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Abstract — Military sensor arrays are exposed to harsh conditions in general. In certain cases, the operator or the 

system may be required to disable certain elements of the array due to their unreliable readings. The system performance 

is affected with the number of the disabled sensors and their locations in the array. In some cases, even if the majority 

of the sensors are disabled, the system can be still useful for direction finding in a particular angular sector. In such 

cases, the operator needs a performance prediction tool to assess the reliability of array with disabled sensors. As the 

number of possible combinations for disabled sensors can be very large, it is more practical to assess the array 

performance with an online tool. Our goal is to provide the operator, a prediction for the system performance with a 

set of disabled sensors, in a simple and concise manner. Since the performance deviation depends on the signal to noise 

ratio, bearing angle and the operating frequency, the representation of 4-dimensional data is also a challenge. In this 

paper, we utilize an approximate deterministic Ziv-Zakai type lower bound as a means for the array performance 

prediction. Also we present a visualization scheme for the display of performance metrics, for instance direction finding 

uncertainties, which depend on frequency, bearing angle and signal to noise ratio.  

1 Introduction  

Military sensor arrays are deployed in harsh conditions 

in general. Although the array and its elements are 

designed to withstand the expected harsh conditions, it is 

always possible to have sensor failures. It is possible that 

due to an accident, some elements of the array can be 

damaged, i.e., not able to function properly. In such cases, 

the operator or the system may be required decide to 

disable some of the sensors with unreliable readings. The 

system performance is affected by the number of the 

disabled sensors, and their location in the array. In some 

cases, even if majority of the sensors are disabled, the 

overall system can still be useful for direction finding 

purposes in a particular angular sector. In such cases, the 

operator needs a performance prediction tool to assess the 

reliability of array with disabled sensors. As the number of 

possible combinations for the disabled sensors can be very 

large, it is more practical to assess the array performance 

with an online tool rather than reporting the performance 

on a case-by-case manner typically in a user manual. Our 

problem is to provide the operator, a prediction on the 

array performance in a rather simple and concise manner. 

Since the performance deviation depends on the signal to 

noise ratio, bearing angle and the operating frequency; a 

representation for the illustration of 4-dimensional data is 

also required. 

Performance bounds can be divided into two main 

classes, namely deterministic bounds (for non-random 

parameter estimation) and Bayesian bounds (for random 

parameter estimation). Traditionally the most popular 

method to assess array performance is the Cramer-Rao 

Bound (CRB) [1]. CRB is easy to compute, has both 

deterministic and Bayesian versions, and it is independent 

of the estimator being used. For direction finding (DF) 

applications, CRB is basically dependent on the second 

derivative of the mainlobe of the beampattern of the array 

for the Gaussian case. Under "low" signal to noise ratio 

(SNR) conditions, the maximum likelihood estimate can 

be around one of the side-lobes of the beampattern. CRB 

provides an optimistic lower bound for such cases. The 

SNR value below which the performance of an efficient 

estimator starts to deteriorate is called the threshold SNR 

value. CRB is not a tight bound below the threshold SNR 

value. There is a vast literature on this topic (see for 

instance [2]) and many different lower bounds are 

proposed to account for the threshold region performance, 

for instance Barankin Bound [3], Weiss Weinstein Bound 

[4] and Ziv-Zakai Bound [5], [6]. These Bayesian bounds 

are able to model the threshold region performance, 

though they are somewhat tedious to calculate. In case of 

sensor failures, we suggest to use one of these bounds to 

observe the change in the threshold SNR.  

In this paper, we derive an approximate deterministic 

Ziv-Zakai type bound for performance assessment of 

arrays with faulty sensors. 

