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a b s t r a c t

The Savitzky–Golay (SG) filter design problem is posed as the minimum norm solution of
an underdetermined equation system. A unified SG filter design framework encompassing
several important applications such as smoothing, differentiation, integration and frac-
tional delay is developed. In addition to the generality and flexibility of the framework, an
efficient SG filter implementation structure, naturally emerging from the framework, is
proposed. The structure is shown to reduce the number of multipliers in the smoothing
application. More specifically, the smoothing application, where an Lth degree polynomial
to the frame of 2Nþ1 samples is fitted, can be implemented with N�L=2 multiplications
per output sample instead of Nþ1 multiplications with the suggested structure.

& 2014 Elsevier B.V. All rights reserved.
1. Introduction

Savitzky–Golay (SG) filters are suggested to reduce the
effect of noise on the signals with the polynomial struc-
ture. The goal is to retain the salient features of the
polynomials while suppressing the additive noise compo-
nent accompanying the polynomial signal. A typical appli-
cation can be the position estimation of a vehicle from
the noisy measurements of an inertial measurement unit
(IMU). If the acceleration of a vehicle is assumed to be
constant in an interval, its position is described by a
second degree polynomial of time in that interval. The
goal of SG filters is to project the noisy observations to the
signal space (the space of second degree polynomials for
this application) and estimate the desired feature, which
can be the velocity at a given time, from the projection
result. This appealing analytical interpretation, based on
an),
polynomials, makes SG filters popular in several fields like
chemistry, physics and other experimental sciences.

The filtering process with SG filters can be considered
to take place in two stages. In the first stage, the least-
squares polynomial fit to a given set of samples is found.
The task of this stage is to reduce the noise by projecting
the input to the signal space. In the second stage, the fitted
polynomial is processed through a linear functional to
extract the desired output. As an example, the functional
for the smoothing application is the evaluation functional
that evaluates the polynomial at a specific point [1]. It
has been recognized by Savitzky and Golay that the
cascade application of these two-stages can be realized
through a simple linear time invariant (LTI) filtering
scheme. The simplicity and efficacy of LTI filtering for the
SG filter implementation have attracted significant atten-
tion of researchers, especially the ones involved in the
experimental sciences.

The signal processing literature on the SG filter is rather
scant. SG filters have been brought to the attention
of signal processing community with the recent study of
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Fig. 1. Savitzky–Golay smoothing filter with N¼ L¼ 2.
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Schafer [2]. In this work, Schafer examines the problem of
SG filter design and studies the frequency response of SG
filters in detail. An important difference between SG filter
design and conventional filter design is that SG filter speci-
fications are given in terms of polynomials such as the
highest polynomial degree to be retained; but not through
the frequency domain specifications such as the ones for
passband and stopband. The work of Schafer connects the
conventional frequency domain specifications, say for low
pass filter design, to the SG filter design parameters.

To the best of our knowledge, the most comprehensive
work on SG filters is the work of Schüssler and Steffen
given in [3, Chapter 8]. In this work, the authors present
several equivalent definitions for SG filters and establish
connections with other topics relevant to the signal
processing. Another notable work is the detailed study of
Ziegler on the properties of SG smoothing filters [4]. In
addition to some other theoretical developments on SG
filters [5–7]; there are significantly more number of papers
reporting the utilization of SG filters in chemistry, physics,
biomedical engineering and other experimental sciences
[2,8,9]. The main application of SG filters in these fields is
the smoothing/differentiation of the experimentally col-
lected data using relatively few samples in the neighbor-
hood of the samples as illustrated in [10, Fig. 2]. It can
be said that the SG filters enable an easy-to-use method
(convolution with SG filter impulse response) to realize the
least-square polynomial fit to the experimental data.

The main contribution of this paper is to present a
general framework for the derivation and implementation
of SG filters. SG filters for smoothing, differentiation,
integration, and fractional delay operations can be almost
effortlessly derived through the described framework. It
should be noted that SG filters in the literature are
designed separately for each application [7,10]. The frame-
work enables an easy method for the design of general
purpose SG filters as illustrated with several examples in
this work. In addition, an efficient structure for SG filter
implementation is proposed. The structure is especially
attractive for the smoothing applications when the fitted
polynomial degree (L) is comparable with the number of
samples in a frame (2Nþ1). Specifically, SG smoothing
filter can be implemented with N�L=2 multiplications
instead of Nþ1 multiplications per output sample with
the proposed structure.

2. Preliminaries

We present a self-contained description for SG filters in
this section. The first subsection gives the conventional
two-stage definition for the SG filters and outlines the
steps of derivation for the SG smoothing filter. The second
subsection establishes some connections between the
derivative and difference operators which are required
for the development of the general framework.

