing through N +1

consecutive input samples (the N th order Lagrange interpolator) and then calculating the area under

the interpolating polynomial. In Figure 1, an example with the 4th order Lagrange interpolator is

given. The calculated area in the conventional system is the area between the samples (k − 1) and

k (shown with the gray shading), [4]. The task of GN (z) filter is to implement the mentioned area

calculation from N + 1 neighboring data samples. The term following GN (z) on the right hand side

of (1), which is 1
1−z−1 , is the conventional accumulator which is used to sum the area strips calculated

up to that instant, [4].

After the work of Ngo [4], Tseng has extended and presented improved techniques using similar

quadrature rules in [5], [6]. Unfortunately the method of Tseng requires fractional sampling rates

complicating both the design and the implementation of these integrators. Tseng suggests to use the

Lagrange interpolators to elevate some of these problems. The most recent proposal by Tseng et al.

suggests to implement the fractional delays in the Hartley transform domain, [8]. A proposal by Pei

et al. presents discrete approximations for various continuous-time operators including differentiators

1Throughout the paper, we assume that the continuous-time signal is sampled at the rate of 1 samples per second. The

integrators discussed should be multiplied by the sampling period T , if T 6= 1.
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Fig. 1. 4th Order Lagrange Interpolator

and integrators in [9]. The work of Pei is based on matching the truncated Taylor series of the

continuous-time operators with the discrete-time filters. In this paper, our goal is to present digital

integrators using simple quadrature rules, therefore we do not focus on fractional delays or transform

domain techniques.

In this paper, we present a modification on the integrators based on the Newton-Cotes rule. We

suggest to calculate the area of the center strip (shown with blue shading) instead of the most recent

strip as done in [4]. We show that this simple modification improves the accuracy of the magnitude

response significantly and leads to a perfect match of the phase response.

In [5], Tseng has presented a general theory of integrators based on the numerical integration

rules. It has been recognized during the review stage of this paper that the GN (z) polynomial of the

integrators discussed here is equivalent to UM (z) polynomial given in [5], if M and L appearing in

the equations (39)-(41) of [5] are taken as M = N and L = (N − 1)/2. In spite of this connection,

the integrators presented here (whose performance is better than similar ones in the literature) are

not explicitly known in the literature. To the best of our understanding, the parameter L appearing in

[5] is considered to be an integer delay in [5] to causally implement the required fractional delays.

In the present work, we present a different derivation for a sub-class of the general theory given by

Tseng in [5] and show that the presented sub-class surpasses the suggested integrators in the same

work and also surpasses more recent proposals, [6].

The paper is organized as follows: In the following section, we explain our design motivation and
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then present a derivation for area calculating GN (z) filter for even-odd values of N and present the

general formulation in a compact form. Then we compare the proposed integrators with the ones in

the literature and finally conclude with remarks and some application notes.

II. PROPOSED INTEGRATORS

We start with a simple discussion to better illustrate our motivation. An implementable digital

integrator system in the form of (1) should a have right-sided GN (z). If GN (ejω) is the response

of a causal and linear phase filter, then GN (ejω) can be written as Gzp
N (ejω)e−j N

2
ω. Here N is the

order of the filter and Gzp
N (ejω) is the zero phase, or constant phase, version of GN (ejω). Under these

conditions, the frequency response of the integrator can be written as follows:

H(ejω) =
Gzp

N (ejω)e−j N

2
ω

e−j ω

2 (ej ω

2 − e−j ω

2 )
=

Gzp
N (ejω)

2j sin(ω
2 )

e−jω(N−1)/2. (2)

This relation shows that a causal and linear phase GN (z) can only approximate the integrator with a

delay of (N−1)/2 samples. It can be easily checked that among the four types of linear phase systems,

only the Type-1 and Type-2 linear phase systems with symmetric impulse responses (h[n] = h[N−n])

are suitable for the approximation of the integrator, [10, p.257].

The main idea of the paper is to impose Type-1 or Type-2 symmetry conditions on GN (z). To do

that, we propose to calculate the area under the central strip (shown with blue shading in Figure 1)

instead of the strip conventionally calculated with Newton-Cotes rule (shown with gray shading) [4].

