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a b s t r a c t 

An approximate mean square error (MSE) expression for the performance analysis of implicitly defined 

estimators of non-random parameters is proposed. An implicitly defined estimator (IDE) declares the min- 

imizer/maximizer of a selected cost/reward function as the parameter estimate. The maximum likelihood 

(ML) and the least squares estimators are among the well known examples of this class. In this paper, an 

exact MSE expression for implicitly defined estimators with a symmetric and unimodal objective function 

is given. It is shown that the expression reduces to the Cramer-Rao lower bound (CRLB) and misspecified 

CRLB in the large sample size regime for ML and misspecified ML estimation, respectively. The expression 

is shown to yield the Ziv-Zakai bound (without the valley filling function) for the maximum a posteriori 

(MAP) estimator when it is used in a Bayesian setting, that is, when an a-priori distribution is assigned 

to the unknown parameter. In addition, extension of the suggested expression to the case of nuisance 

parameters is studied and some approximations are given to ease the computations for this case. Numer- 

ical results indicate that the suggested MSE expression not only predicts the estimator performance in 

the asymptotic region; but it is also applicable for the threshold region analysis, even for IDEs whose ob- 

jective functions do not satisfy the symmetry and unimodality assumptions. Advantages of the suggested 

MSE expression are its conceptual simplicity and its relatively straightforward numerical calculation due 

to the reduction of the estimation problem to a binary hypothesis testing problem, similar to the usage 

of Ziv-Zakai bounds in random parameter estimation problems. 
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. Introduction 

The topic of parameter estimation can be divided into two 

lasses, namely the estimation of random and non-random (deter- 

inistic) parameters. The random parameter estimation (Bayesian 

stimation) assumes that the parameter of interest is a random 

ariable with an a-priori distribution and the observations on a re- 

lization of the unknown parameter are obtained according to a 

nown probabilistic mapping. Under this setting, the optimal es- 

imator that minimizes the risk, say mean square error (MSE) or 

ean absolute error, is a functional of the posterior density of 

he parameter. For instance, the optimal estimator minimizing the 

SE is the mean value of the parameter with respect to the pos- 

erior density [1] . In general, the posterior density calculation is 

he key step for the Bayesian formulation. Unfortunately, a closed 
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orm expression for the posterior density (and its moments) which 

oes not involve integration, differentiation and limit operations is 

arely available. In many problems, one has to resort to the Monte 

arlo methods or approximate inference techniques for an inexact 

ealization of the optimal Bayesian estimator. In such problems, the 

stimator success is typically evaluated by comparisons with the 

erformance bounds. 

Bayesian performance bounds have a vast literature [2] . Typ- 

cally, these bounds do not impose any constraints on the esti- 

ator. For instance the Bayesian Cramer Rao lower bound (CRLB) 

2,3] , Weiss Weinstein bound (WWB) [4] , Bayesian Bhattacharya 

ound [3] are derived using the covariance inequality principle 

hence, sometimes referred as covariance bounds) and applicable 

n general to any type of estimators. Another main class is the 

iv-Zakai bound (ZZB) [5–7] type bounds which are derived by 

onverting the estimation problem into a binary detection prob- 

em. Bayesian CRLB is one of most fundamental bounds and pro- 

ides the achievable MSE in the asymptotic region which is the 

igh signal-to-noise ratio (SNR) region. However, it suffers from 
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A

he threshold effect [5–7] , meaning that it provides unachievable 

optimistic) lower bounds at medium or low SNR values. ZZB and 

WB are among the tightest Bayesian bounds in all regions of op- 

ration [2,7] . Bayesian bounds continue to be an active research 

rea. Recently, Bayesian bounds for estimating periodic parameters 

e.g., phase) have been developed [8–10] . 

Non-random parameter estimation involves some challenges 

nique to this setting. In this setting, an estimator can be improved 

or a specific value of the parameter at the expense of performance 

or other parameter values [1,11] . Since there is no a-priori distri- 

ution associated to the parameter of interest, it is not possible to 

alance the performance gains and losses for different parameter 

alues as in the Bayesian setting. For example, the estimator ignor- 

ng the measurements and producing a constant value, say α, as 

he estimate has no error if the unknown parameter is indeed α; 

ut, suffers from performance losses at all other parameter values. 

he development of lower bounds for the non-random parameter 

stimation also suffers from similar inherent admissibility prob- 

ems. To overcome these problems, the estimators in this setting 

re typically restricted to the class of unbiased estimators and ex- 

mined under the title of minimum variance unbiased estimators 

1] . 

The performance bounds for the non-random parameter esti- 

ation are also developed for a specific class of estimators. For ex- 

mple CRLB (for non-random parameters), Hammersley-Chapman- 

obbins Bound (HCRB) [12] , Barankin Bound [13,14] require the es- 

imator to be unbiased in an open neighborhood of a point, over a 

et of two-points and over a set of many-points, respectively (also 

ee [15] ). In [16] , a general bound form for unbiased estimators 

s given and it is shown that CRLB, HCRB and BB can be derived

y a proper choice of the kernel function of their integral trans- 

orm. Note that the unbiasedness condition may not be practical 

r may be difficult to satisfy, especially for the parameters with a 

nite support; since the estimation error approaches a one-sided 

istribution at the edges of the parameter space in such cases [5] . 

lthough it has been shown that for some problems with peri- 

dic parameters [17–19] , the problem with the one-sided error dis- 

ribution at the edges may vanish; uniformly unbiased estimators 

o not exist in these cases either [20] . Furthermore, the unbiased- 

ess condition may not even be desirable in some problems. It is 

nown that there exist realizable biased-estimators for some prob- 

ems whose MSE is lower than the Cramer-Rao bound for unbi- 

sed estimators [21] . Perhaps, the most important aspect of un- 

iasedness condition is in relation with the maximum likelihood 

stimator. It is well known that the maximum likelihood estima- 

or is unbiased and efficient in the large sample size regime, under 

airly general conditions, providing a basis for the theoretical and 

ractical adoption of the unbiasedness condition [22,23] . 

The main problem considered in this paper is the performance 

rediction of implicitly defined estimators (IDEs) of non-random 

arameters. IDEs are estimators which produce an estimate by 

aximizing an objective function of the measurements over the 

arameter set under consideration. The maximum likelihood (ML) 

stimator, least squares estimators are some well known examples. 

In this study, we present an approximate MSE expression for 

DEs of non-random parameters that 

• gives the true MSE when the objective function of the IDE is 

symmetric and unimodal, 
• reduces to the CRLB in the large sample size regime for ML es- 

timation, 
• reduces to the misspecified CRLB (MCRLB) [24,25] in the large 

sample size regime for misspecified ML estimation [25,26] , 
• reduces to the ZZB when an a-priori distribution is assigned to 

the parameter of interest for maximum a posteriori (MAP) esti- 
mation. o

2 
There are already some approximate MSE expressions available 

n the literature for IDEs of non-random parameters. For instance, 

27] provides formulas for MSE and bias of IDEs using Taylor se- 

ies expansion of the cost function along with some approximate 

xpressions for certain expectations and derivatives. The study in 

28] also uses Taylor expansion approach and derives different 

pproximations in the scalar parameter case. Both of these ap- 

roaches are based on the Taylor series expansion around the true 

arameter value and provide simple MSE expressions; but, do not 

ake into account the gross errors which becomes the significant 

actor as the estimator nonlinearity increases and/or SNR is de- 

reased below the threshold SNR. 

The majority of work on the estimator performance predic- 

ion focus on the performance of the ML estimator. The ML es- 

imator is known to be asymptotically efficient (performance ap- 

roaching CRLB at large sample size) under some regularity condi- 

ions [3,22,23] . The method of interval errors (MIE) is a celebrated 

ethod that was proposed by Van Trees [3] to assess the perfor- 

ance of the ML estimator in the threshold region. This method 

epends on a careful selection of intervals in the parameter space 

nd the calculation of their probabilities. Different approximations 

ave been proposed to approximate the probabilities [29–31] . The 

SE expression proposed in the present study can be interpreted 

s a more principled version of the method of interval errors 

here the need for the interval selection and the gross error prob- 

bility calculation or approximation is not required. 

Notation: Throughout the paper lower and uppercase letters de- 

ote scalars, e.g., a , A . Bold lowercase letters denote vectors, e.g., a .

old uppercase letters denote matrices, e.g., A . The i th element of 

he vector a is denoted by [ a ] i . The i, jth element of the matrix

 is denoted by [ A ] i, j . �{·} denotes the real part of the complex

rgument. 

. Problem definition 

We consider the estimation of the non-random real- 

alued vector θ � [ θ1 θ2 · · · θJ ] 
T from the measurements 

 � [ x 0 x 1 · · · x N−1 ] 
T ∈ C 

N distributed according to f (x ; θ̄) where
¯ � [ ̄θ1 θ̄2 · · · θ̄J ] 

T denotes the true value of θ. An implicitly de- 

ned estimator (IDE) generates an estimate ˆ θ � [ ̂  θ1 
ˆ θ2 · · · ˆ θJ ] 

T by 

aximizing an objective function L (; ) of the measurements and 

he parameters as shown below: 

ˆ � arg max 
θ

L (x ; θ) . (1) 

he most well-known example of IDEs is the ML estimator where 

he objective function L (·; ·) is the likelihood function f (x ; θ) . 

ther examples of IDEs are M-estimators and (nonlinear) least 

quare estimators. We see that the estimate ˆ θ given by (1) is deter- 

ined by the measurements implicitly, hence the name implicitly 

efined estimator . 

In this study we are interested in the performance of IDEs and 

e give an expression for the (diagonal elements of the) MSE ma- 

rix of the estimate ˆ θ which is defined as 

SE ( ̄θ) � E 

[
( ̂  θ − θ̄)( ̂  θ − θ̄) T 

]
, (2) 

ere it should be mentioned that the methodology presented in 

he current work can be straightforwardly extended to the other 

oments of the estimation error ˆ θ − θ̄. 

Except for few cases like ML estimation for Gaussian likelihoods 

ith linear models, the estimate ˆ θ in (1) cannot be analytically ex- 

ressed in terms of the measurements x , i.e., one cannot find a 

losed form expression for the function h (·) such that ˆ θ = h (x ) .

s a consequence the determination, evaluation and comparison 

f performance (say, in terms of MSE) of an IDE usually involves 
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xtensive Monte Carlo studies and/or problem specific approxima- 

ions. In this work we first give an MSE expression which is exact 

or an IDE of a scalar parameter whose objective function is both 

ymmetric (around the estimate) and unimodal in Section 3 . Since 

he symmetry and unimodality conditions are typically satisfied by 

he objective functions of IDEs in the asymptotic or small error re- 

ion, as further examined in Section 4 ; we suggest to use the MSE

xpression to study the performance of IDEs in the small error and 

hreshold regions. We refrain from calling the suggested MSE ex- 

ression as a bound due to the lack of performance guarantees in 

he non-asymptotic regions. The suggested expression can be con- 

idered to be in the same league with the MIE [3] which lacks a

erformance guarantee in all regions including the asymptotic re- 

ion. Such expressions are also called approximate bounds in some 

tudies [31,32] . Yet, our main goal in this study is to develop an

SE expression similar to ZZB, which is known to be a tight ran- 

om parameter estimation bound in the threshold and asymptotic 

egions, for non-random parameters. 