2.1. Conventional two-stage derivation for
Savitzky–Golay filters

We describe the operation of SG filters through a simple
example illustrated in Fig. 1. The stem plot in Fig. 1 shows the
input which is assumed to be corrupted by the additive
noise. For the sake of illustration, we assume that the sample
with the index of m¼5 is to be estimated by processing
nearest N¼2 neighbors on each side of this sample. In other
words, the samples with the indices from m¼3 to m¼7 are
used to estimate the sample with the index of m¼5. The
smoothing method is the least-squares (LS) polynomial fit to
the given set of samples, followed by the evaluation of the
best fit polynomial at m¼5.

At the bottom part of Fig. 1, two axes, namely m-axis
and n-axis, are given. The n-axis denotes the index offset
from the output sample n¼m�5. It should be clear that
the described two-stage filtering operation through the
least-squares polynomial fit can be implemented either
over m-axis or n-axis with no change in the final result.
This simple observation leads to the important fact that
the mentioned two-stage filtering operation is time-
invariant. In this work, we use n-axis to define the SG
filters. Hence, the input x½n� is considered to be in the
interval of �NrnrN, where N is the maximum index
offset from the output sample. It should also be noted that
the SG filters designed within this framework are of length
2Nþ1 samples. (In some applications, the length of the
filter, 2Nþ1 samples, is also denoted as the frame length.)

In order to describe the LS polynomial fit operation, we
express the input samples and the samples of the poly-
nomial functions in terms of vectors. (All variables
with the boldface letters represent column vectors.) As
an example, the input x½n� is written in the vector form as
follows:

xT ¼ ½x½�N�x½�Nþ1�…x½0�…x½N�1�x½N��T : ð1Þ

Similarly, the samples of the canonical polynomials, tk,
over the interval of �NrnrN, are written in the vector
form as

tTk ¼ ½ð�NÞkð�Nþ1Þk…0…ðN�1ÞkNk�T: ð2Þ

The elements of the vector tk are simply the kth power of
the integers in the interval ½�N;N�. In addition to the



Fig. 2. Stages of Savitzky–Golay filtering.
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polynomials, the constant function is denoted with all
ones vector 1, 1T ¼ ½1 1 … 1 1�T .

The least-square mapping projects the input vector
xAR2Nþ1 to S ¼ spanf1; t1; t2;…; tLg. S is the Lþ1 dimen-
sional subspace of R2Nþ1, as shown in Fig. 2. The projec-
tion matrix to the space S can be defined by the
introduction of A matrix:

A¼ ½1 t1 t2 … tL�1 tL�: ð3Þ

With this definition, the projection operator from R2Nþ1

to S becomes PS ¼AðATAÞ�1AT .
The projection to the space S is the first stage of SG

filtering operation. In the second stage, SG filter output is
produced by processing the projection result through a
linear functional. For smoothing application, the functional
evaluates the LS fit at a specific point. In general, the
functional maps the projection result from S to the real
line as shown in Fig. 2.

For the smoothing application shown in Fig. 1, the SG
filter output is the evaluation result of the best fit poly-
nomial at n¼0 or t¼0. Hence, once the input is projected
to the space S, bx ¼ PSx; the central entry of the vector bx
becomes the output of SG smoothing filter. We can express
the cascade of the projection and central entry selection
operations as follows:

hT ¼ eT0PS ¼ eT0AðATAÞ�1AT: ð4Þ

Here e0 is the canonical vector composed of all zeros
except the entry of 1 at n¼0 (central entry). Using these
definitions, the SG smoothing filter output can be simply
calculated by taking the inner product of h and x, y¼ hTx.

For the case illustrated in Fig. 1, the projection operator
maps R5 onto three-dimensional S ¼ spanf1; t1; t2g. Using
(4), the vector h can be calculated as hT ¼ 1=35½�3 12
17 12 �3�T and the SG smoothing output becomes hTx.
Since the overall process is time-invariant, the inner product
calculation can be implemented through the convolution
with the time-reversed version of vector h. It should be
noted that for the examined smoothing application, h is an
even sequence and time-reversal operation is not necessary.
2.2. Difference calculus and difference operators

The discrete analog of the differentiation operation,
that is the finite difference, is required for the develop-
ment of general SG filtering framework. We present the
following definitions for the first and the second difference
in analogy with first and second derivatives:

d
dt
f tð Þ2∇1ff n½ �g ¼ 1

2
f nþ1½ �� f n�1½ �ð Þ; ð5Þ

d2

dt2
f tð Þ2∇2ff n½ �g ¼ f nþ1½ ��2f n½ �þ f n�1½ �: ð6Þ

The higher order differences, corresponding to higher
order derivatives, can also be defined as

dk

dtk
f tð Þ2∇kff n½ �g ¼ ∇1ð∇2Þlff ½n�g; k¼ 2lþ1

ð∇2Þlff ½n�g; k¼ 2l

(
ð7Þ

Here ð∇2Þl represents l-th power of the operator ∇2, i.e. its
l-fold repeated application. It should be noted that the
definitions in (7) are different, but closely related with the
classical definitions given in [11, Chapter 5].