The reason of this choice can be explained as follows. It can be noted that the blue strip contains

an equal number of samples on its left and right side. If the samples on the left and right side are

interchanged, that is the samples on each side are flipped to the other side, the interpolation curve

flips to the other side; but the area under the center strip does not change. This shows that the GN (z)

filter which calculates the area of the center strip should be a symmetric polynomial. In the rest of

this paper, we pursue this idea and derive Type-1 and Type-2 linear phase GN (z) functions. The

derivation is given separately for Type-1 (even N ) and Type-2 (odd N ) for the sake of clarity.

A. Proposed System with Even Order Interpolators

We present a derivation for GN (z) based on the discrete-time Taylor series. To introduce the

discrete-time Taylor series, we first review the difference operators and factorial polynomials2.

The factorial polynomial t[N ] is an N th degree polynomial, t[N ] = t(t + 1) . . . (t + N − 1).

The backward difference operator ∆ is defined as ∆f [n] = f [n] − f [n − 1]. When the backward

2Further discussions on the Lagrange interpolation and the discrete-time Taylor series, within the context of fractional

delay systems, can be found in [11].
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difference operation is executed on the factorial polynomials, we get ∆t[N ] = Nt[N−1]. Hence with

the application of the difference operator, we get a factorial polynomial with one less degree, in

complete analogy with the continuous time derivative operator and tN polynomial.

The discrete-time Taylor series, in analogy with its continuous version, is defined as follows:

f(t) =
∞∑

n=0

∆nf [k]
(t− k)[n]

n!
(3)

It can be easily noted that f(t) is identical to f [k] when t = k. If ∆ is applied to both sides of (3)

and then t is replaced with k; we get ∆f(t) ↓t=k= ∆f [k]. By repeating this operation, we can show

that f(k − q) = f [k − q] for q ≥ 0. This shows that f(t) is an interpolating polynomial.

When the discrete-time Taylor series is truncated to a finite number of terms, the resultant relation

is equivalent to fitting an N th degree polynomial to the samples f [k], f [k − 1], . . . , f [k − (N − 1)],

which is the Lagrange interpolation, [11].

Figure 1 illustrates the case for the 4th order interpolation. We can explicitly write the relation for

this case as follows:

f(t) = f [k] +
∆f [k]

1!
(t− k) +

∆2f [k]
2!

(t− k)[2] +
∆3f [k]

3!
(t− k)[3] +

∆4f [k]
4!

(t− k)[4] (4)

The Newton-Cotes formula emerges immediately when f(t) given in (4) is integrated between k− 1

and k. Due to the reasons explained before, we are interested in the area under the center strip which

is the integral of f(t) between k − (N + 1)/2 and k − (N − 1)/2. The strip for N = 4 is shown in

Figure 1.
∫ k−(N−1)/2

k−(N+1)/2
f(t)dt =

∫ 1/2

−1/2
f(t + k −N/2)dt =

N∑

n=0

∆nf [k]
∫ 1/2

−1/2

(t−N/2)[n]

n!
dt (5)

Once the integrals are evaluated, the area under the center strip shown in Figure 1 can be written as

follows:

Area = f [k] + ∆f [k] (−2) + ∆2f [k]
(

25
24

)
+ ∆3f [k]

(−1
24

)
+ ∆4f [k]

(
17

5760

)
(6)

When the backward difference operators are replaced with their z-domain counterparts, ∆Lf [k] ↔
(1− z−1)LF (z); we get the following system function for the area calculator as follows:

G4(z) = 1+(1−z−1) (−2)+(1−z−1)2
(

25
24

)
+(1−z−1)3

(−1
24

)
+ (1−z−1)4

(
17

5760

)
(7)

= z−2
(
− 17

5760
(z2+z−2)+

77
1440

(z1+z−1)+
863
960

)

︸ ︷︷ ︸
Gzp

4 (z)

(8)

As desired, G4(z) is a Type-1 linear phase sequence. A zero-phase sequence, shown as Gzp
4 (z), can

be constructed from G4(z) by shifting it 2 units to the left (advancing). In the general case, the

Gzp
N (z) can be constructed by advancing GN (z) with N/2 samples.
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The frequency response of the Nth order integrator, with the form H(z) = GN (z)
1−z−1 , can be expressed

as follows:

H(ejω) =
GN (ejω)
2j sin(ω

2 )
ej 1

2
ω =

Gzp
N (ejω)

2j sin(ω
2 )

e−j N−1
2

ω (9)

When N is taken as 4 in the last relation, it is evident that the system is a linear phase system with

a constant group delay of (4 − 1)/2 = 3/2 samples. In other words, the kth output sample of the

4th order integrator sums the area up to k − 3/2 samples, which is exactly the scenario shown in

Figure 1.