. Case of a scalar parameter with symmetric and unimodal 

bjective functions 

In this section we are going to restrict ourselves to a scalar un- 

nown parameter θ ∈ R (i.e., J = 1 ) and provide a predicted MSE

xpression which is equal to the true MSE for an IDE whose objec- 

ive function satisfies symmetry and unimodality assumptions. Our 

ain results are given in the following theorem and its corollary. 

heorem 1. Consider the IDE given as 

ˆ � arg max 
θ

L (x ; θ ) . (3) 

et the objective function L (x ; ·) satisfy the following conditions for 

ll x ∈ C 

N . 

1. L (x ; ˆ θ + h ) = L (x ; ˆ θ − h ) for all h ∈ R , i.e., the objective function

is symmetric around its peak. 

2. L (x ; θ ) is strictly-increasing (strictly-decreasing) for θ < 

ˆ θ ( θ > 

ˆ θ ). 

Define the true estimator statistic V ˆ θ (θ ) as 

 ˆ θ
(θ ) � E[( ̂  θ − θ ) 2 ] , (4) 

here θ is an arbitrary fixed parameter value. Then, 

 ˆ θ
(θ ) = ̂

 V ˆ θ
(θ ) , (5) 

here the predicted statistic ̂  V ˆ θ (θ ) is defined as 

 

 ˆ θ
(θ ) � 2 

∫ ∞ 

−∞ 

| ε| P ( L (x ; θ + 2 ε) ≥ L (x ; θ ) ) dε. (6) 

roof. A proof is presented in Appendix A . The main idea of the

roof is to show that the events ( ̂  θ − θ ) ≥ ε and ( ̂  θ − θ ) ≤ −ε are 

quivalent to the events L (x ; θ + 2 ε) ≥ L (x ; θ ) and L (x ; θ − 2 ε) ≥
 (x ; θ ) , respectively, when the assumptions of the theorem hold. 

n illustration of this equivalence is given in Fig. 1 . �

The following remark applies Theorem 1 to find the true MSE 

f the estimator ˆ θ . 

emark 1 (MSE of IDE) . The true MSE of the IDE ˆ θ in Theorem 1 is

iven as 

SE ( ̄θ ) = 

̂ MSE ( ̄θ ) (7) 

here the predicted MSE, denoted as ̂ MSE ( ̄θ ) , is defined as 

̂ SE ( ̄θ ) � 2 

∫ ∞ 

−∞ 

| ε| P (L (x ; θ̄ + 2 ε) ≥ L (x ; θ̄ ) 
)
dε. (8) 
3 
roof. The proof is trivial by realizing that MSE ( ̄θ ) = V ˆ θ ( ̄θ ) and

̂ SE ( ̄θ ) = ̂

 V ˆ θ ( ̄θ ) . �

In the special case of a parameter θ with finite support, e.g., θ ∈ 

 θmin , θmax ] , the estimation error ˆ θ − θ̄ is restricted to the interval 

 θmin − θ̄ , θmax − θ̄ ] and the predicted MSE becomes 

̂ SE ( ̄θ ) = 2 

∫ θmax −θ̄
2 

θmin −θ̄

2 

| ε| P (L (x ; θ̄ + 2 ε) ≥ L (x ; θ̄ ) 
)

d ε. (9) 

We can interpret the MSE expression (8) intuitively as fol- 

ows. When the probability P 
(
L (x ; θ̄ + 2 ε) ≥ L (x ; θ̄ ) 

)
is large for 

arge values of | ε| , then it is probable for the IDE ˆ θ to make

ross errors, resulting in a large MSE. On the other hand, if this 

robability is small for large values of | ε| , the contribution of 

ross errors in the MSE becomes negligible, resulting in a small 

SE. Consequently, IDEs with a small MSE would have the prob- 

bility P 
(
L (x ; θ̄ + 2 ε) ≥ L (x ; θ̄ ) 

)
(thought of as a function of ε) 

ighly concentrated in a small neighborhood of ε = 0 and quickly 

anishing elsewhere. More specifically, a sufficient and neces- 

ary condition for existence of the integral in the MSE expres- 

ion (8) is P 
(
L (x ; θ̄ + 2 ε) ≥ L (x ; θ̄ ) 

)
= o(1 / | ε| 2 ) , i.e., the probabil-

ty P 
(
L (x ; θ̄ + 2 ε) ≥ L (x ; θ̄ ) 

)
decaying strictly faster than 1 / | ε| 2 

s | ε| → ∞ . The integral in the MSE expression (9) , on the other

and, always exists. 

We can put the expression 

̂ MSE ( ̄θ ) to a test by considering the 

ptimal but infeasible estimator ˆ θ = θ̄ . This estimator can be for- 

ulated as an IDE using the objective function L (x ; θ ) � −(θ −
¯) 2 . Since the objective function L (x ; ·) does not depend on the 

easurements x , we see that the probability of the deterministic 

vent L (x ; θ̄ + 2 ε) ≥ L (x ; θ̄ ) is given as 

 

(
L (x ; θ̄ + 2 ε) ≥ L (x ; θ̄ ) 

)
= 

{
1 , ε = 0 

0 , otherwise 
. (10) 

hen (10) is substituted into (8) , we have ̂ MSE ( ̄θ ) = 0 , which is

he true MSE. Similarly, for the feasible (but biased) version of this 

stimator ˆ θ = θ0 , where θ0 ∈ R , the objective function is L (x ; θ ) �
(θ − θ0 ) 

2 and the corresponding probability becomes 

 

(
L (x ; θ̄ + 2 ε) ≥ L (x ; θ̄ ) 

)
= 

{
1 , −( ̄θ + 2 ε − θ0 ) 

2 ≥ −( ̄θ − θ0 ) 
2 

0 , otherwise 

= 

⎧ ⎨ ⎩ 

1 , 0 ≥ ε ≥ −θ̄ + θ0 

1 , −θ̄ + θ0 ≥ ε ≥ 0 

0 , otherwise 

, (11) 

hich yields ̂ MSE ( ̄θ ) = ( ̄θ − θ0 ) 
2 when substituted into (8) for 

oth θ0 ≥ θ̄ and θ0 ≤ θ̄ . This also is the true MSE. The following 

orollary applies the result in Theorem 1 to ML estimation. 

orollary 1 (MSE of ML Estimator) . If the likelihood function f (x ; ·) 
atisfies the conditions in Theorem 1 , then the true MSE of the ML 

stimate ˆ θ is given as 

SE ML ( ̄θ ) = 

̂ MSE ML ( ̄θ ) (12) 

here the predicted MSE, denoted as ̂ MSE ML ( ̄θ ) , is defined as 

̂ SE ML ( ̄θ ) � 2 

∫ ∞ 

−∞ 

| ε| P 
(

f (x ; θ̄ + 2 ε) 

f (x ; θ̄ ) 
≥ 1 

)
dε. (13) 

roof. Since we have L (x ; θ ) � f (x ; θ ) , we can write 

P 
(
L (x ; θ̄ + 2 ε) ≥ L (x ; θ̄ ) 

)
= P 

(
f (x ; θ̄ + 2 ε) ≥ f (x ; θ̄ ) 

)
= 

∫ 
I 
(

f (x ; θ̄ + 2 ε) ≥ f (x ; θ̄ ) 
)

f (x ; θ̄ ) d x (14a) 
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Fig. 1. Illustration of the fact that the events ( ̂ θ − θ ) ≥ ε and ( ̂ θ − θ ) ≤ −ε are equivalent to the events L (x ; θ + 2 ε) ≥ L (x ; θ ) and L (x ; θ − 2 ε) ≥ L (x ; θ ) , respectively, when 

the assumptions of Theorem 1 hold. 
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1 In order not to incorporate additional notation, we will keep here the individual 

measurements x n ∈ C as scalars but the same results can be obtained for the case 

when x n is a vector. 
= 

∫ 
f (x ;θ̄ ) 	 =0 

I 
(

f (x ; θ̄ + 2 ε) ≥ f (x ; θ̄ ) 
)

f (x ; θ̄ ) d x 

= 

∫ 
f (x ;θ̄ ) 	 =0 

I 

(
f (x ; θ̄ + 2 ε) 

f (x ; θ̄ ) 
≥ 1 

)
f (x ; θ̄ ) d x (14b) 

 P 

(
f (x ; θ̄ + 2 ε) 

f (x ; θ̄ ) 
≥ 1 

)
, (14c) 

here I(·) denotes the indicator function for event arguments. 

ubstituting the last probability into the integral in (8) completes 

he proof. �

Note that the expression (13) connects the MSE of the ML esti- 

ate to the error probability of a likelihood ratio test. This connec- 

ion between estimation and detection theory is further explored 

n Section 4.3 in relation with the ZZB. 

Theorem 1 and its corollary provide compact expressions to 

valuate the MSE of an implicitly defined estimator exactly even 

hen there is no explicit analytical expression connecting the 

stimate ˆ θ to the measurements x . However, it has some limi- 

ations imposed by the assumptions required for its validity. In 

act, almost all practical estimation problems violate one of the 

ssumptions of symmetry, unimodality and infinite support (of 

he parameter θ ). For these problems it is certainly possible to 

ave MSE ( ̄θ ) 	 = ̂

 MSE ( ̄θ ) . Hence, in general the proposed expres-

ions in (8) and (13) can only serve as approximate MSE perfor- 

ance prediction tools. Keeping this fact in mind, we show several 

elations between the suggested MSE expression and well-known 

ounds in Section 4 . 

. Relationship to performance bounds 

In this section we present the relationship of the suggested MSE 

xpression (13) to some well-known performance bounds. 

.1. Relationship to CRLB 

In this section, we consider the ML estimation for a scalar pa- 

ameter θ ∈ R . In order to use the large sample asymptotic results 

or the ML estimate ˆ θ , we are going to assume that the elements 

 n , n = 0 , . . . , N − 1 , of the measurement vector x are independent
4

nd identically distributed as x n ∼ f (x n ; θ̄ ) . 1 The likelihood for the 

easurement vector x is then given as 

f (x ; θ ) = 

N−1 ∏ 

n =0 

f (x n ; θ ) . (15) 

he relationship of the suggested MSE expression 

̂ MSE ML ( ̄θ ) to 

RLB is given in the following proposition. 

roposition 1. Assume that 

A 0 The parameter θ has finite support, i.e., θ ∈ [ θmin , θmax ] , and 

he true parameter value θ̄ satisfies θ̄ ∈ (θmin , θmax ) . 

A 1 The first three derivatives of ln f (x ; θ ) with respect to θ exist 

or all θ and are continuous with respect to θ . 

A 2 For every θ , the functions | ∂ i 
∂θ i ln f (x ; θ ) | , i = 0 , 1 , 2 , 3 , are

ominated by functions b i (x ) , i = 0 , 1 , 2 , 3 , which all have finite vari-

nce. 

A 3 The KL divergence D ( f (x ; θ̄ ) || f (x ; θ )) , where 

 ( f (x ) || g(x )) � 

∫ 
f (x ) ln 

f (x ) 

g(x ) 
d x, (16) 

as a unique minimum with respect to θ at θ = θ̄ . 

A 4 The expectation E [ ∂ 
2 

∂θ2 ln f (x ; θ̄ )] is non-zero. 