When f ðtÞ ¼ tk is sampled with the period of T seconds,
f ½n� ¼ f ðnTÞ; the application of ∇1 on f ½n� becomes an OðT2Þ
approximation to ðd=dtÞf ðtÞ, ∇1ff ½n�g ¼ Tðd=dtÞf ðtÞ↓t ¼ nT þ
OðT3Þ. The repeated application of this fact shows that the
p-th finite difference on the samples of f ðtÞ ¼ tk yields 0
function when p4k in analogy with the differentiation. This
simple fact about the annihilation of polynomials with
sufficiently high ordered difference operators becomes a
key fact in the derivation of SG filters given in the next
section.
3. Minimum norm problem for Savitzky–Golay
smoothing filter

The conventional design of SG filters starts with the
projection of the input to the space S (the space of Lth
degree polynomials) and then a linear functional is applied
on the projection result. Temporarily, we assume that the
input is already in the space S, i.e. the input vector x is
already on the plane shown with S in Fig. 2. Our initial
focus is on the functional operating from S to the real line.

For the smoothing application, the functional is to map
tkAS, which corresponds to the samples of tk in ½�N;N�,
to the value of the function tk at t¼0. By writing the
desired mapping operation for all tk vectors k¼ f0;1;…; Lg,
we get the following system of equations for the functional
corresponding to the smoothing application:

1 … 1 … 1
�N … 0 … N

ð�NÞ2 … 0 … N2

⋮ ⋮ ⋮
ð�NÞL … 0 … NL

26666664

37777775
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

AT

h½�N�
⋮

h½0�
⋮

h½N�

26666664

37777775
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

h

¼

1
0
0
⋮
0

26666664

37777775
|fflffl{zfflffl}
eð �NÞ

ð8Þ

The first constraint (the first row) given in (8) shows that all
one input (the function of f ðtÞ ¼ 1) is mapped to 1; the second
one enforces that the first power of t sampled in the interval
½�N;N� is mapped to the evaluation result at t¼0, which is 0.
The remaining rows similarly enforce the samples of tk to be
mapped to 0. By invoking the linearity, it can be said that the
totality of the constraints guarantees that the samples of any
Lth degree polynomial f ðtÞ ¼ aLtLþaL�1tL�1þ⋯þa0 in the
interval ½�N;N� are mapped to f ð0Þ.
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The equation system given in (8) is underdetermined,
hence its solution for h is not unique. A trivial solution to
(8) can be given as h¼ e0, where e0 is a ð2Nþ1Þ-dimen-
sional canonical vector with all zeros except a single 1 in
the central entry. The central claim of the present work is
that among the infinite number of solutions the one with
the minimum Euclidean norm solution (min-norm solu-
tion) is identical to the SG smoothing filter.

The claim can be justified as follows: It is well known
that the minimum norm solution (denoted as xmn) of
the equation system Mx¼ c is orthogonal to the null space
of M, xmn ? nullfMg [12]. When this result is applied to
the equation system ATh¼ eð�NÞ given in (8); we have
hmn ? nullfATg. Furthermore, since nullfATg ? rangefAg,
hmn has to reside in the range space of A, which is identical
to the space of S from (3). Therefore, hmn is the unique
vector in the range space of A satisfying the constraints
given in (8) and has to coincide with the SG smoothing
filter found through the two-stage procedure described in
the preliminaries section.

Next, we work towards the retrieval of the minimum
norm solution of the equation system given in (8). Since
AT is a full row-rank matrix, rankfATg ¼ rankfAg ¼ Lþ1;
the dimension of the null space becomes nullfATg ¼
ð2Nþ1Þ�ðLþ1Þ ¼ 2N�L. Hence, we need to find 2N�L
linearly independent vectors to fully characterize the null
space of AT matrix. We use finite difference operators
examined in the preliminaries section for the character-
ization of the null space.

As mentioned in the preliminaries section, fðLþ1Þ;
ðLþ2Þ;…;2Ng order finite differences annihilate Lth order
polynomials. This fact is used to describe the null space of
AT matrix. To this aim, we represent the finite difference
operators in terms of vectors.