2 Problem definition 

We consider the following signal model; 

 

𝑟𝑛  = 𝜂𝑛𝐵𝑛𝐴𝑠 𝑒𝑗𝜓𝑛  + 𝜔𝑛 , 𝐴𝑠 ∈ ℝ  (1)  

 

𝒓 = [

𝑟0

𝑟0

⋮
𝑟𝑁−1

] , 𝒂𝜓 = [

𝐵0

𝐵1ejψ1

⋮
𝐵𝑁−1ejψN−1

]  (2)  

 

𝜂𝑛 ∼  CN(𝜇𝜂, 2𝜎𝜂
2)  (3)  

𝜔𝑛 ∼  CN(0, 2𝜎𝑛
2)  (4)  

 

where As is the signal amplitude, 𝐵𝑛 is the sensor response 

at the direction of arrival (DOA), ηn represents the signal 
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fading coefficient, CN(μ, σ2) represents a complex 

Gaussian distribution with mean μ and variance σ2 and 

(. )H is the Hermitian transpose. 𝜓𝑛 is the phase value 

associated with the relative delay of the nth sensor with 

respect to the first sensor. Consequently the signal mean 

vector and covariance matrix are as follows, 

 

𝝁 =  𝐸{𝒓}  = 𝜇𝜂 𝐴𝑠 𝒂𝜓  (5)  

 

𝑪𝑥 =  𝐸{(𝒓 − 𝝁)(𝒓 − 𝝁)𝐻}   

     = 2𝜎𝜂
2 𝐴𝑠

2 𝒂𝜓𝒂𝜓
𝐻  +  2𝜎𝜔

2  𝑰𝑁  (6)  

 

where 𝐸{⋅} is the expectation operator and 𝑰𝑁 is an N by N 

identity matrix. 

In the direction finding applications we have the following 

form for ψn, 

 

ψn =
2π

λ
(𝐩n

H − 𝐩𝟎
H) 𝐮  (7)  

 

𝐩𝒏 = [

𝑥𝑛

𝑦𝑛

𝑧𝑛

]  (8)  

 

𝐮 = [

cos(𝜙) sin(𝜃)

sin(𝜙) sin(𝜃)

cos(𝜃)
]  (9)  

 

where λ is the wavelength, 𝐩𝑛 is the position vector of the 

nth sensor and 𝐮 is the unit vector pointing at direction of 

arrival defined by azimuth and elevation angles 𝜙 and 𝜃.  

Especially in shallow waters, multipath signal propagation 

is an important problem. Consequently the complex fading 

coefficient 𝜂𝑛 is added to the signal model. We assume 

Rician fading conditions, and we define 

 

K ≜
|E{𝜇𝜂}|

2

E{|𝜂−𝜇𝜂|
2

}
=

|𝜇𝜂|
2

2𝜎𝜂
2   (10)  

 

as the Rician factor. The Rician factor is a descriptor of the 

ratio between the power of the signal component that 

arrives the sensor array through the direct path, and the 

total power of the signal arriving through the reflections 

(multi-path arrivals). Consequently, when the Rician 

factor is equal to zero, we do not observe the direct path 

signal. At the other extreme when the Rician factor tends 

to infinity, we only observe the direct path arrival and do 

not have any multi-path arrivals. 

 

Another definition we need is the gross error. At high 

signal to nose ratio (SNR) values, the estimates will have 

a small jitter inside the main-lobe of the beampattern and 

the error here is generally called “fine error”. However, 

when the input SNR drops below a certain threshold value, 

the estimates start to switch back and forth between main-

lobe and side-lobes. Consequently causing a large 

(“gross”) error. This situation is illustrated in Fig. 1 where 

a maximum likelihood estimator is used with a sparse array 

(to emphasize the high side-lobes) just below the SNR 

threshold for this array configuration. As seen in the figure, 

the likelihood of the estimates roughly follow the shape of 

the beampattern. We will later show that the SNR 

threshold value for which the estimator output remains 

within the main-lobe of the array can be found using the 

Ziv-Zakai bound. 

 

 
Fig. 1. Histogram of Maximum Likelihood Estimator outputs 

for 106 Monte Carlo runs with the true DOA at 85.3 degrees. 