The part of frequency response given in (9) without the linear phase term is an approximation

to the ideal integrator,
∫ t
−∞ f(τ)dτ . The nature of the approximation for the 4th order case can be

shown as follows:

Gzp
4 (ejω)

2j sin(ω
2 )

=
863
1920 + 77

1440 cos(ω)− 17
5760 cos(2ω)

j sin(ω
2 )

=
1
2 − ω2 1

48 + ω4 1
3840 + ω6 13

69120 + O(ω8)
j(ω 1

2 − ω3 1
48 + ω5 1

3840 − ω7 1
645120 + O(ω9))

≈ 1
jω

(10)

In the second line of (10), the Taylor series expansions of cosine and sine functions are written for

the numerator and denominator terms. This result shows that the denominator polynomial in ω is

equal to the numerator polynomial times jω up to the 8th degrees. It is evident that a higher order

approximation would improve the approximation accuracy to the continuous-time integrator. In the

numerical results section, we examine the accuracy of this approximation for various values of N .

B. Proposed System with Odd Order Interpolators

Figure 2 shows the Lagrange interpolator and the center-strip for the 5th order interpolation. The

Lagrange interpolator for the 5th order case contains all the terms on the right hand side of equation

(4) and the additional term of ∆5f [k]
5! (t − k)[5]. The area under the center-strip can be calculated by

integrating f(t) between k− (N + 1)/2 and k− (N − 1)/2, as in the even order case. Repeating the

steps described, we can get the Type-2 symmetric G5(z) polynomial as follows:

G5(z) = z−2.5
(

11
1440

(z2.5+z−2.5)− 31
480

(z1.5+z−1.5) +
401
720

(z0.5+z−0.5)
)

(11)

The 5th order approximation for 1
jω is then as follows:

Gzp
4 (ejω)

2j sin(ω
2 )

=
11

1440 cos(2.5ω)− 31
480 cos(1.5ω) + 401

720 cos(0.5ω)
j sin(ω

2 )

=
1
2 − ω2 1

48 + ω4 1
3840 − ω6 437

276480 + O(ω8)
j(ω 1

2 − ω3 1
48 + ω5 1

3840 − ω7 1
645120 + O(ω9))

≈ 1
jω

(12)
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Fig. 2. 5th Order Lagrange Interpolator

It can be seen that the frequency response of the odd order integrators is identical to the response of

even order integrators given in (9). The only difference is that even degree integrators have Type-1

symmetry for GN (z), while odd degree integrators have Type-2 symmetry. The group delay of both

cases is (N − 1)/2, exactly matching the illustrations given in Figures 1 and 2.

The presented examples can be generalized to all orders without any difficulty. For an arbitrary

value of N , the proposed digital integrators can be written as H(z) = GN (z)/(1− z−1) where

GN (z) =
N∑

n=0

(1− z−1)n

n!

∫ 1
2

− 1
2

n−1∏

m=0

(t−N/2 + m)

︸ ︷︷ ︸
(t−N

2
)[n]

dt (13)

The expressions for GN (z) up to the 7th order and the Matlab code generating an arbitrary order

GN (z) are presented in Table I.

III. NUMERICAL COMPARISONS AND IMPLEMENTATION ISSUES

In this section, we present a numerical comparison of the proposed integrators with the ones in

the literature. The first proposal on digital integrators utilizing Newton-Cotes rules has been given by

Ngo in [4]. Recently similar integrators have been proposed by Tseng, [6]. The integrators proposed

by Tseng have better performance when compared to other integrators requiring similar amount

of computation. We choose to compare the proposed integrators with the classical Ngo integrator

and recently proposed Tseng integrators [6] and the Simpson integrator [7]. (Interested readers can
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TABLE I

PROPOSED DIGITAL INTEGRATORS, H(z) = GN (z)/(1− z−1).