In order to clarify the procedure of representing finite
difference operators with vectors, we explicitly derive
the SG smoothing filter for the case given in Fig. 1. The
constraint equations for the SG filter shown in Fig. 1 with
N¼ L¼ 2 can be written from (8) as follows:

1 1 1 1 1
�2 �1 0 1 2

ð�2Þ2 ð�1Þ2 0 12 22

264
375

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
AT

h½�2�
h½�1�
h½0�
h½1�
h½2�

26666664

37777775
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

h

¼
1
0
0

264
375 ð9Þ

By simple substitution, it can be easily verified that vectors
n1 and n2

nullfATg ¼

�1=2
1
0
�1
1=2

26666664

37777775
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

n1

;

1
�4
6
�4
1

26666664

37777775
|fflfflfflffl{zfflfflfflffl}

n2

8>>>>>>>>>>><>>>>>>>>>>>:

9>>>>>>>>>>>=>>>>>>>>>>>;
; ð10Þ

are in the null space of AT given in (9).
A simple examination of vectors n1 and n2 reveals a

connection with the third and fourth difference operators
defined in (7). More explicitly, the first vector (n1) in (10)
corresponds to the impulse response of ∇3, that is ∇3fδ½n�g,
and the second vector (n2) corresponds to the response
of ∇4fδ½n�g. This connection can be anticipated, since the
order of the difference operators (third and fourth) is
higher than the degree of polynomials listed as the rows
of AT in (9); therefore, the row vectors of AT matrix are
annihilated by the difference operators of higher degrees.

A particular solution p for the equation system shown
in (9) is p¼ ½0 0 1 0 0�T . By calculating the inner product
of p with the vectors given on the right hand side of (10),
we can see that p is not orthogonal to n2 in (10). Hence, p
is not the minimum norm solution and therefore, it is not
the SG filter that we are looking for.

The approach we follow to retrieve the minimum norm
solution is to “strip away” the components of a particular
solution residing in the null space. For this purpose, we
form the matrix N whose columns are composed of the
vectors spanning nullfATg. The components of p in the null
space of AT can be found by ðNTNÞ�1NTp. For the examined
case, the coefficients of n1 and n2 are found as 0 and 3=35,
respectively. Hence, the minimum norm solution beco-
mes hmn ¼ p�3=35n2 ¼ 1=35½�3 12 17 12 �3�T coincid-
ing with the result found earlier. This concludes the
derivation of SG smoothing filter through an associated
minimum norm problem.

An alternative approach for the design of SG filters is
the utilization of the Gram polynomials which are the
discrete polynomials orthogonal in the interval ½�N;N�
[3,11]. The Gram polynomials are the discrete analogs of
the Legendre polynomials defined in tA ½0;1�. The utiliza-
tion of orthogonal polynomials simplifies the calculation of
PS operator and enables an easy way to alter the dimen-
sion of the subspace S (order update). Unfortunately, the
complexity of algebraic expressions for the Gram poly-
nomials limits their utilization in the analysis and design
of SG filters. Interested readers can examine [10] where a
Pascal code is provided for the generation of the Gram
polynomials. To assist readers, a Matlab implementation of
the suggested framework, which is significantly simpler
and more general, is also made available at [13].

4. General framework for Savitzky–Golay filter design

The presented definition through the minimum-norm
framework enables an almost effortless generalization of SG
smoothing filters to other applications. It should be remem-
bered that the constraint equations are established through
the desired functional mapping from the polynomial space S
to the real line. If we denote the desired functional as f ð�Þ as
in Fig. 2, then the constraint equation becomes

1 … 1 … 1
�N … 0 … N

ð�NÞ2 … 0 … N2

⋮ ⋮ ⋮
ð�NÞL … 0 … NL

26666664

37777775

h½�N�
⋮

h½0�
⋮

h½N�

26666664

37777775¼

f ð1Þ
f ðtÞ
f ðt2Þ
⋮

f ðtLÞ

26666664

37777775 ð11Þ

Here f ð�Þ denotes the linear functional mapping from the sub-
space S (polynomial space) to the real numbers [12, p. 104]. To
assist the design and implementation of general purpose SG
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filters, we provide a MATLAB function generating SG filters for
various applications in [13].