 

Using this signal model, the bearing estimation 

performance can be studied by the performance bounds 

(Cramer Rao, Barankin, Ziv-Zakai etc.) that provide a 

lower bound for the estimator accuracy. We will utilize 

Ziv-Zakai bounds to estimate the system performance 

along with the threshold SNR estimation in the latter 

sections. But first, we briefly examine the Cramer Rao 

lower bound which is a fundamentally important bound 

providing a tight characterization of the maximum 

likelihood estimator at high SNR conditions. We also use 

the CRB as a comparison metric with other bounds. 

 

3 Performance Bounds  

3.1. Cramer-Rao Lower Bound 

Using the derivation for complex Gaussian case in [7] (see 

Appendix 15C) with a fading model, the Cramer-Rao 

Bound (CRB) is expressed as follows; 

[FIM]𝑖𝑗 = tr {𝐂𝑥
−1(𝜉)

𝜕𝐂𝑥(𝜉)

𝜕𝜉𝑖
𝐂𝑥

−1(𝜉)
𝜕𝐂𝑥(𝜉)

𝜕𝜉𝑗
}

+ 2Re {
𝜕𝝁𝑯(𝜉)

𝜕𝜉𝑖
𝐂𝑥

−1(𝜉)
𝜕𝝁(𝜉)

𝜕𝜉𝑗
} 

(11)  

  

CRB = FIM−1  (12)  

where tr{⋅} is the trace operator, FIM is the Fisher 

Information Matrix. Although it seems tedious to calculate 

the expression analytically, it is indeed quite easy to 

calculate numerically. However, CRB provides extremely 

optimistic lower bounds at low signal to noise ratios. And 

it is quite insensitive to the channel fading effects. We will 

elaborate on these drawbacks in the following sections. 
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3.2 Ziv-Zakai Bound  

The Ziv-Zakai Bound [2], [5], [6], [8] is defined as 

follows; 

ZZB = ∫ 𝜈{𝐴(ℎ)𝑃𝑒(ℎ)}ℎ 𝑑ℎ
∞

0

 (13)  

𝐴(ℎ) = ∫ min(𝑝𝑢(𝑢), 𝑝𝑢(𝑢 + ℎ)) 𝑑𝑢
∞

−∞

 (14)  

where, 𝑝𝑢(⋅) is the prior distribution of the parameter to be 

estimated. 𝑃𝑒(ℎ) is the minimum probability of error for 

deciding between the true parameter 𝜃 and its offset 

version, 𝜃 + ℎ. And 𝜈{⋅}  is defined as the valley-filing 

operator,  

𝜈{𝑓(ℎ)} = max
𝜖≥0

𝑓(ℎ + 𝜖) (15)  

which returns a non-increasing output as seen in Fig. 2. For 

bearing estimation problem under consideration, the ZZB 

equations simplify [8] to the following set of equations, 

𝑢 ∼ 𝑢𝑛𝑖𝑓(0, 2𝜋) → 𝐴(ℎ) =
2𝜋 − ℎ

2𝜋
 (16)  

ZZB = ∫ 𝜈 {𝑃𝑒(ℎ)
2𝜋 − ℎ

2𝜋
} ℎ 𝑑ℎ

𝜋

0

 (17)  

 

Fig. 2. The valley filling function. 

The Ziv-Zakai bound is a Bayesian bound which requires 

a prior distribution on the DOA. Hence, different from a 

non-random parameter estimation bound, the Ziv-Zakai 

bound depends on the prior distribution but not on the 

actual value of the DOA. By using Bayesian bounds with 

the uniform pdf over an angular sector of interest, one does 

not get informed about a particular DOA, but receives only 

partial information about the average performance in that 

sector. To study the performance in different angular 

sectors, one can use different prior distributions. 