The assumption A0 is sufficient (but not necessary) for the con- 

ergence of the integral in (13) . Under the assumptions A1-A3, it 

an be shown that (See [22 , Theorem 2.1]) the ML estimate ˆ θ � 

rg max θ ln f (x ; θ ) is consistent, i.e., ˆ θ
a.s. → θ̄ as N → ∞ . Then, we 

ave 

̂ SE ML ( ̄θ ) → MSE ML ( ̄θ ) (17) 

s N → ∞ , i.e., the finite support version of the MSE expression 
̂ SE ML ( ̄θ ) in (13) converges to the true large sample asymptotic MSE 

f the ML estimate ˆ θ as N → ∞ . If the ML estimate is also asymptot-

cally efficient, then we have 

̂ SE ML ( ̄θ ) → C( ̄θ ) , (18) 

s N → ∞ where C( ̄θ ) � I −1 ( ̄θ ) with C( ̄θ ) and I( ̄θ ) denoting the

RLB and the Fisher information matrix, respectively, at the true pa- 

ameter value θ̄ . 
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roof. The proof is given in Appendix B . �

.2. Relationship to MCRLB 

In this section, we consider the misspecified ML (MML) esti- 

ation [25,26] for a scalar parameter θ ∈ R . In order to use the

symptotic results for the MML estimate ˆ θ , we are going to as- 

ume that the elements x n , n = 0 , . . . , N − 1 , of the measurement

ector x are independent and identically distributed as x n ∼ f̄ (x n ) 

here f̄ (·) denotes the true measurement distribution. The true 

istribution for the measurement vector x is then given as 

f̄ (x ) = 

N−1 ∏ 

n =0 

f̄ (x n ) . (19) 

e assume that MML estimate ˆ θ is calculated by maximizing the 

ssumed likelihood f (x ; θ ) given in (15) . The relationship of the 

uggested variance expression 

̂ V ˆ θ (θ ) to MCRLB [24,25] is given in 

he following proposition. 

roposition 2. Assume that 

A 0 The parameter θ has finite support, i.e., θ ∈ [ θmin , θmax ] . 

A 1 The first three derivatives of ln f (x ; θ ) with respect to θ exist 

or all θ and are continuous with respect to θ . 

A 2 For every θ , the functions | ∂ i 
∂θ i ln f (x ; θ ) | , i = 0 , 1 , 2 , 3 , are

ominated by functions b i (x ) , i = 0 , 1 , 2 , 3 , which all have finite vari-

nce with respect to the true measurement distribution f̄ (x ) . 

A 3 The KL divergence D ( ̄f (x ) || f (x ; θ )) has a unique minimum 

ith respect to θ at θ = θ∗ ∈ (θmin , θmax ) . 2 

A 4 The expectation E 

f̄ 

[
∂ 2 

∂θ2 ln f (x ; θ∗) 
]

is non-zero. 

The assumption A0 is sufficient (but not necessary) for the con- 

ergence of the integral in (6) . Under the assumptions A1-A3 it 

an be shown that (See [22 , Theorem 2.1]) the MML estimate ˆ θ � 

rg max θ ln f (x ; θ ) is misspecified consistent, i.e., ˆ θ
a.s. → θ∗ as N → ∞ . 

hen, we have 

 

 MML (θ∗) → V MML (θ∗) (20) 

s N → ∞ , i.e., the finite support version of the expression ̂ V MML (θ∗)
onverges to the true large sample asymptotic variance V MML (θ∗) of 

he MML estimate ˆ θ as N → ∞ . If the MML estimate is also asymp-

otically misspecified efficient, then we have 

 

 MML (θ∗) → 

B(θ∗) 
A 

2 (θ∗) 
(21) 

s N → ∞ where the quantity B(θ∗) 

A 2 (θ∗) 
is the MCRLB and 

 (θ∗) � E 

f̄ 

[ 
∂ 2 

∂θ2 
ln f (x ; θ∗) 

] 
, B(θ∗) � E 

f̄ 

[ (
∂ 

∂θ
ln f (x ; θ∗) 

)
2 
] 
. 

(22) 

roof. The proof is given in [35, Appendix C] , which is the ex- 

ended preprint version of this manuscript. �

Note that according to the proposition, ̂ V (θ∗) converges to the 

symptotic variance V MML (θ∗) of the MML estimate ˆ θ . When the 

rue measurement distribution f̄ (·) admits the same parameteri- 

ation as the assumed measurement distribution f (·; θ ) with the 

rue parameter value θ = θ̄ , i.e., f̄ (x ) = f̄ (x ; θ̄ ) , then we might pre-

ict the MSE performance of the MML estimator ˆ θ as 

̂ SE MML ( ̄θ ) � ̂

 V MML (θ∗) + (θ∗ − θ̄ ) 2 , (23) 
2 Note that the existence of the KL divergence D ( ̄f (x ) || f (x ; θ )) necessitates ad- 

itionally the existence of the E 
f̄ 
[ ln f̄ (x )] , which we implicitly assume for the sake 

f conceptual simplicity. We may eliminate the need for the existence of E 
f̄ 
[ ln f̄ (x )] 

y stating this assumption differently as in [22,33,34] . 

5 
hich would converge to the true MSE of the MML estimator as 

 → ∞ if the assumptions of Proposition 2 are satisfied. 

.3. Relationship to ZZB 

We consider a Bayesian estimation problem where the param- 

ter θ is assigned with the prior distribution f (θ ) . The MAP esti- 

ate of θ can then be defined as follows. 

ˆ � arg max 
θ

f (x | θ ) f (θ ) (24) 

here the likelihood f (x ; θ ) is shown with the conditioning no- 

ation as f (x | θ ) since θ is now a random variable. Note that the 

AP estimator given above corresponds to an IDE with the objec- 

ive function L (x ; θ ) � f (x | θ ) f (θ ) . The true MSE of the MAP esti-

ator is given as 

SE MAP � 

∫ ∫ 
( ̂  θ − θ ) 2 f (x | θ ) d x f (θ ) d θ (25a) 

 E 

[
E 

[
( ̂  θ − θ ) 2 

∣∣θ]] (25b) 

 E 

[
MSE MAP (θ ) 

]
, (25c) 

here the outer expectation in (25b) is with respect to the ran- 

om variable θ and MSE MAP (θ ) denotes the true MSE of the MAP 

stimator when θ is given, i.e., 

SE MAP (θ ) � E 

[
( ̂  θ − θ ) 2 

∣∣θ], (26) 

here the expectation is only with respect to the noisy mea- 

urements x given θ . Since the problem becomes a non-random 

arameter estimation problem when θ is given, we can predict 

SE MAP (θ ) of the MAP estimator using (8) as follows. 

 SE MAP (θ ) = 2 

∫ ∞ 

−∞ 

| ε| P 
(

f (x | θ + 2 ε) f (θ + 2 ε) ≥ f (x | θ ) f (θ ) 

∣∣∣θ)d ε. 

(27) 

y substituting the MSE estimate ̂ MSE MAP (θ ) in (27) into the place 

f MSE MAP (θ ) in (25c) we can predict the overall MSE of the MAP 

stimate as follows. 

̂ SE MAP � E [ ̂  MSE MAP (θ )] (28a) 

 2 

∫ ∞ 

−∞ 

f (θ ) 

∫ ∞ 

−∞ 

| ε| P 
(

f (x | θ + 2 ε) f (θ + 2 ε) 

≥ f (x | θ ) f (θ ) 

∣∣∣θ)d ε d θ (28b) 

 

∫ ∞ 

−∞ 

∫ ∞ 

−∞ 

| ε| f (θ ) P 
(

f (x | θ + 2 ε) f (θ + 2 ε) ≥ f (x | θ ) f (θ ) 

∣∣∣θ)d ε d θ

+ 

∫ ∞ 

−∞ 

∫ ∞ 

−∞ 

| ε| f (θ − 2 ε) P 
(

f (x | θ − 2 ε) f (θ − 2 ε) 

≥ f (x | θ ) f (θ ) 

∣∣∣θ)d ε d θ (28c) 

 

∫ ∞ 

−∞ 

∫ ∞ 

−∞ 

| ε| f (θ ) P 
(

f (x | θ + 2 ε) f (θ + 2 ε) ≥ f (x | θ ) f (θ ) 

∣∣∣θ)d ε d θ

+ 

∫ ∞ 

−∞ 

∫ ∞ 

−∞ 

| ε| f (θ + 2 ε) P 
(

f (x | θ ) f (θ ) 

≥ f (x | θ + 2 ε) f (θ + 2 ε) 

∣∣∣θ + 2 ε
)

d ε d θ (28d) 
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∫ ∞ 

−∞ 

∫ ∞ 

−∞ 

| ε| ( f (θ ) + f (θ + 2 ε)) 

×
[ 
π1 P 

(
π2 f (x | θ + 2 ε) ≥ π1 f (x | θ ) 

∣∣∣θ)
+ π2 P 

(
π1 f (x | θ ) ≥ π2 f (x | θ + 2 ε) 

∣∣∣θ + 2 ε
)] 

d ε d θ (28e) 

 

∫ ∞ 

−∞ 

∫ ∞ 

−∞ 

| ε| ( f (θ ) + f (θ + 2 ε)) P e min (θ, θ + 2 ε) d ε d θ (28f) 

 2 

∫ ∞ 

0 

∫ ∞ 

−∞ 

ε( f (θ ) + f (θ + 2 ε)) P e min (θ, θ + 2 ε) d θ d ε

 

1 

2 

∫ ∞ 

0 

∫ ∞ 

−∞ 

ε( f (θ ) + f (θ + ε)) P e min (θ, θ + ε) d θ d ε, (28g) 

here P e 
min 

(θ1 , θ2 ) is the minimum probability of error for the bi- 

ary hypothesis testing problem given below. 

 1 : x ∼ f (x | θ1 ) , (29a) 

 2 : x ∼ f (x | θ2 ) , (29b) 

ith the prior hypothesis probabilities P (H 1 ) = π1 and P (H 2 ) =
2 = 1 − π1 where 

1 � 

f (θ1 ) 

f (θ1 ) + f (θ2 ) 
, π2 � 

f (θ2 ) 

f (θ1 ) + f (θ2 ) 
. (30) 

The expression (28g) can be seen to be the ZZB (See [7 , 

q. (14) ]) without the so-called valley filling function. As a result 
̂ SE MAP calculated using (8) in a Bayesian framework is equal to 

he ZZB. Note that this equality is satisfied irrespective of whether 

he objective function f (x | θ ) f (θ ) satisfies the assumptions of 

heorem 1 or not. If the objective function f (x | θ ) f (θ ) , which is

ctually the joint density f (x , θ ) of x and θ , also satisfies the con-

itions of Theorem 1 , then this would mean that MSE MAP (θ ) = 

̂ SE MAP (θ ) for all θ ∈ R and hence MSE MAP = ̂

 MSE MAP = ZZB and 

ence ZZB would have to be tight, i.e., ZZB would have to be equal

o the true average MSE of the MAP estimate ˆ θ . As a result, the

onditions of Theorem 1 are also a set of sufficient conditions for 

ZB to be tight. 