4.1. Savitzky–Golay differentiation filters

The desired mapping for the differentiation application
can be established through the functional evaluating the
first derivative at t¼0. Hence, f ðtkÞ ¼ ðd=dtÞtk↓t ¼ 0 is equal
to 0 for ka1 and f ðtkÞ ¼ 1 for k¼1. By substituting f ðtkÞ
values to the right hand side of (11), we can finalize the
procedure for constraint equation writing. Specifically
for the case of N¼ L¼ 2 the constraint equations for the
SG differentiation filters reduce to the following set of
equations:

1 1 1 1 1
�2 �1 0 1 2

ð�2Þ2 ð�1Þ2 0 12 22

264
375

h½�2�
h½�1�
h½0�
h½1�
h½2�

26666664

37777775¼
0
1
0

264
375 ð12Þ

The SG filter design procedure requires an initialization
by a particular solution of the constraint equations. For
the present application, it can be confirmed that h½1� ¼
�h½�1� ¼ 1=2 and h½k� ¼ 0 for jkja1 is a particular solu-
tion. The procedure for finding the minimum norm solu-
tion from this particular solution leads to the following SG
differentiation filter for N¼ L¼ 2:

h n½ � ¼∇1fδ n½ �g�2
5∇3fδ n½ �g: ð13Þ

It should be noted that the filter impulse given by (13)
corresponds to the inner product (correlation) operation of
the input vector x with hT ¼ ½�1=5; �1=10;0;1=10;1=5�T .

Table 1 lists the set of possible smoothing and differ-
entiation SG filters for N¼3. Readers may refer to [4,14] for
the properties of SG differentiation filters.

4.2. Savitzky–Golay integration filters

The functional for the integration application can be
written as

f ðtkÞ ¼
Z 1=2

�1=2
tk dt ¼

2�k

kþ1
; k: even

0; k: odd

8><>: ð14Þ

By substituting the right hand side of the constraint
equations (12) with the desired functional values, we
finalize the construction of the minimum norm problem
Table 1
SG smoothing and differentiation filters for N¼3.

L Smoothing Differentiation

0 1þ2∇2þ∇4þ1=7∇6 Not available
1 Same as L¼0 case ∇�∇3�3=14∇5

2 1�3=7∇4�2=21∇6 Same as L¼1 case
3 Same as L¼2 case ∇þ1=6∇3þ11=63∇5

4 1þ5=231∇6 Same as L¼3 case
5 Same as L¼4 case ∇þ1=6∇3�1=30∇5

6 1 Same as L¼5 case
for the integration application. For the exemplary case
of N¼ L¼ 2, the set of constraint equations becomes as
follows:

1 1 1 1 1
�2 �1 0 1 2

ð�2Þ2 ð�1Þ2 0 12 22

264
375

h½�2�
h½�1�
h½0�
h½1�
h½2�

26666664

37777775¼
1
0

1=12

264
375: ð15Þ

A particular solution for (15) can be found as h¼
1
72½�11;47;0;47; �11�T . It should be noted that any other
particular solution can be utilized at this stage, since the
final result, that is the minimum norm solution, is unique.
By running the procedure of finding the minimum norm
solution, we can get the integrating SG filter as

h n½ � ¼ 1
5 Sfδ n½ �g�23

24∇2fδ n½ �g�23
84∇4fδ n½ �g: ð16Þ

Here Sfδ½n�g denotes the system corresponding to the s
vector, that is the system summing (2Nþ1) input samples.
More details on Sfδ½n�g are given in Section 5. Further
details of the integration application can be found in [15].

4.3. Savitzky–Golay fractional delay filters

The functional for this application is the evaluation
functional with the following definition:

f ðtkÞ ¼ tk↓t ¼ d ¼ dk where jdjo1=2: ð17Þ
Here d corresponds to the value of the fractional delay
from the central sample (n¼0). For the running case of
N¼ L¼ 2, the constraint equations become as follows:

1 1 1 1 1
�2 �1 0 1 2

ð�2Þ2 ð�1Þ2 0 12 22

264
375

h½�2�
h½�1�
h½0�
h½1�
h½2�

26666664

37777775¼
1
d

d2

264
375 ð18Þ

By following the procedure described earlier, we can get
the SG fractional delay filter as follows:

h n½ � ¼ S
5
þd∇1þ

d2�2
2

∇2�
2d
5
∇3þ

d2�2
7

∇4: ð19Þ

∇k appearing in (19) should be interpreted as ∇kfδ½n�g as
in (16).

The fractional delay SG filters can be considered as the
generalized form of the Lagrange interpolation based
fractional delay filters [16]. In the Lagrange interpolation,
an Nth degree polynomial is fitted to Nþ1 consecutive
data samples; hence the Lagrange interpolation, within
this context, becomes L¼ 2N special case of the SG filters.
Furthermore, the delay value d appearing in (19) can also
be altered during run-time as in the Farrow structures
[17,16].