N GN (z)

1 1
2

+ 1
2
z−1

2 1
24

(1 + z−2) + 11
12

z−1

3 − 1
24

(1 + z−3) + 13
24

(z−1 + z−2)

4 − 17
5760

(1 + z−4) + 77
1440

(z−1 + z−3) + 863
960

z−2

5 11
1440

(1 + z−5)− 31
480

(z−1 + z−4) + 401
720

(z−2 + z−3)

6 367
967680

(1 + z−6)− 281
53760

(z−1 + z−5) + 6361
107520

(z−2 + z−4) + 215641
241920

z−3

7 − 191
120960

(1+z−7) + 1879
120960

(z−1+z−6)− 353
4480

(z−2+z−5) + 68323
120960

(z−3+z−4)

Matlab Script Generating GN (z) Polynomials

order=5; %set the order

syms t zi; G=1; %init

for k=1:order,

dum=prod(t-order/2:(t-order/2+k-1))/prod(1:k);

G=G+int(dum,-1/2,1/2)*(1-zi)ˆk;

end;

simplify(G),

examine Figure 6 of [6] for a comparison of Tseng’s integrators with the earlier integrators in the

literature.)

The definitions for Ngo, Tseng and Simpson integrators are given as follows:

HN (z) =
9 + 19z−1 − 5z−2 + z−3

24(1− z−1)
(14)

HT (z) =
−3693+67260z−1+88650z−2−14388z−3+2139z−4

139968(1− z−1)
z (15)

HS(z) =
1 + 4z−1 + z−2

3(1− z−2)
(16)

Different from Ngo and Tseng integrators, the integrator based on the Simpson’s rule has two poles

at z = {1,−1} and has a symmetric numerator polynomial leading to a perfect phase match with the

ideal integrator. The Simpson integrator and its improved versions suggested by Tseng can be found

in [7]. We note that the integrators whose poles are uniformly distributed around the unit circle, such

as the Simpson integrator, can also be expressed in the framework set in [4].

Frequency Response Comparison: Figure 3 shows the magnitude response of the proposed inte-

grators and the ideal integrator. The next figure shows the approximation error magnitude, D(ejω)−
H(ejω) which is the deviation from the desired response. Here D(ejω) = 1/(jω) is the response of

the ideal integrator.

For the proposed integrators presented in Figures 3 and 4, the group delay values are different

from each other. For comparison purposes, the group delay of each integrator is compensated making

each system constant phase. More specifically, the linear phase term appearing on the right-most side

of (9) is removed so that the response approximates 1
jω as shown in (10).

It can be seen from Figures 3 and 4 that the proposed integrators, especially the ones with even

orders, perform better than earlier proposals. The proposed 2nd order integrator is better than Ngo
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Fig. 3. The magnitude response of proposed integrators and the ideal integrator.

integrator (which is 3rd order) and marginally better than Tseng integrator (which is 4th order). The

performance gap widens for the proposed 4th order integrator.

Figures 3 and 4 show that the integrators with even orders significantly outperform the odd ordered

ones at high frequencies. This is due to the structure of Type-1 and Type-2 filters. It should be

remembered that a Type-2 sequence has a zero at z = −1, leading to G2L+1(ejω) → 0 as ω → π.

On the other hand, the ideal integrator ( 1
jω ) approaches 1/(jπ) as ω → π. The presence of a zero at

z = −1 results in an undesired attenuation of the response at high frequencies leading to observed

performance gap between even and odd orders.

Figure 5 compares the phase response of digital integrators. The proposed integrators, by design,

attain the desired phase of -90 degrees at all frequencies. The phase of -90 degrees is attained after

group delay compensation, which is N−1
2 samples. For even ordered integrators, this leads to a half

sample delay as can be seen from Figure 1. It should be noted that Ngo and Tseng integrators

significantly deviate from the desired response in mid frequency bands. This deviation is expected

since the numerator polynomials given in the corresponding equations of (14) are not symmetric. On

the other hand, the Simpson integrator has a perfect phase match due to its symmetric numerator

polynomial.
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Fig. 4. Magnitude Spectrum of Approximation Error

An Application Example: A typical navigation system contains a set of accelerometers and

gyroscopes on the moving body to sense the changes in the position and the orientation of the

moving object, [1]. It is well known that the second integral of the accelerometer readings is required

to calculate the instantaneous position of the object. Similarly, the first integral of the rate gyroscopes is

required to calculate the instantaneous orientation of the object. In this application example, we place

a rate gyroscope in the test unit shown in Figure 6(a) and program the unit to make rotations about a

single axis. The instructed motion is not the conventional uniform circular motion, but has intervals

of acceleration and de-acceleration as can be seen from the gyroscope readings given in Figure 6(b).