. Extension to the case with nuisance parameters 

Suppose now that we have J > 1 unknown scalar parameters, 

.e., θ ∈ R 

J , and we would like to estimate only one of them while

eeping the others as unknown nuisance parameters. Without loss 

f generality we assume that we would like to estimate θ1 while 

reating the other parameters θ2 , . . . , θJ as nuisance parameters. 

e can express the estimate ˆ θ1 for θ1 as 

ˆ 
1 � [ ̂  θ] 1 = arg max 

θ1 

[ 
max 
θ\ 1 

L (x ; θ) ︸ ︷︷ ︸ 
� L 1 (x ,θ1 ) 

] 
= arg max 

θ1 

L 1 (x , θ1 ) , (31) 

here θ\ 1 � 

[
θ2 θ3 · · · θJ 

]T 
. If we assume that the function 

 1 (x , θ1 ) defined as L 1 (x , θ1 ) � max θ\ 1 L (x ; θ) satisfies the condi-

ions in Theorem 1 , applying the result of Remark 1 to the IDE

n (31) would give 

 SE ( ̄θ1 ) = 2 

∫ ∞ 

−∞ 

| ε| P (L 1 (x , θ̄1 + 2 ε) ≥ L 1 (x , θ̄1 ) 
)

d ε, 

= 2 

∫ ∞ 

−∞ 

| ε| P 
(

max 
θ\ 1 

L (x ; θ̄1 + 2 ε, θ\ 1 ) ≥ max 
θ\ 1 

L (x ; θ̄1 , θ\ 1 ) 
)

d ε. 

(32) 
6 
ith the selection L (x ; θ) � f (x ; θ) ≥ 0 , we can obtain the MSE of

he ML estimate ˆ θ1 of θ1 similarly to Corollary 1 from (32) as 

̂ SE ML ( ̄θ1 ) = 2 

∫ ∞ 

−∞ 

| ε| P 
(max θ\ 1 f (x ; θ̄1 + 2 ε, θ\ 1 ) 

max θ\ 1 f (x ; θ̄1 , θ\ 1 ) 
≥ 1 

)
d ε, (33) 

onnecting the MSE of the ML estimator to the error probability of 

 generalized likelihood ratio test (GLRT) (instead of a likelihood 

atio test) in the presence of nuisance parameters [36] . 

In Section 6.2 below, we are going to investigate the expres- 

ion (33) further on the specific case of the parametric mean 

odel and make approximations to facilitate its calculation, which 

re later extended to the general case in a remark. 

. Application to ML estimation with the parametric mean 

odel with Gaussian noise 

We consider ML estimator with the measurement model given 

s 

 = m ( ̄θ) + v , (34) 

here v ∼ CN (v ; 0 , σ 2 I N ) represents the measurement noise and 

he manifold function m : R 

J → C 

N is, in general, a complex-valued 

unction of the unknown parameter vector θ ∈ R 

J . The measure- 

ent model in (34) is widely used in signal processing applica- 

ions. For example, a linear manifold function m ( ̄θ) = H ̄θ may rep-

esent a multi-input multi-output (MIMO) communication system; 

 non-linear manifold function may represent the array response 

n the direction of arrival estimation problems [1] . 

The likelihood function for an arbitrary θ is given as 

f (x ; θ) = CN (x ; m ( θ) , σ 2 I N ) . (35) 

e investigate the cases of a scalar parameter with and without 

uisance parameters in different subsections below. In order to cal- 

ulate the predicted MSE values we will need the following log- 

ikelihood ratio expression. 

n 

f (x ; θ) 

f (x ; θ̄) 
= 

1 

σ 2 

(
2 �{ ̃  m 

H ( θ; θ̄)(x − m ( ̄θ )) } − ‖ ̃  m ( θ; θ̄) ‖ 

2 
)
, (36) 

here ˜ m ( θ1 ; θ2 ) � m ( θ1 ) − m ( θ2 ) . 

.1. Case of a scalar parameter with no nuisance parameters 

Suppose now that we have a scalar parameter θ with the true 

alue θ̄ ( J = 1 ). Note that this case can also be interpreted to be the

ase when we have multiple parameters θ = [ θ1 θ\ 1 ] and the true 

alues θ̄\ 1 of the nuisance parameters θ\ 1 are perfectly known. We 

an evaluate the probability in (13) as 

 

(
f (x ; θ̄ + 2 ε) 

f (x ; θ̄ ) 
≥ 1 

)
= P 

(
ln 

f (x ; θ̄ + 2 ε) 

f (x ; θ̄ ) 
≥ 0 

)
= P 

(
2 �{ ̃  m 

H ( ̄θ + 2 ε; θ̄ ) v } ≥ ‖ ̃  m ( ̄θ + 2 ε; θ̄ ) ‖ 

2 
)

(37a) 

= N ccdf 

(‖ ̃  m ( ̄θ + 2 ε; θ̄ ) ‖ 

2 ; 0 , 2 σ 2 ‖ ̃  m ( ̄θ + 2 ε; θ̄ ) ‖ 

2 
)

(37b) 

= N ccdf 

(‖ ̃  m ( ̄θ + 2 ε; θ̄ ) ‖; 0 , 2 σ 2 
)
, (37c) 

nder the assumption that ‖ ̃  m ( ̄θ + 2 ε; θ̄ ) ‖ 	 = 0 , where

 ccdf (x ;μ, �) denotes the complementary cumulative distribution 

unction ( ccdf ) of a real Gaussian random vector with mean μ and 

ovariance � evaluated at x . Assuming that ‖ ̃  m ( ̄θ + 2 ε; θ̄ ) ‖ 	 = 0

or almost all ε ∈ R , we can substitute this probability expression 

nto (13) to get 

̂ SE ML ( ̄θ ) = 2 

∫ ∞ 

−∞ 

| ε|N ccdf 

(‖ ̃  m ( ̄θ + 2 ε, θ̄ ) ‖; 0 , 2 σ 2 
)

d ε. (38) 
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Fig. 2. A Matlab code (R2021b) for predicting the MSE of the ML estimator for the frequency estimation problem. 
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=

emark 2. If both the function m (·) and the measurement noise v 

re real-valued, i.e., if we have m : R → R 

N and v ∼ N (v ; 0 , σ 2 I N ) ,

hen, instead of (38) , one needs to use 

̂ SE ML ( ̄θ ) = 2 

∫ ∞ 

−∞ 

| ε|N ccdf 

(‖ ̃  m ( ̄θ + 2 ε, θ̄ ) ‖; 0 , 4 σ 2 
)

d ε. (39) 

sing this expression amounts to replacing the variance σ 2 

n (38) with 2 σ 2 . 

Note that the likelihood (35) does not satisfy the conditions 

f Theorem 1 and its corollary in general except for some trivial 

ases, e.g., the case of linear or affine manifold function m (θ ) . As a

esult, the predicted MSE expressions in (38) and (39) are expected 

o be only an approximate estimate of the true MSE of the ML es- 

imator. Furthermore, a closed form solution rarely exists for the 

ntegrals in (38) and (39) . Therefore, numerical integration meth- 

ds have to be used as shown in Example 1 below. 

The relations in (38) and (39) provide some insight on the sug- 

ested MSE expression. As ‖ ̃  m ( ̄θ + 2 ε, θ̄ ) ‖ , which is the norm of

he difference between manifold vectors m ( ̄θ + 2 ε) and m ( ̄θ ) , gets

arger, it should be easier to accurately estimate θ and we get a 

maller predicted MSE value (since the function N ccdf (·) monoton- 

cally decreases as its argument gets larger). Also, it is interesting 

o see that, for the simplest case m (θ ) � θ , the expression for the 

redicted MSE in (38) simplifies to; 

̂ SE ML ( ̄θ ) = 2 

∫ ∞ 

−∞ 

| ε|N ccdf 

(| 2 ε|; 0 , 2 σ 2 
)

d ε = 

σ 2 

2 

, (40) 

hich can be obtained by integration by parts. This result is ex- 

ected, as the corresponding ML estimator is ˆ θ = �{ x } , hence, the

rue MSE must be equal to half of the noise variance. We have an

xact result since the objective function is a Gaussian likelihood 

atisfying the conditions of Theorem 1 . We finally consider the fol- 

owing example in order to illustrate the practical simplicity of the 

xpression (38) . 

xample 1 (Frequency estimation using ML) . Consider the follow- 

ng signal model. 

 n = Ae j ̄ω n + v n , n = 0 , . . . , N − 1 , (41) 

here A ∈ C is the known complex amplitude; ω̄ ∈ [ −π, π ] is

he unknown true frequency to be estimated using the ML es- 

imator; v n ∼ CN (v n ; 0 , σ 2 ) , n = 0 , . . . , N − 1 , is the white mea-

urement noise. MSE of the ML estimator based on the mea- 

urements x n , n = 0 , . . . , N − 1 , can be calculated with the Mat-

ab function given in Fig. 2 , which involves only three lines 

f code. A sample run can be made using the command 

SE_ML_frequency(pi/2,1,1,16) for the true frequency 

alue ω̄ = π/ 2 , amplitude A = 1 , noise variance σ 2 = 1 and num-

er of samples N = 16 gives ̂ MSE ML ( 
π ) = 6.417e-4 rad 

2 
. Note 
2 

7 
hat the function calculateMSEhat(.) in Fig. 2 can be used 

or predicting the MSE performance of the ML estimator for 

ny measurement model of type (34) for a scalar parameter θ ∈ 

 θmin , θmax ] . 

.2. Case of a scalar parameter with nuisance parameters 

When some nuisance parameters exist, we consider the case in 

ection 5 and use the MSE expression in (33) . Unfortunately it is 

nalytically difficult to calculate the maxima and the probabilities 

n the integrands on the right hand side of (33) exactly. In the fol-

owing, we are going to make some approximations to facilitate the 

alculation. Similar approximations can also be made for the more 

eneral case in (32) (See Remark 3 below). 

max θ\ 1 f (x ; θ̄1 + 2 ε, θ\ 1 ) 

max θ\ 1 f (x ; θ̄1 , θ\ 1 ) 
≈

max θ\ 1 f (x ; θ̄1 + 2 ε, θ\ 1 ) 

f (x ; θ̄1 , θ̄\ 1 ) 

= max 
θ\ 1 

f (x ; θ̄1 + 2 ε, θ\ 1 ) 
f (x ; θ̄1 , θ̄\ 1 ) 

≈ max 
θ\ 1 ∈ �\ 1 

f (x ; θ̄1 + 2 ε, θ\ 1 ) 
f (x ; θ̄1 , θ̄\ 1 ) 

, (42) 

here the first approximation in (42) is made by assuming that 

he maximum in the denominator of the left hand side is achieved 

pproximately at the true values of the nuisance parameters, i.e., 

t θ\ 1 = θ̄\ 1 , which is reasonable under asymptotic conditions. The 

et �\ 1 � { θ1 
\ 1 , θ

2 
\ 1 , . . . , θ

N θ
\ 1 } appearing in (42) is a set of grid

oints including the true value θ̄\ 1 of θ\ 1 . Using these approxima- 

ions, we can approximate the probability in (33) as 

 

(max θ\ 1 f (x ; θ̄1 + 2 ε, θ\ 1 ) 

max θ\ 1 f (x ; θ̄1 , θ\ 1 ) 
≥ 1 

)
≈ P 

(
max 

θ\ 1 ∈ �\ 1 

f (x ; θ̄1 + 2 ε, θ\ 1 ) 
f (x ; θ̄1 , θ̄\ 1 ) 

≥ 1 

)
, (43a) 

 P 

(
max 

θ\ 1 ∈ �\ 1 
ln 

f (x ; θ̄1 + 2 ε, θ\ 1 ) 
f (x ; θ̄1 , θ̄\ 1 ) 

≥ 0 

)
(43b) 

= P 

(
max 

θ\ 1 ∈ �\ 1 

[ 
2 �{ ̃  m 

H ( ̄θ1 + 2 ε, θ\ 1 ; θ̄1 , θ̄\ 1 ) v } 

− ‖ ̃  m ( ̄θ1 + 2 ε, θ\ 1 ; θ̄1 , θ̄\ 1 ) ‖ 

2 
] 

≥ 0 

)
(43c) 

= 1 − P 

(
max 

θ\ 1 ∈ �\ 1 

[ 
2 �{ ̃  m 

H ( ̄θ1 + 2 ε, θ\ 1 ; θ̄1 , θ̄\ 1 ) v } 
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− ‖ ̃  m ( ̄θ1 + 2 ε, θ\ 1 ; θ̄1 , θ̄\ 1 ) ‖ 

2 
] 

≤ 0 

)
(43d) 

here ˜ m (θ1 
1 
, θ

1 
\ 1 ; θ2 

1 
, θ

2 
\ 1 ) � m (θ1 

1 
, θ

1 
\ 1 ) − m (θ2 

1 
, θ

2 
\ 1 ) . 