5. On the implementation of SG filters

A side benefit of the minimum norm based derivation
is the resulting efficient implementation through the finite
difference operators. The root cause of efficiency is the
characterization of the null space through the difference



Fig. 3. Implementation of Savitzky–Golay smoothing filter with N ¼ L¼ 2.

Fig. 4. Suggested filtering structure for Savitzky–Golay filters.
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operators. It can be noted from (7) that ∇k is the repeated
application of ∇2 and ∇1 neither of which contains any
multiplications other than multiplication by 2 and 1/2. For
the exemplary smoothing application shown in Fig. 1, the
system with the impulse response of h n½ � ¼ δ n½ �� 3

35∇4fδ n½ �g
is the resulting SG filter. The output of this filter can be
calculated with a single multiplication, as shown in Fig. 3.
It should be noted that the top branch between the filter
input x½n� and the output is due to the particular solution
selected, which is δ½n�, and the bottom branch is due to the
subtraction operation of the components which are in the
null space of AT matrix. In the next section, we present a
general filtering structure based on finite difference opera-
tors for the implementation arbitrary SG filters.
1 ⌊xc denotes the floor operation, i.e. rounding down the argument to
the closest integer.
5.1. Expansion of arbitrary FIR filters with
sum/difference operators

In this section, we show that an arbitrary FIR filter of
length 2Nþ1 can be expressed in terms of finite difference
and sum operators. The SG smoothing filter shown in Fig. 3
becomes a special case of the general framework.

The output of the difference operator ∇k at n¼0, to x½n�
can be written as an inner product operation, y½0� ¼ vTkx,
x¼ ½x½�N�…x½0�…x½N��T . For the running example shown
in Fig. 1, the vectors vk corresponding to the operation of
∇k for k¼ f1;2;3;4g are as follows:

V ¼

0
1=2
0

�1=2
0

26666664

37777775
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

v1

;

0
1
�2
1
0

26666664

37777775
|fflfflfflffl{zfflfflfflffl}

v2

;

�1=2
1
0
�1
1=2

26666664

37777775
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

v3

;

1
�4
6
�4
1

26666664

37777775
|fflfflfflffl{zfflfflfflffl}

v4

8>>>>>>>>>>><>>>>>>>>>>>:

9>>>>>>>>>>>=>>>>>>>>>>>;
The independence of vk vectors can be easily verified using
the differences of support (non-zero elements of the
vectors) and also the evenness/oddness of the vectors
having the same support. The vector of all ones, that is
s¼ ½1 1 … 1 1�T , is orthogonal to vk vectors, k¼ f1;2;…;

2Ng. Hence, the set of vk vectors and the vector s (denoting
the summation of 2Nþ1 samples) form a linearly indepen-
dent set of vectors. This result leads to the fact that any FIR
filter of length 2Nþ1 points can be expressed in terms of
difference and sum operators.

By denoting the z-transform of an FIR filter h½n�
(h½n� ¼ 0 for jnj4N) with H(z), we can write the following
relation:

HðzÞ ¼ c0SðzÞþ ∑
2N

k ¼ 1
ck∇kðzÞ ð20Þ
Here SðzÞ ¼ zNþzN�1þ⋯þ1þ⋯z�Nþ1þz�N is the z-trans-
form of the summation operator denoted by the vector s and
∇kðzÞ is the z-transform of the difference operators. Fig. 4
shows the filtering diagram for the suggested expansion.

It should be noted that the expansion given in (20)
contains 2Nþ1 coefficients shown with ck, k¼ f0;1;…;2Ng.
Since S(z) and ∇kðzÞ contain only multiplication by 2 and 1/2;
the main implementation cost of the suggested structure is
due to the multiplications by ck coefficients.
5.2. Implementation of Savitzky–Golay filters

The structure shown in Fig. 4 can be utilized for the
implementation of SG filters. This structure is especially
attractive for SG filter applications in which several ck
coefficients are identical to 0, as in Fig. 3.

Specifically for the smoothing application, the conven-
tional FIR filtering implementation for the SG filter
requires Nþ1 multiplications per output sample. The
suggested structure requires N�⌊L=2c multiplications for
the same computation.1 The cost savings get more sig-
nificant as L increases.

The cost reduction for a generic SG filter implementa-
tion depends on the application and also on the SG filter
parameters N and L. As an example, in the fractional delay
application the fractional delay value and the choices of N
and L jointly determine ck coefficients. It should be noted
that the computational cost of the suggested structure is at
the worst case (when cka0 for all k values) identical to the
cost of conventional FIR filtering. Hence, there is no loss
of computational efficiency in comparison to the conven-
tional method with the adoption of suggested structure.
Our aim in this study is to underline the potential of using
the structural properties of the SG filters, the relation
between the null space and finite difference operators, to
our advantage in the reduction of implementation costs.