(The data shown in Figure 6(b) is collected with Sensonor STIM 202 gyro at the sampling rate of

1000 samples per second.)

As seen from Figure 6(b), the sequence of time intervals having acceleration and de-acceleration

motion results in an almost periodic gyro readings whose period is measured as 950 samples. The

change in the heading angle of the object can be found by integrating the data shown in this figure.

For signals of such low frequencies, i.e. ω = 2π
950 , the digital integrators that are compared in this

paper produce almost identical results. This result is not surprising in the light of previous findings

given in Figure 4.
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Fig. 5. Phase Response of Digital Integrators

To compare the performance of digital integrators, we decimate the collected the data through the

system shown in Figure 7. The downsampled data has a period of 950
L where L is the downsampling

ratio, which, in effect, leads to a increase in the frequency of periodic discrete-time signal.

In the conducted experiment, the outputs of the digital integrators are compared at different

downsampling rates. The ground-truth value is taken as the final value of the integration for the

undecimated (L = 1) system. It should be noted for the undecimated system, all integrators produce

the same output up to 3 decimal digits. (The final value is 738.417 degrees.) The deviation from the

final value is considered as the integration error.

Figure 8 shows the variation of the error expressed in decibels at different downsampling rates. It can

be observed that the proposed fourth order integrator produces the best result up to the downsampling

ratio of 5. For higher downsampling ratios, the performance of fourth order system is almost identical

to the third order system and to the system proposed by Tseng. It can be noted that the results of the

experiment are in agreement with the earlier findings presented in Figure 4.

It is important to note that for the navigation application, the integration error is one of the many

contributors to the final error. The other factors such as gyroscope bias, scaling factor, stability and

the errors in its alignment can have significantly more impact on the overall performance, [1]. With
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(a) Experimental Set-up
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(b) Gyroscope measurements

Fig. 6. Set-up for the gyroscope testing and collected measurements
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Fig. 7. The down-sampling system utilized in the application demonstration

this experiment, our goal is to isolate the integration error by generating the experimental data from

a single run so that the run-time errors and time-varying bias is kept constant in all comparisons.

In practice, the error due to the integrator is a minor component in comparison to other factors for

the non-tactical grade gyros. In spite of this fact, the proposed integrators does not require any more

computational resources than its alternatives and therefore can only bring gain which can be especially

important in high accuracy systems.

Implementation Issues: The simplest digital integrator is the cumulative summer whose system

function is 1/(1− z−1). The cumulative summer does not require any multipliers for its imple-

mentation. The proposed integrators and the other integrators residing in the same class have the

form of GN (z)/(1− z−1). It can be easily noted from (14) that Tseng and Ngo integrators require

N multipliers per output sample where N is the order of filter. As can be seen from Table I, the

proposed integrators require dN+1
2 e multipliers per output sample due to their even symmetry. (Here

d·e is the function mapping the argument to the smallest integer greater than or equal to the argument.)

It can be noted that the fourth order integrator proposed in this paper has computational requirements
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equivalent to the Ngo integrator and has one less multiplier requirement than the Tseng integrator;

but it produces a better performance than both alternatives. We believe that for many applications,

there would be little return for using fifth or higher order integrators; hence the second order or the

fourth order integrator can suffice in many applications.

It should be noted that the integrator, by definition, is an unstable system, therefore it is only

applicable for inputs having zero mean. Even for a zero mean input, the word width of the integrator

should be sufficiently large to accurately hold the accumulation result. For the application example

discussed, the angles produced by the integrators can be reduced to their modulo 2π equivalents

whenever it is appropriate. As a final note, two’s complement (non saturating) arithmetic can be

adopted to aid the recovery from a potential overflow.
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Fig. 8. Comparison of digital integrators

IV. CONCLUSIONS

In this paper a class of digital integrators has been described. By design, the digital integrators match

the phase response of the continuous-time integrator and can approximate the magnitude response

with an arbitrary degree of accuracy across a wide-band of frequencies. The second and fourth

order integrators, which require little computation per output sample, can immediately replace earlier

proposals in many applications requiring long term integration such as navigation applications, [1].
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