Let us now define the matrix ˜ M ε ∈ R 

N×N θ and the vector ˜ με ∈ 

 

N θ as 

˜ 

 ε � 

⎡ ⎢ ⎣ 

˜ m 

H ( ̄θ1 + 2 ε, θ
1 
\ 1 ; θ̄1 , θ̄\ 1 ) 

. . . 

˜ m 

H ( ̄θ1 + 2 ε, θ
N θ
\ 1 ; θ̄1 , θ̄\ 1 ) 

⎤ ⎥ ⎦ 

H 

, 

˜ με � 

⎡ ⎢ ⎣ 

∥∥ ˜ m ( ̄θ1 + 2 ε, θ
1 
\ 1 ; θ̄1 , θ̄\ 1 ) 

∥∥2 

. . . ∥∥ ˜ m ( ̄θ1 + 2 ε, θ
N θ
\ 1 ; θ̄1 , θ̄\ 1 ) 

∥∥2 

⎤ ⎥ ⎦ 

. (44) 

We can now write (43d) as 

P 

(max θ\ 1 f (x ; θ̄1 + 2 ε, θ\ 1 ) 

max θ\ 1 f (x ; θ̄1 , θ\ 1 ) 
≥ 1 

)
≈ 1 − P 

(
2 �{ ̃  M 

H 
ε v } ≤ ˜ με

∣∣∣θ̄)
= N ccdf 

(
˜ με; 0 , 2 σ 2 � 

{˜ M 

H 
ε
˜ M ε

})
, (45) 

nder the assumption that ‖ ̃  m ( ̄θ1 + 2 ε, θ
i 
\ 1 ; θ̄1 , θ̄\ 1 ) ‖ 	 = 0 for i =

 , . . . , N θ . Note that the inequalities between vector quantities 

bove should be interpreted in an elementwise manner. The prob- 

bility given in (45) is the generalization of the single parameter 

robability in (37b) to the case of (presence of) nuisance parame- 

ers. In fact, when we select the set �\ 1 as �\ 1 = { ̄θ\ 1 } , i.e., when

e have a grid composed of only the true nuisance parameter 
¯\ 1 , the probability (45) reduces to the probability (37b) . More- 

ver since the set �\ 1 contains the true value θ̄\ 1 , the probabil- 

ty (45) is always larger than or equal to the probability (37b) . Sub-

tituting the result (45) into (33) we get 

̂ SE ( ̄θ1 ) = 2 

∫ ∞ 

−∞ 

| ε|N ccdf 

(
˜ με; 0 , 2 σ 2 � 

{˜ M 

H 
ε
˜ M ε

})
d ε. (46) 

ote that since the probability (45) is always larger than or equal 

o the probability (37b) , the predicted MSE in (46) is always larger 

han or equal to the single parameter predicted MSE in (38) . 

Although we ended up with an analytical expression for the 

redicted MSE in the nuisance parameter case, unfortunately, the 

alculation of the predicted MSE in (46) involves the numerical cal- 

ulation of the N θ -variate normal (c)cdf which can be carried out 

or only small values of the number of grid points N θ . Furthermore, 

he covariance matrix � 

{˜ M 

H 
ε
˜ M ε

}
might be ill-conditioned or singu- 

ar which makes the calculation of the probability even more diffi- 

ult. As a result, the calculation of the predicted MSE in (46) would 

e computationally infeasible for large grid sizes N θ . To avoid this 

alculation we might follow an alternative approach by approxi- 

ating the right hand side of (43c) as 

 

(max θ\ 1 f (x | ̄θ1 + 2 ε, θ\ 1 ) 

max θ\ 1 f (x | ̄θ1 , θ\ 1 ) 
≥ 1 

)
≈ P 

(
max 

θ\ 1 ∈ �\ 1 

[ 
2 �{ ̃  m 

H ( ̄θ1 + 2 ε, θ\ 1 ; θ̄1 , θ̄\ 1 ) v } 

− ‖ ̃  m ( ̄θ1 + 2 ε, θ\ 1 ; θ̄1 , θ̄\ 1 ) ‖ 

2 
] 

≥ 0 

)
(47a) 

≈ max 
θ\ 1 ∈ �\ 1 

P 

([ 
2 �{ ̃  m 

H ( ̄θ1 + 2 ε, θ\ 1 ; θ̄1 , θ̄\ 1 ) v } 

− ‖ ̃  m ( ̄θ1 + 2 ε, θ\ 1 ; θ̄1 , θ̄\ 1 ) ‖ 

2 
] 

≥ 0 

)
(47b) 

= max 
θ\ 1 ∈ �\ 1 

P 

(
2 �{ ̃  m 

H ( ̄θ1 + 2 ε, θ\ 1 ; θ̄1 , θ̄\ 1 ) v } 
8 
≥ ‖ ̃  m ( ̄θ1 + 2 ε, θ\ 1 ; θ̄1 , θ̄\ 1 ) ‖ 

2 
)

(47c) 

= max 
θ\ 1 ∈ �\ 1 

N ccdf 

(
‖ ̃  m ( ̄θ1 + 2 ε, θ\ 1 ; θ̄1 , θ̄\ 1 ) ‖ 

2 ;

0 , 2 σ 2 ‖ ̃  m ( ̄θ1 + 2 ε, θ\ 1 ; θ̄1 , θ̄\ 1 ) ‖ 

2 
)

(47d) 

= max 
θ\ 1 ∈ �\ 1 

N ccdf 

(‖ ̃  m ( ̄θ1 + 2 ε, θ\ 1 ; θ̄1 , θ̄\ 1 ) ‖; 0 , 2 σ 2 
)

(47e) 

= N ccdf 

(
min 

θ\ 1 ∈ �\ 1 
‖ ̃  m ( ̄θ1 + 2 ε, θ\ 1 ; θ̄1 , θ̄\ 1 ) ‖; 0 , 2 σ 2 

)
, (47f) 

nder the assumption that min θ\ 1 ∈ �\ 1 ‖ ̃  m ( ̄θ1 + 2 ε, θ\ 1 ; θ̄1 , θ̄\ 1 ) ‖ 	 =
 . The approximation sign in (47a) represents the approximations 

ade until reaching (43c) . The approximation sign in (47b) can 

e replaced with a greater than equal to sign, i.e., the right hand 

ide of it is a lower bound for the left hand side. Substitut- 

ng (47f) into (33) gives the predicted MSE expression shown be- 

ow: 

̂ SE ML ( ̄θ1 ) = 2 

∫ ∞ 

−∞ 

| ε| 

N ccdf 

(
min 

θ\ 1 ∈ �\ 1 
‖ ̃  m ( ̄θ1 + 2 ε, θ\ 1 ; θ̄1 , θ̄\ 1 ) ‖; 0 , 2 σ 2 

)
d ε. 

(48) 

he predicted MSE in (48) is always smaller than or equal to the 

omputationally prohibitive predicted MSE in (46) due to the ap- 

roximation made in (47b) , however, it requires the calculation of 

he ccdf of only a univariate normal random variable. Note that 

he MSE in (48) is still always larger than or equal to the single

arameter MSE in (38) since the parameter grid �\ 1 contains the 

rue value θ̄\ 1 of θ\ 1 . This is because of the fact that 

min 

θ\ 1 ∈ �\ 1 
‖ ̃  m ( ̄θ1 + 2 ε, θ\ 1 ; θ̄1 , θ̄\ 1 ) ‖ ≤ ‖ ̃  m ( ̄θ1 + 2 ε, θ̄\ 1 ; θ̄1 , θ̄\ 1 ) ‖ 

= ‖ ̃  m ( ̄θ1 + 2 ε; θ̄1 ) ‖ (49) 

nd that the function N ccdf (·, 0 , 2 σ 2 ) monotonically increases as its 

rgument gets smaller. 

The intuitive meaning of the MSE expression (48) can be ex- 

lained as follows. When the nuisance parameters θ\ 1 are known, 

.e., we have the case of a single parameter in Section 6.1 , the MSE

s seen to be dependent on the distance between the mean vector 

 ( ̄θ1 + 2 ε, θ̄\ 1 ) and the true mean vector m ( ̄θ1 , θ̄\ 1 ) , which was

hown as (the magnitude of) the vector ˜ m ( ̄θ1 + 2 ε; θ̄1 ) � ˜ m ( ̄θ1 +
 ε, θ̄\ 1 ; θ̄1 , θ̄\ 1 ) in (38) . On the other hand, when the the nuisance

arameters θ\ 1 are not known, the predicted MSE is dependent 

n minimum distance between the mean vectors m ( ̄θ1 + 2 ε, θ\ 1 ) , 
here θ\ 1 takes values in a grid containing the true nuisance 

arameter value θ̄\ 1 , and the fixed true mean vector m ( ̄θ1 , θ̄\ 1 ) . 
ence if the vector m ( ̄θ1 + 2 ε, θ\ 1 ) is similar to the fixed vector

 ( ̄θ1 , θ̄\ 1 ) for some values of the nuisance parameter θ\ 1 in the 

rid, the resulting predicted MSE would get larger. 

emark 3. The approximations made in this section on (33) can 

e applied to the general case (32) as follows. 