Another possible usage of the mentioned structure is
the concurrent implementation of multiple SG filters on
the same input stream. In an application where both
the smoothed version of the input and its derivative are
of interest, the suggested structure can be utilized to
produce two outputs by multiplexing the multipliers
among two sets of ck coefficients.
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6. Numerical experiments

Two sets of numerical experiments are provided. The
first set uses synthetic data and examines the trade-offs in
the choice of N and L in SG filter design. The second set
uses experimentally collected EEG data and illustrates the
efficacy of the suggested implementation structure.

6.1. Trade offs in SG filter design

The signal of interest is assumed to be a mixture of
Gaussian waveforms

sðtÞ ¼ ∑
4

k ¼ 1
expð�4k2ðt�2kÞ2Þ: ð21Þ

In this experiment, s(t) is assumed to be observed under
additive white Gaussian noise, rðtÞ ¼ sðtÞþwðtÞ where w(t)
is white noise. The noisy observations are sampled at the
rate of 50 samples per second, r½n� ¼ rðn=50Þ. Our goal is to
reduce the effect of noise by smoothing r½n� samples.

Fig. 5 shows the noisy observation and the desired
signal at the signal-to-noise-ratio (SNR) of 20 dB. (SNR is
the sample SNR of the input, that is the ratio of average
signal power to the noise variance.) Before embarking on
the details of the filtering process, we note that the desired
signal s(t) is not a polynomial; but can be closely approxi-
mated with a polynomial in an interval of interest. In
addition, it should be evident from an examination of the
consecutive peak points of the mixture components given
in Fig. 5 that the radius of curvature for each component is
different and the curvature gets smaller as t increases. We
may interpret the change of curvature as a type of “non-
stationarity” for the desired signal.

The main design issue for the application of SG filters is
the choice of N and L. Higher N values increase the length
of the window (frame) fromwhich the output is produced.
Therefore, higher N values reduce the output noise var-
iance. An increase in L for a fixed N increases the subspace
dimension and this leads to an increase in the output noise
variance. Hence, N should be set as high as possible, while
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Fig. 5. Desired signal and its noisy version.
L should be set as low as possible for the suppression of
noise. On the other hand, choosing high N and low L values
to reduce the effect of noise at the output can cause
significant distortion on the desired signal. This experi-
ment is designed to show the trade-off between noise
suppression and signal distortion in the parameter choice
for SG filters.

Fig. 6 shows the application of three SG smoothing
filters for a fixed window size of N¼8 and L¼ f0;2;4g. The
case of L¼0 corresponds to the simple averaging of eight
consecutive samples. This filter simply assumes that the
signal of interest is the DC signal. As can be seen from
Fig. 6, this filter presents good results in terms of noise
suppression; however, it cannot capture rapidly varying
signal components and this leads to significant distortion
on the desired signal. In the title of each plot in Fig. 6, the
noise suppression value of each filter is provided. The
noise suppression value is defined as the ratio of the noise
variances at the input and output of the filter. The noise
suppression value can be expressed in a decibel scale as
10 log10ð1=jjhjj2Þ dB where h is the impulse response of
the associated SG filter.

Table 2 presents a detailed distortion and noise var-
iance results for the SG filters shown in Fig. 6. The
performance of each SG filter for each mixture component
is examined separately. (Four mixture components are
expð�4k2ðt�2kÞ2Þ for k¼ f1;2;3;4g.) The signal distortion
is the square error between the mixture component and
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Fig. 6. SG smoothing filter output for N¼8 and L¼ f0;2;4g.



Table 2
Error of SG smoothing filter for the cases shown in Fig. 6.

Mixture component index (k)

k¼1 k¼2 k¼3 k¼4

L¼0
Signal distortion 0.0326 0.2207 0.5719 0.9752
Total noise var. 0.2145 0.1083 0.0701 0.0531
Total MSE 0.2470 0.3290 0.6420 1.0283

L¼2
Signal distortion 0.0000 0.0007 0.0079 0.0379
Total noise var. 0.4853 0.2451 0.1586 0.1201
Total MSE 0.4853 0.2457 0.1665 0.1581

L¼4
Signal distortion 0.0000 0.0000 0.0000 0.0007
Total noise var. 0.7666 0.3871 0.2505 0.1898
Total MSE 0.7666 0.3871 0.2505 0.1904

0 20 40 60 80 100 120
−60

−50

−40

−30

−20

−10

0

Frequency (Hz)

M
ag

ni
tu

de
 (d

B
)

Fig. 7. Magnitude response of SG smoothing filter used in the EEG data
smoothing example (N¼10, L¼8).