Here we follow an alternative approach. We would like to 

obtain a performance bound specific for a fixed DOA, i.e. 

a non-random parameter bound. To do that, we express the 

event of {|𝜃̂ − 𝜃𝑡| > 𝜖} as the union of disjoint events 

{𝜃̂ − 𝜃𝑡 > 𝜖} and {𝜃̂ − 𝜃𝑡 < −𝜖} for 𝜖 > 0, where 𝜃𝑡 is the 

true target angle (non-random) and 𝜃̂ is an estimator of 𝜃𝑡. 

Consequently, 

𝑀𝑆𝐸𝜃𝑡
= 2 ∫ 𝜖 𝑃{|𝜃𝑡 − 𝜃̂| > 𝜖} 𝑑𝜖

𝑇2−𝑇1

0

 (18)  

At this point we can obtain an approximate lower bound 

for the maximum likelihood (ML) estimator, by lower 

bounding the probability of 𝑃{|𝜃𝑡 − 𝜃̂| > 𝜖} given in (18).  

By quantizing the probability of error 𝑃{|𝜃𝑡 − 𝜃̂| > 𝜖} to 

𝑃𝑒{𝜃𝑡 , 𝜃𝑡 ± 𝜖}, we get  

𝑀𝑆𝐸𝜃𝑡

𝑀𝐿 ≥ 2 ∫ 𝜖 𝑃𝑒{𝜃𝑡 , 𝜃𝑡 + 2𝜖} 𝑑𝜖

𝑇2−𝜃𝑡
2

0

 

                +2 ∫ 𝜖 𝑃𝑒{𝜃𝑡 , 𝜃𝑡 − 2𝜖} 𝑑𝜖

𝜃𝑡−𝑇1
2

0

 

(19)  

where 𝜃𝑡 ∈ [𝑇1, 𝑇2] is the interval that 𝜃𝑡 lies. For the 

problem of interest 𝜃𝑡 ∈ [0, 2𝜋). By setting 𝑇1 = 𝜃𝑡 − 𝜋 

and 𝑇2 = 𝜃𝑡 + 𝜋, we have; 

𝑀𝑆𝐸𝜃𝑡

𝑀𝐿 ≥ 2 ∫ 𝜖 𝑃𝑒{𝜃𝑡 , 𝜃𝑡 + 2𝜖} 𝑑𝜖

𝜋
2

0

 

                +2 ∫ 𝜖 𝑃𝑒{𝜃𝑡 , 𝜃𝑡 − 2𝜖} 𝑑𝜖

 𝜋
2

0

 

(20)  

We will refer the last bound as the approximate 

deterministic ZZB from this point on.  We use such a name 

for the bound in (20), since the bound can be converted to 

the conventional Ziv-Zakai bound when 𝜃𝑡 is assumed to 

be a random parameter. The term 𝑃𝑒{𝜃𝑡 , 𝜃𝑘} refers to the 

probability of error between deciding 𝜃𝑘 given the true 

parameter is 𝜃𝑡.  

The problem now reduces to providing a closed form 

expression for the minimum probability of error between 

deciding 𝐻0: 𝜓 = 𝜓0 and 𝐻1: 𝜓 = 𝜓0 + ℎ hypotheses 

when 𝐻0 is true. This error probability is called Type-1 

error probability. If the likelihood ratio test is written, we 

see that the probability of error can be reduced to, 

𝑃𝑒 = 𝑃 (|𝒓𝑯𝒂𝜓0
|

2
< |𝒓𝑯𝒂𝜓0+ℎ

|
2

)  (21)  

  

𝑃𝑒 = 𝑃(|𝐵(𝜓0)|2 < |𝐵(𝜓0 + ℎ)|2)  (22)  
  

[
𝐵(𝜓0)

𝐵(𝜓0 + ℎ)
] = [

𝒂𝜓0

𝐻

𝒂𝜓0+ℎ
𝐻 ] 𝒓 = 𝐀𝐻𝒓  (23)  