 

(
max 
θ\ 1 

L (x ; θ̄1 + 2 ε, θ\ 1 ) ≥ max 
θ\ 1 

L (x ; θ̄1 , θ\ 1 ) 
)

≈ P 

(
max 

θ\ 1 ∈ �\ 1 
L (x ; θ̄1 + 2 ε, θ\ 1 ) ≥ L (x ; θ̄1 , θ̄\ 1 ) 

)
, (50a) 

≈ max 
θ\ 1 ∈ �\ 1 

P 
(
L (x ; θ̄1 + 2 ε, θ\ 1 ) ≥ L (x ; θ̄1 , θ̄\ 1 ) 

)
. (50b) 
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.3. Application to ML estimation under model mismatch 

In this section we consider the problem of ML estimation with 

he parametric mean model under model mismatch, also known 

s misspecified ML (MML) estimation in the literature [25,26] . 

or the sake of simplicity we consider only the scalar pa- 

ameter case, i.e., θ ∈ R . The measurements x are modeled as 

 = m̄ ( ̄θ ) + v , where m̄ (·) denotes the true mean function and

 ∼ CN (v ; 0 , σ̄ 2 I N ) represents the measurement noise with the 

rue variance σ̄ 2 . This model corresponds to the true likelihood 

f̄ (x ; θ̄ ) � CN (x ; m̄ ( ̄θ ) , σ̄ 2 I N ) . We are interested in the MSE of the

ismatched ML estimator ˆ θ of θ given as 

ˆ � arg max 
θ

f (x ; θ ) , (51) 

here the objective function is the assumed likelihood f (x ; θ ) 

iven as 

f (x ; θ ) � CN (x ; m (θ ) , σ 2 I ) . (52) 

For predicting the performance of the MML estimator given 

bove, we can use the MSE expression of Remark 1 by setting 

 (x ; θ ) � f (x ; θ ) and calculating the probability in the integrand 

f (8) with respect to the true measurement distribution f̄ (·; θ̄ ) . 

he log-likelihood ratio ln 

f (x ;θ̄+2 ε) 

f (x ;θ̄ ) 
in this case is given as 

ln 

f (x ; θ̄ + 2 ε) 

f (x ; θ̄ ) 
= 

1 

σ 2 

(
2 � 

{
˜ m 

H ( ̄θ + 2 ε; θ̄ )(x − m̄ ( ̄θ )) 
}

− ‖ ̃  m ( ̄θ + 2 ε; θ̄ ) ‖ 

2 + 2 � 

{
˜ m 

H ( ̄θ + 2 ε; θ̄ ) μ( ̄θ ) 
})

(53) 

here ˜ m (·, ·) was defined in (6) and 

(θ ) � m̄ (θ ) − m (θ ) . (54) 

e can now calculate the probability of the event 

n ( f ( x ; θ̄ + 2 ε) / f (x ; θ̄ ) ) ≥ 0 with respect to the true measure- 

ent distribution f̄ (·; θ̄ ) as 

 

(
ln 

f (x | ̄θ + 2 ε) 

f (x | ̄θ ) 
≥ 0 

)
= N ccdf 

(
‖ ̃  m (·) ‖ − 2 � 

{ 
˜ m 

H (·) 
‖ ̃  m (·) ‖ μ( ̄θ ) 

} 
; 0 , 2 ̄σ 2 

)
(55) 

nder the assumption that ‖ ̃  m (·) ‖ 	 = 0 , where we dropped the ar-

uments of the function ˜ m ( ̄θ + 2 ε; θ̄ ) for brevity. Substituting this 

xpression into the integrand of (8) we get the following predicted 

SE for the MML estimate. 

 SE MML ( ̄θ ) = 2 

∫ ∞ 

−∞ 

| ε|N ccdf 

(
‖ ̃  m (·) ‖ − 2 � 

{ 
˜ m 

H (·) 
‖ ̃  m (·) ‖ μ( ̄θ ) 

} 
; 0 , 2 ̄σ 2 

)
d ε.

(56) 

. Numerical results 

In this section, we examine the performance of the proposed 

SE expression on four different direction of arrival (DOA) estima- 

ion problems. The first two problems study the conventional and 

isspecified ML estimation respectively. In the third one, we inves- 

igate the performance of an IDE whose objective function is not 

he likelihood function, but a function derived from the manifold 

haracteristics. The fourth problem investigates Bayesian DOA esti- 

ation. The implementation details of the numerical experiments 

re given in [35, Appendix D] , which is the extended preprint ver- 

ion of this manuscript. 

.1. DOA Estimation (No model mismatch) 

Consider the DOA estimation problem with an N-element sen- 

or array with the following array manifold. 

a ψ 

= [ a 1 , a 2 , . . . , a N ] 
T , a n = exp 

(
j 
2 π

λ
p 

T 
n u ψ 

)
, 
9 
 ψ 

= 

[ 

cos (φ) sin (θ ) 
sin (φ) sin (θ ) 

cos (θ ) 

] 

, p n = 

[ 

p x n 

p y n 

p z n 

] 

, (57) 

here, ψ � [ φ, θ ] T denotes the unknown DOA vector composed 

f azimuth φ ∈ [0 , 2 π) rads (measured from the x-axis in counter- 

lockwise direction) and elevation θ ∈ [0 , π) rads (measured from 

he z-axis). p n is the position vector of the n th sensor containing 

he x , y and z -coordinates; N = 11 is the number of sensors; λ de- 

otes the wavelength. 

The array, whose sensor positions are given in Table 1 , is il- 

ustrated in Fig. 3 a. The sensor measurement vector x ∈ C 

N under 

dditive noise is modeled as 

 = βa ψ̄ 

+ v , (58) 

here v ∼ CN (v ; 0 , σ 2 I N ) ; β ∈ R ( β is taken as a real-valued scalar

ith no loss of generality due to the circular symmetry of the com- 

lex Gaussian noise) and ψ̄ � [ ̄φ, θ̄ ] T denotes the true value of 

he angle vector ψ . The true target angular positions are φ̄ = 25 ◦

nd θ̄ = 60 ◦. The beampattern of the array, obtained using the con- 

entional, i.e., Bartlett, beamformer with coefficients steered to the 

rue DOA, for this angular position is shown in Fig. 3 b. The beam-

attern contains sidelobes as high as −2 dB, with a response nor- 

alized to 0 dB at the true DOA. Consequently the array is prone 

o gross errors. With these definitions, the ML estimator involves 

he following optimization problem: 

ˆ 
 = arg max 

ψ 

�{ x 

H a ψ 

} . (59) 

ince the signal model is a parametric mean model with the mean 

unction m ( ψ ) = βa ψ 

, the finite support versions of the expres- 

ions (38) and (48) can be utilized for MSE prediction. We consider 

hree different cases: (i) Azimuth φ is unknown, but elevation 

= θ̄ is known; (ii) Elevation θ is unknown, but azimuth φ = φ̄ is 

nown; (iii) Both azimuth φ and elevation θ are unknown. The re- 

ults of 10 5 Monte Carlo simulations are given in Fig. 4 a and b for

zimuth and elevation estimates, respectively. For comparison pur- 

oses the corresponding CRLBs (see [37] for the analytical expres- 

ions), Barankin bounds (BBs) [14] with single test point optimized 

ver a grid, Fessler’s method [27] , So et al.’s method [28] , and

ethod of interval errors (MIE) [29] are also illustrated. As seen 

rom Fig. 4 , the proposed method is able to predict the thresh- 

ld SNR below which the ML estimator starts following the CRLB 

nd tracks the CRLB in the asymptotic region as expected. BB, on 

he other hand, converges to CRLB at a much smaller SNR value 

han the ML estimator. MIE closely follows the ML estimator in the 

hreshold region. This is essentially due to the problem specific se- 

ection of the intervals and accurate gross error probability calcu- 

ation. Note that MIE does not have any assumptions on the objec- 

ive function, such as symmetry or unimodality, leading to a better 

racking of ML estimator performance especially in the threshold 

egion. Taylor expansion based methods of Fessler and So et al. fol- 

ow the CRLB values in all regions of operation and they are unable 

o take into account the gross errors the ML estimator makes be- 

ow the threshold SNR. 

.2. DOA Estimation (Model mismatch) 

In this section we consider the misspecified ML estimation 

roblem examined in Section 6.3 on the parameterized mean 

odel. For this purpose we consider the near field azimuth esti- 

ation problem with known elevation angle, in which the estima- 

or uses the plane wave propagation assumption (far field assump- 

ion) rather than the true propagation model which is the spherical 

preading. 

A uniform circular array of radius 5 λ/ 3 with 12 elements is 

sed. The signal of interest emanates from a target at a range of 
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Table 1 

Sensor positions for the array in Figure 3 a 

Sensor-ID 1 2 3 4 5 6 7 8 9 10 11 

x, [ λ] 1.6667 1.1785 0 -1.1785 -1.6667 -1.1785 0 1.1785 0 0 0 

y, [ λ] 0 1.1785 1.6667 1.1785 0 -1.1785 -1.6667 -1.1785 0 0 0 

z, [ λ] 0 1.1785 1.6667 1.1785 0 -1.1785 -1.6667 -1.1785 0 1.6667 -1.6667 

Fig. 3. Array configuration and array beampattern at true DOA. 
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-5 0 5 10 15 20 25
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Fig. 4. Azimuth and elevation estimation performance curves for the array configuration in Figure 3 a. Blue and orange colors correspond to the cases without and with the 

nuisance parameter, respectively. 
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 λ, which is closer than the far-field limit 2(10 λ/ 3) 2 /λ = 200 λ/ 9

38] . The array configuration and the target position are illustrated 

n Fig. 5 . 

The true signal model is given as m̄ ( ̄φ) = [ ̄a 1 , ā 2 , . . . , ā N ] 
T , ā n =

xp 

(
− j 2 π

λ
d n ( ̄φ) 

)
, where d n (φ) = ‖ p n − ru φ‖ , u φ =

 cos (φ) , sin (φ)] T , p n = [ p x n , p 
y 
n ] 

T and r is the range of the

arget from the array center as illustrated in Fig. 5 . The as- 

umed model by the estimator is the plane wave model, given 

s m (φ) = [ a 1 , a 2 , . . . , a N ] 
T , a n = exp 

(
j 2 π

λ
p 

T 
n u φ

)
. There is no

isspecification in the noise variance, i.e., σ 2 = σ̄ 2 . 

The MSE values for this experiment with 10,0 0 0 Monte 

arlo runs are given in Fig. 6 along with the corresponding 

CRLBs [24,25] , BBs [14] , and the results for Fessler’s [27] and So

t al.’s [28] methods. MCRLB reduces to the following expression 
10 
or this specific problem. 

CRLB ( ̄φ) = C 

−1 
D ( ̄φ) I D ( ̄φ) C 

−1 
D ( ̄φ) , (60) 

here 

 D (φ) = 

2 

σ 2 

∥∥∥∂m (φ) 

∂φ

∥∥∥2 

, C D (θ ) = −I D (φ) + 2 � 

{ [ 
∂ 2 m (φ) 

∂θ2 

] 
H μ(φ) 

} 
, 

(61) 

nd μ(·) was defined in (54) . BB [14] with a single test point opti-

ized over a grid, which is also the HCRB [12,15] can be expressed 

s follows. 

B ( ̄φ) = HCRB ( ̄φ) = max 
φ

(φ − φ̄) 2 

e 
2 

σ2 ‖ m (φ) −m ( ̄φ) ‖ 2 − 1 

. (62) 
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Fig. 5. 12 element uniform circular array with a radius of 5 
3 
λ and target of interest 

at 5 λ range. 