0 1 2 3 4 5
−100

−50

0

50

100
input

time (sec.)

0 1 2 3 4 5
−100

−50

0

50

100

time (sec.)

output

Fig. 8. Input and output waveforms in the EEG data smoothing example.
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its filtered version in the absence of noise. The error for
each mixture component is calculated subtracting the
filter output from the desired signal (the mixture compo-
nent) in the associated window shown in Fig. 6. The total
noise variance in Table 2 refers to the summation of noise
variances in the window associated with that mixture. The
total MSE is summation of signal distortion and total noise
variance and it refers to the total mean square error for the
smoothing of the mixture component.

It can be noted from Table 2 that the first mixture
component has the smallest total MSE with the choice
of L¼0. The total MSE of other mixture components is
minimized with the choice of L¼2. For the fourth mixture
component, the signal distortion is reduced significantly
(from 0.0379 to 0.0007) when a SG filter with L¼4 is
utilized instead of L¼2. Due to the mentioned trade-off,
the reduction in signal distortion comes at the cost of
an increase in the total noise variance. (The noise vari-
ance increases from 0.1201 to 0.1898 in this case.) Since
the reduction in signal distortion cannot compensate the
increase in the total noise variance; the choice of L¼2 can
be preferred for this scenario. On the other hand, at higher
SNR values the choice of L¼4 can be preferred.

This experiment illustrates the classical trade-offs between
noise suppression and signal distortion. For example, the SG
smoothing filters are expected to yield a better noise suppres-
sion when L is increased; but this is achieved at a potential
peril of increased distortion on the desired signal. One
immediate suggestion can be the rapid adaptation of the
smoothing filter parameters to the input, an adaptive or data
dependent operation, as in [18,5].

6.2. SG smoothing filter implementation for EEG applications

A common application that utilizes SG filters is the
smoothing of raw EEG data [8,9]. In this application, the
raw data is low pass filtered in order to reject the signals
beyond the highest frequency activity of interest [8,9].
Fig. 8 shows a real EEG data from [19] which is a recording
of P8-O2 channel for 5 s, with the rate of 256 samples
per second. Our task is to design a smoothing filter that
has a corner frequency around 40 Hz. We utilize SG
smoothing filters in this application in order to demon-
strate the versatility of the suggested framework.

The SG smoothing filter with N¼10 and L¼8 has the
magnitude response as in Fig. 7 meeting the mentioned
frequency domain specifications. (Further details on SG
filter design from frequency domain specifications can be
found in [2].) Fig. 8 also displays the smoothed output data
below the raw EEG waveform, where it can be observed
that the smoothed data maintains the important features
of the input such as max–min positions and overall shape.

The advantage of the proposed implementation over
the conventional filtering becomes evident when the
computation complexities for both implementations are
compared. The SG smoothing filter with N¼10 and L¼8
has 21 coefficients whose numerical values can be easily
generated using the SG filter design code given in [13]
by running “SGgeneralð10;8;0:^ð0:2nNÞÞ” from workspace.
The 21 coefficient smoothing filter can be expanded in
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terms of difference operators as follows:

h n½ � ¼ δ n½ �þ 42
3335

∇20fδ n½ �gþ14
69

∇18fδ n½ �gþ567
437

∇16fδ n½ �g

þ1800
437

∇14fδ n½ �gþ2100
323

∇12fδ n½ �gþ1323
323

∇10fδ n½ �g
ð22Þ

It can be noted from (22) that 21 coefficient filters can be
implemented using only six coefficients through the sug-
gested structure.

7. Conclusions

A general framework for the design of the SG filters is
described. The framework enables an almost effortless deriva-
tion of the SG filters for different applications. In addition,
an implementation structure, emerging from the minimum
norm problem described within the framework, is given. It
has been shown that SG filter implementation with the
proposed structure results in a reduced number of multipliers
for the smoothing application. The worst case computational
complexity of the suggested structure is identical to the
conventional FIR filtering; hence, the structure carries the
potential to be useful in other SG filtering applications.

To assist the design of SG filters, we provide a MATLAB
function generating SG filters and expressing the filter in
terms of difference operators in [13]. The MATLAB function
can be used to design other SG filters that are not
discussed in this work. For example, the filters given by
Gorry in [10, Table III] to smooth the end points of the
frame (not the central point) can be simply generated by
running “SGgeneralðN; L;N:^ð0:2nNÞÞ”.
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