  

𝒓 ∼ 𝐶𝑁(𝜇𝜂𝒂𝜓0
, 2𝜎𝜂

2𝒂𝜓0
𝒂𝜓0

𝐻 + 𝜎𝑛
2𝑰)  (24)  

  

𝒓 ∼ 𝐶𝑁(𝝁𝒓, 𝑪𝒓)  (25)  

[
𝐵(𝜓0)

𝐵(𝜓0 + ℎ)
] ∼ 𝐶𝑁(𝑨𝐻𝝁𝒓, 𝑨𝑯𝑪𝒓𝑨)  (26)  
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We need the probability of the event that compares the 

magnitude squares of two jointly Gaussian distributed 

random variables. This analysis is given in literature [9], 

[10] and can be summarized, using the Stein's notation, as 

follows,   

𝑧𝑖̅𝑓 = 𝑚𝑖𝑓 + 𝑗𝜇𝑖𝑓 =  |𝑧𝑖̅𝑓|𝑒𝑗𝜃𝑖𝑓 , 𝑖 = 1, 2  (27)  

  

𝑆𝑖𝑓 =
1

2
|𝑧𝑖̅𝑓|

2
=

1

2
(𝑚𝑖𝑓

2 + 𝜇𝑖𝑓
2 )  (28)  

  

𝑁𝑖𝑓 =
1

2
|𝑧𝑖𝑓 − 𝑧𝑖̅𝑓|

2
  (29)  

  

𝜌𝑓 =
1

2√𝑁1𝑓𝑁2𝑓
(𝑧1𝑓 − 𝑧1̅𝑓)

∗
(𝑧2𝑓 − 𝑧2̅𝑓)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
  

  
(30)  

𝜙 = arg(𝜌𝑐𝑓 + 𝑗𝜌𝑠𝑓)  

  
(31)  

  

{
𝑎
𝑏

} =
1

2
[

𝑆1𝑓+𝑆2𝑓+2√𝑆1𝑓𝑆2𝑓 cos(𝜃1𝑓−𝜃2𝑓+𝜙)

𝑁1𝑓+𝑁2𝑓+2√𝑁1𝑓𝑁2𝑓|𝜌𝑓|
2

+

                 
𝑆1𝑓+𝑆2𝑓−2√𝑆1𝑓𝑆2𝑓 cos(𝜃1𝑓−𝜃2𝑓+𝜙)

𝑁1𝑓+𝑁2𝑓−2√𝑁1𝑓𝑁2𝑓|𝜌𝑓|
2

∓

                 
2(𝑆1𝑓−𝑆2𝑓)

√(𝑁1𝑓+𝑁2𝑓)
2

−4𝑁1𝑓𝑁2𝑓|𝜌𝑓|
2
]  

(32)  

  

𝐴 =
𝑁1𝑓−𝑁2𝑓

√(𝑁1𝑓+𝑁2𝑓)
2

−4𝑁1𝑓𝑁2𝑓|𝜌𝑓|
2
  (33)  

  

𝑃(|𝑧1𝑓| < |𝑧2𝑓|) =
1

2
[1 − 𝑄1(√𝑏, √𝑎) +

            𝑄1(√𝑏, √𝑎)] −
𝐴

2
exp (−

𝑎+𝑏

2
) 𝐼0(√𝑎𝑏)    

(34)  

 

Fig. 3. Comparison of Cramer-Rao and approximate 

deterministic Ziv-Zakai Bounds under different fading 

conditions. 

Consequently, for the bearing angle estimation accuracy 

problem, we can use the Stein’s probability of error 

formulation to calculate the approximate deterministic 

Ziv-Zakai Bound.  