-20 -15 -10 -5 0 5 10 15 20
10-1

100

101

102

Fig. 6. Near-field and far-field performance of a 12 element uniform circular array, 

for a target at 5 λ distance. (Matlab codes for this simulation is available at: https: 

//codeocean.com/capsule/6744831/ .) 
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The results given in Fig. 6 indicate that the proposed MSE ex- 

ression again predicts the threshold SNR quite closely and tracks 

CRLB in the small error region. On the other hand BB is opti- 

istic about the threshold SNR and both Fessler’s and So et al.’s 

ethods yield the same results as CRLB and MCRLB for the no 

odel mismatch and model mismatch cases respectively. 

.3. DOA Estimation by an IDE (ESPRIT) 

We consider a uniform linear array composed of N = 15 sensors 

ith λ/ 2 element spacing. The signal model is as follows 

 n = αe jπ cos ( ̄φ) n ︸ ︷︷ ︸ 
� m n ( ̄φ) 

+ w n , n = 0 , 1 , . . . , N − 1 , (63) 

here α ∈ C is the unknown complex amplitude, w n ∼
N (w n , 0 , σ 2 

w 

) , and φ̄ = 35 π/ 180 rad is the unknown true az-

muth angle to be estimated. We denote the spatial frequency 

ith ω̄ and define ω̄ � π cos ( ̄φ) . 

Due to the structure of uniform linear arrays, we can write 

 n ( ̄φ) = e j ̄ω m n −1 ( ̄φ) for the elements of the array manifold vec-

or m n ( ̄φ) in (63) , which is the rotational invariance property ex- 

loited in ESPRIT [39] . Using this property we can define a some- 

hat adhoc cost function as follows 

(ω) = 

N−1 ∑ 

n =1 

| x n − e jω x n −1 | 2 . (64) 
11 
y minimizing (64) , we can get an estimate for ω as ˆ ω � 

rg min ω J(ω) = arg 
(∑ N−1 

n =1 x 
∗
n −1 

x n 
)
; from which an estimate for 

he DOA can be generated as ˆ φ � arccos 
(

ˆ ω 
π

)
, which we call the 

SPRIT estimate. Note that the cost function J(·) is neither sym- 

etric around the estimate, nor is unimodal. Hence it does not 

atisfy the conditions for which the proposed method yields the 

rue MSE. The cost function J(ω) in (64) can be written in matrix 

orm as follows. 

(ω) = 

∥∥A 1 x − e jω A 0 x 

∥∥2 = x 

H 
(
A 1 − e jω A 0 

)H (
A 1 − e jω A 0 

)
x , (65) 

here 

x = 

[
x 0 x 1 . . . x N−1 

]T 
, A 0 = 

[
I (N−1) 0 (N−1) ×1 

]
, 

 1 = 

[
0 (N−1) ×1 I (N−1) 

]
. (66) 

sing ω � π cos (φ) , we get, 

(φ) = x 

H 
(
A 1 − e jπ cos (φ) A 0 

)
H 
(
A 1 − e jπ cos (φ) A 0 

)
x . (67) 

ote that in order to use the approximate MSE expression in (8) , 

e need to evaluate the following probability, 

 

(
J( ̄φ + 2 ε) ≤ J( ̄φ) 

)
= P 

(
J( ̄φ + 2 ε) − J( ̄φ) ≤ 0 

)
� P (�J 2 ε ≤ 0) , 

(68) 

here the inequalities are the reverse of those in Remark 1 since 

e have a minimization problem instead of a maximization prob- 

em in our IDE. Using (67) and after some basic algebraic op- 

rations we can express �J 2 ε � J( ̄φ + 2 ε) − J( ̄φ) as �J 2 ε = x H Qx

here 

 � (e jπ cos ( ̄φ) − e jπ cos ( ̄φ+2 ε) ) A 

H 
1 A 0 

+ (e − jπ cos ( ̄φ) − e − jπ cos ( ̄φ+2 ε) ) A 

H 
0 A 1 . (69) 

ven though the density of the quadratic form �J 2 ε = x H Qx is 

nown to be the generalized chi-squared distribution and can be 

valuated numerically [40, Appendix A] , we pursue a Gaussian fit 

o the density in order to simplify the probability calculations. To 

o that, we evaluate the first two moments of �J 2 ε . Using the fact 

hat x H Qx is always real, we can reach the following expressions 

after some algebra) 

�( ̄φ, ε) = E { �J 2 ε} = σ 2 
w 

tr 
(
Q ) + m 

H ( ̄φ) Qm ( ̄φ) , (70a) 

2 
�( ̄φ, ε) = Var { �J 2 ε} = σ 4 

w 

tr (Q 

2 ) + 2 σ 2 
w 

m 

H ( ̄φ) Q 

2 m ( ̄φ) , (70b) 

here m (φ) � [ m 0 (φ) , m 1 (φ) , · · · , m N−1 (φ)] T and we used the

esult E [(y H Qy ) 2 ] = tr 2 (Q �) + tr ((Q �) 2 ) for any Hermitian matrix

 and y ∼ CN (y ; 0 , �) [41, Ch. V, Lemma 2.2] . With the Gaussian

t, an approximation to the suggested MSE expression becomes 

̂ SE ( ̄φ) ≈ 2 

∫ π−φ̄
2 

− φ̄
2 

| ε|N cdf 

(
0 ;μ�( ̄φ, ε) , σ 2 

�( ̄φ, ε) 
)
d ε. (71) 

here we used (9) with φmin = 0 ; φmax = π to set the integration 

imits and the cdf of the normal distribution is used instead of 

he ccdf due to the reversal of the inequalities in (68) . Figure 7

hows the results of 10,0 0 0 Monte Carlo runs for this experiment. 

he CRLB, BB with single test point optimized over a grid, Fessler’s 

27] and So et al.’s [28] methods are also illustrated for com- 

arison purposes. Note that the estimator in this experiment is 

ot efficient, hence its performance does not reach CRLB at high 

NR. 

Consequently, the estimator performance is not characterized 

y the CRLB in any SNR region. Therefore, one needs the asymp- 

otic MSE values as well as the pairwise error probabilities in order 

o calculate the MSE prediction using MIE. BB provides a very op- 

imistic prediction for this specific problem as in the earlier exam- 

les. Although Fessler’s and So et al.’s methods predicted the esti- 

ator performance well at high SNR region, they have difficulty in 

https://codeocean.com/capsule/6744831/
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Fig. 7. Non-random DOA estimation performance of ESPRIT along with values of 

different bounds and MSE prediction expressions. 
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Fig. 8. Bayesian DOA estimation performance of MAP and ML estimators along with 

the values of BCRLB, ZZB and the proposed MSE prediction expressions (for ML and 

MAP). 
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epresenting gross errors of the estimator for low SNR values. The 

roposed method, on the other hand, closely follows the estimator 

erformance in all SNR regions. 

.4. Bayesian DOA estimation 

We consider the DOA estimation problem in Section 7.3 in a 

ayesian framework. The unknown angle φ has now a prior den- 

ity f (φ) , which is given as the symmetric beta distribution 

f (φ) = 

1 

πβ(a, a ) 

(
φ

π

)a −1 (
π − φ

π

)a −1 

, 

(a, b) � 

∫ 1 

0 

φa −1 (1 − φ) b−1 d φ, 0 ≤ φ ≤ π (72) 

ith a = 10 , and the performance of the ML and MAP estimators

s examined. The proposed Bayesian MSE expression for the ML es- 

imator can be expressed as ̂ MSE ML = 

∫ π
0 f (φ) ̂  MSE ML (φ)d φ where 

̂ SE ML (φ) = 2 

∫ π−φ
2 

−φ
2 

| ε|N ccdf 

(‖ ̃  m (φ + 2 ε;φ) ‖; 0 , 2 σ 2 
w 

)
d ε, (73) 

here the integration limits are selected as in (9) with φmin � 0 

nd φmax � π . The proposed MSE expression for the MAP estima- 

or can be expressed as ̂ MSE MAP = 

∫ π
0 f (φ) ̂  MSE MAP (φ)d φ where 

 SE MAP (φ) = 2 

∫ π

−π
| ε|N ccdf 

(
‖ ̃  m (φ + 2 ε;φ) ‖ 

+ 

σ 2 
w 

‖ ̃  m (φ + 2 ε;φ) ‖ log 

(
f (φ) 

f (φ + 2 ε) 

)
; 0 , 2 σ 2 

w 

)
d ε. (74) 

ote that ̂ MSE MAP (φ) in (74) reduces to ̂ MSE ML (φ) in (73) when 

he prior is flat. BCRLB for this Bayesian estimation problem is 

iven as [2] 

CRLB = 

(
π2 SNR 

N(N − 1)(2 N − 1) 

3 

∫ π

0 

sin 

2 φ f (φ) d φ

+ 

4(a − 1)(2 a − 1) 

π2 (a − 2) 

)
−1 , (75) 

here SNR � 

| α| 2 
σ 2 

w 
and N = 15 . ZZB (without the valley filling func- 

ion) for the problem can be expressed as 

ZB = 

1 

2 

∫ π ∫ π

h ( f (φ) + f (φ + h )) P e min (φ, φ + h )d θd h, (76) 

0 0 t

12 
here the minimum error probability P e 
min 

(φ1 , φ2 ) can be calcu- 

ated as 

 

e 
min (φ1 , φ2 ) = π1 N ccdf 

(
‖ ̃  m (φ2 ;φ1 ) ‖ + 

σ 2 
w 

‖ ̃  m (φ2 ;φ1 ) ‖ log 
π1 

π2 

; 0 , 2 σ 2 
w 

)
+ π2 N ccdf 

(
‖ ̃  m (φ1 ;φ2 ) ‖ + 

σ 2 
w 

‖ ̃  m (φ1 ;φ2 ) ‖ log 
π2 

π1 

; 0 , 2 σ 2 
w 

)
, (77) 

ith the prior probabilities π1 � 

f (φ1 ) 
f (φ1 )+ f (φ2 ) 

and π2 � 1 − π1 . 

Figure 8 shows the RMSE performances of the MAP and ML es- 

imators over 10,0 0 0 Monte Carlo runs for each SNR value along 

ith the values of BCRLB, ZZB and the proposed MSE prediction 

xpressions ̂ MSE ML and 

̂ MSE MAP . The values of ZZB and the pro- 

osed MSE prediction expression 

̂ MSE MAP are identical, as expected 

rom the results of Section 4.3 . 

. Conclusions 

In this study we propose an MSE expression for the perfor- 

ance prediction of IDEs of non-random parameters. The method 

rovides the exact MSE value when the objective function of the 

DE is unimodal and symmetric. Even though, this is a rather strin- 

ent restriction for the general practice; the symmetric unimodal 

bjective function assumption is in alignment with the operation 

f consistent estimators in the asymptotic region. The maximum 

ikelihood estimator is the prime example for the consistent esti- 

ators. Specific to the maximum likelihood estimator, it has been 

hown that the suggested MSE expression reduces to the CRLB and 

CRLB in no-misspecification and misspecification cases, respec- 

ively. Furthermore, the suggested expression also yields the ZZB 

hen an a-priori distribution is assigned to the unknown parame- 

er for the MAP estimator. 

An extension of the suggested MSE expression to the parameter 

stimation in the presence of nuisance parameters is given. Numer- 

cally friendly, but approximate, versions of the MSE expression are 

eveloped and some application examples are given. Numerical re- 

ults show that the expression not only predicts the performance 

n the asymptotic region, but also provides valuable information in 

he threshold region. We consider that the applicability of the ex- 

ression in other regions is related with the gradual degradation 

f asymptotic region operation conditions as the operating point 

oves from asymptotic region to the threshold region, say, with 

he reduction of SNR. 