The practical advantage of using Stein's analysis for error 

analysis is that we have a closed form expression for the 

probability of error for different fading conditions (for any 

Rician factor). In Fig. 3, Cramer-Rao and deterministic 

Ziv-Zakai bounds are calculated for different Rician 

factors and SNR values, for a fine frequency estimation 

problem. As seen in this figure, the changes in the Cramer-

Rao bounds in response to the drastic changes in the fading 

conditions is almost negligible. However deterministic 

Ziv-Zakai bound is a tighter bound, as emphasized by 

Monte Carlo results in Fig. 4 for fine frequency estimation 

problem (which is analogous to direction finding problem 

using a uniform line array with an element spacing of λ/2). 

It is quite straightforward to apply the ZZB to the direction 

finding performance estimation. 

 

Fig. 4. Comparison of Cramer-Rao and deterministic Ziv-Zakai 

Bounds with 107 Monte Carlo simulations using a Rician factor 

(K) of 10. 

As a case study for the direction of arrival problem, we 

examine a 12 element circular array with directional 

elements as depicted in Fig. 5. Each sensor is modeled to 

have a cosine pattern with the following expression; 

𝐵𝑛(𝜙) = |
1

2
cos(𝜙 − 𝜙𝑛) +

1

2
|

2

  (35)  

  

𝜙𝑛 =
(𝑛−1)𝜋

6
 , 𝑛 = 1, 2, … , 12.   (36)  

 

Sensors are placed with equal angular separations on a 

circle with radius of 0.5 meters for an operating frequency 

of 10 kHz and 1500 m/sec sound speed. With these 

definitions, the approximate deterministic Ziv-Zakai 

bound is calculated for different input SNR and target 

DOA values for two different Rician factor values. The 

results are presented in Fig. 6  and Fig. 7, for K → ∞ (no 

fading) and K = 10 respectively. Expectedly, we observe 

a very close performance for all directions, due to the 

symmetric array structure. Notice that the threshold SNR 

is about 1.5 dB worse when K = 10 compared to K → ∞. 
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Although it is not apparent in the figures, the asymptotic 

performance is slightly worse for K = 10 as well. 

 

Fig. 5. Array geometry and sensor beampatterns when all sensors 

are enabled. 

 
Fig. 6. Approximate Deterministic Ziv-Zakai Bounds for 

different input SNR and bearing values when all sensors are 

enabled and no fading (𝐾 → ∞). 

 
Fig. 7. Approximate Deterministic Ziv-Zakai Bounds for 

different input SNR and bearing values when all sensors are 

enabled for 𝐾 = 10. 

When we disable two sensors (Fig. 8), the performance 

expectedly deteriorates within the angular sector of the 

disabled sensors as seen in Fig. 9. Again we observe an 

increase in the threshold SNR about 1.5 dB when K = 10 

compared to K → ∞. 

 

 
Fig. 8. Array geometry and sensor beampatterns when two 

sensors are disabled. 

 
Fig. 9. Approximate Deterministic Ziv-Zakai Bounds for 

different input SNR and bearing values when a sensor is disabled 

and no fading (𝐾 → ∞). 

 
Fig. 10. Approximate Deterministic Ziv-Zakai Bounds for 

different input SNR and bearing values a sensor is disabled 

for 𝐾 = 10. 
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4 Conclusion 

In this paper we have given the closed form expressions 

for the calculation of approximate deterministic Ziv-Zakai 

lower bound under Rician fading conditions. These bounds 

are applied in the performance prediction of arrays with 

disabled sensors due to faults. Utilization of approximate 

deterministic Ziv-Zakai bounds simplifies the 

performance analysis, due to the availability of closed 

form expressions for the probability calculation of an error 

event required for the bound. Consequently, for a given 

array geometry and fading parameters, it is possible to 

present to the sonar operator an online performance 

prediction tool. This provides the sonar operator an ability 

to almost instantaneously assess the array performance 

with disabled sensors. The analysis in this paper is carried 

out specifically for the direction finding applications, 

however the derivations are analogous to the frequency 

estimation problem and can be trivially extended to this 

problem as well.  
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