A possible interpretation for the MSE expression can be given 

n relation with the method of intervals (MIE). The MIE predicts 

he MSE by taking into account both small and gross error events 
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ia CRLB and the interval error probabilities, respectively. The sug- 

ested MSE expression for the ML estimator uses the likelihood ra- 

io for the same purpose; but, it does not have a problem specific 

nterval selection. 

Another interpretation for the MSE expression can be given in 

onnection with the ZZB. As in ZZB, the suggested MSE expression 

s based on the pairwise error probabilities. Furthermore, the av- 

rage of the expression for the MAP estimator exactly reproduces 

ZB for random parameters. Hence, the suggested MSE expression 

or the ML estimator can also be considered, at least informally, as 

he non-random parameter version of the ZZB. 

An interesting observation in the non-random parameter case 

as that, for medium and low SNR, the proposed MSE expressions 

sually slightly underestimated the true MSE of the estimators. 

ence, a potential future study is to investigate whether the pro- 

osed expressions have any lower bounding properties in medium 

nd/or low SNR regions under some conditions. 
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ppendix A. Proof of Theorem 1 

Note that the true estimator statistic V ˆ θ (θ ) defined in (4) can 

e written as [7,42] 

 ˆ θ
(θ ) = 2 

∫ ∞ 

0 

εP 
(| ̂  θ − θ | ≥ ε

)
d ε = 2 

∫ ∞ 

0 

ε
[
P 
(

ˆ θ − θ ≥ ε
)

+ P 
(

ˆ θ − θ ≤ −ε
)]

d ε, (A.1) 

nd the expression (5) follows from (A.1) if the equalities 

 ( ̂  θ − θ ≥ ε) = P ( L (x ; θ + 2 ε) ≥ L (x ; θ ) ) , (A.2a) 

 ( ̂  θ − θ ≤ −ε) = P ( L (x ; θ − 2 ε) ≥ L (x ; θ ) ) , (A.2b) 

old for ε > 0 . In the following we first show that the equalities

n (A.2) indeed hold under the symmetry and unimodality assump- 

ions of Theorem 1 . Only the proof of the equality (A.2a) will be

ade since the proof for (A.2b) is very similar. In order to prove 

A.2a) , we will show that ˆ θ − θ ≥ ε if and only if L (x ; θ + 2 ε) ≥
 (x ; θ ) . The proof has two parts. 

• Proof of the implication 

ˆ θ − θ ≥ ε ⇒ L (x ; θ + 2 ε) ≥ L (x ; θ ) :

Suppose that ˆ θ ≥ θ + ε. Since ε > 0 , it is clear that θ < 

ˆ θ . If

θ + 2 ε < 

ˆ θ , since L (x ; θ ) is strictly increasing for all θ < 

ˆ θ and

since θ < θ + 2 ε < 

ˆ θ , we would have L (x ; θ + 2 ε) > L (x ; θ )

and this would make the inequality L (x ; θ + 2 ε) ≥ L (x ; θ ) hold.
13 
Hence, we only need to consider the case θ < 

ˆ θ ≤ θ + 2 ε. 

In this case we will show that the inequality L (x ; θ + 2 ε) ≥
L (x ; θ ) holds by contraposition. Suppose that the reverse in- 

equality, i.e., L (x ; θ + 2 ε) < L (x ; θ ) , holds. By the symmetry

property we have 

L (x ; θ + 2 ε) = L (x ; ˆ θ + (θ + 2 ε − ˆ θ )) 

= L (x ; ˆ θ − (θ + 2 ε − ˆ θ )) = L (x ; 2 ̂

 θ − θ − 2 ε) , (A.3) 

which shows that L (x ; 2 ̂  θ − θ − 2 ε) < L (x ; θ ) . Since 2 ̂  θ − θ −
2 ε ≤ ˆ θ (since 2 ̂  θ − θ − 2 ε is the mirror image of θ + 2 ε (with 

respect to ˆ θ ), which is greater than or equal to ˆ θ ) and 

since L (x ; θ ) is strictly increasing for all θ < 

ˆ θ , the inequality 

L (x ; 2 ̂  θ − θ − 2 ε) < L (x ; θ ) implies that 2 ̂  θ − θ − 2 ε < θ . This

inequality is equivalent to the inequality ˆ θ − θ < ε, which com- 

pletes the proof. 
• Proof of the implication L (x ; θ + 2 ε) ≥ L (x ; θ ) ⇒ 

ˆ θ − θ ≥ ε:

Suppose that L (x ; θ + 2 ε) ≥ L (x ; θ ) . Since L (x ; θ ) is strictly de-

creasing for all θ > 

ˆ θ , we cannot have θ > 

ˆ θ . Hence, we need to 

have θ ≤ ˆ θ . If θ + 2 ε < 

ˆ θ , we have ˆ θ − θ > 2 ε > ε, which makes

the inequality ˆ θ − θ ≥ ε hold. Hence, we only need to consider 

the case θ ≤ ˆ θ ≤ θ + 2 ε. By the symmetry property (A.3) we 

see that L (x ; 2 ̂  θ − θ − 2 ε) = L (x ; θ + 2 ε) ≥ L (x ; θ ) . Since we

have 2 ̂  θ − θ − 2 ε ≤ ˆ θ and θ ≤ ˆ θ and since L (x ; θ ) is increasing 

for all θ < 

ˆ θ , we need to have 2 ̂  θ − θ − 2 ε ≥ θ . This inequality 

is equivalent to the inequality ˆ θ − θ ≥ ε, which completes the 

proof. 

Hence the equalities in (A.2) hold and we can write (A.1) as 

 ˆ θ
(θ ) � 2 

∫ ∞ 

0 

ε
[
P ( L (x ; θ + 2 ε) ≥ L (x ; θ ) ) 

+ P ( L (x ; θ − 2 ε) ≥ L (x ; θ ) ) 
]

d ε, (A.4a) 

= 2 

∫ ∞ 

0 

εP ( L (x ; θ + 2 ε) ≥ L (x ; θ ) ) d ε

+ 2 

∫ ∞ 

0 

εP ( L (x ; θ − 2 ε) ≥ L (x ; θ ) ) d ε, (A.4b) 

= 2 

∫ ∞ 

0 

εP ( L (x ; θ + 2 ε) ≥ L (x ; θ ) ) d ε

+ 2 

∫ −∞ 

0 

εP ( L (x ; θ + 2 ε) ≥ L (x ; θ ) ) d ε, (A.4c) 

= 2 

∫ ∞ 

0 

εP ( L (x ; θ + 2 ε) ≥ L (x ; θ ) ) d ε

− 2 

∫ 0 

−∞ 

εP ( L (x ; θ + 2 ε) ≥ L (x ; θ ) ) d ε, (A.4d) 

 2 

∫ ∞ 

−∞ 

| ε| P ( L (x ; θ + 2 ε) ≥ L (x ; θ ) ) d ε � ̂

 V ˆ θ
(θ ) , (A.4e) 

hich completes the proof. 

ppendix B. Proof of Proposition 1 

We can write the probability in the integrand of ̂ MSE ML ( ̄θ ) 

n (13) as 

 

(
f (x ; θ̄ + 2 ε) 

f (x ; θ̄ ) 
≥ 1 

)
= P 

(
ln 

f (x ; θ̄ + 2 ε) 

f (x ; θ̄ ) 
≥ 0 

)
= P 

(
1 

N 

ln 

f (x ; θ̄ + 2 ε) 

f (x ; θ̄ ) 
≥ 0 

)
(B.1a) 
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P
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t

P
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[

= P 

(
1 

N 

ln 

f (x ; θ̄ + 2 ε) 

f (x ; θ̄ ) 
+ D ( ̄θ || ̄θ + 2 ε) ≥ D ( ̄θ || ̄θ + 2 ε) 

)
(B.1b) 

≤ P 

(∣∣∣ 1 

N 

ln 

f (x ; θ̄ + 2 ε) 

f (x ; θ̄ ) 
+ D ( ̄θ || ̄θ + 2 ε) 

∣∣∣ ≥ D ( ̄θ || ̄θ + 2 ε) 
)

→ 0 

(B.1c) 

or ε 	 = 0 as N → ∞ where D ( ̄θ || ̄θ + 2 ε) stands for

 ( f (x ; θ̄ ) || f (x ; θ̄ + 2 ε)) . This is because we have 

1 

N 

ln 

f (x | ̄θ + 2 ε) 

f (x | ̄θ ) 

p → −D ( ̄θ || ̄θ + 2 ε) (B.2) 

s N → ∞ by the law of large numbers and D ( ̄θ || ̄θ + 2 ε) > 0 for

	 = 0 due to the assumption A3. As a result, as N → ∞ , the inte-

ration in (13) will be effectively only over an infinitesimal neigh- 

orhood of ε = 0 and it is only the behavior of the probability 

 

(
f (x ; θ̄ + 2 ε) / f (x ; θ̄ ) ≥ 1 

)
as ε → 0 which determines the MSE 

xpression 

̂ MSE ML ( ̄θ ) in (13) . 

Using the assumption A1, we can now obtain the Taylor expan- 

ion of ln f (x ; θ̄ + 2 ε) around ε = 0 given as 

n f (x ; θ̄ + 2 ε) = ln f (x ; θ̄ ) + 2 

∂ 

∂θ
ln f (x ; θ̄ ) ε

+ 2 

∂ 2 

∂θ2 
ln f (x ; θ̄ ) ε2 + 

4 

3 

∂ 3 

∂θ3 
ln f (x ; ˜ θ ) ε3 , 

(B.3) 

here ˜ θ is between θ̄ and θ̄ + 2 ε. Since the ∂ 3 

∂θ3 ln f (x ; ˜ θ ) is 

ounded by assumption A2 as N → ∞ , the approximation 

n f (x ; θ̄+2 ε) ≈ ln f (x ; θ̄ ) + 2 

∂ 

∂θ
ln f (x ; θ̄ ) ε + 2 

∂ 2 

∂θ2 
ln f (x ; θ̄ ) ε2

(B.4) 

ecomes valid as ε → 0 . By rearranging, we can write 

n 

f (x ; θ̄ + 2 ε) 

f (x ; θ̄ ) 
≈ 2 

∂ 

∂θ
ln f (x ; θ̄ ) ε + 2 

∂ 2 

∂θ2 
ln f (x ; θ̄ ) ε2 (B.5) 

s ε → 0 . 

We can also write the Taylor expansion of ∂ 
∂θ

ln f (x ; ˆ θ ) around 

= θ̄ given as 

 = 

∂ 

∂θ
ln f (x ; ˆ θ ) = 

∂ 

∂θ
ln f (x ; θ̄ ) + 

∂ 2 

∂θ2 
ln f (x ; θ̄ )( ̂  θ − θ̄ ) 

+ 

1 

2 

∂ 3 

∂θ3 
ln f (x ; θ ′ )( ̂  θ − θ̄ ) 2 , (B.6) 

here θ ′ is between 

ˆ θ and θ̄ . Since the ∂ 3 

∂θ3 ln f (x ; θ ) is bounded 

y assumption A2 as N → ∞ , the approximation 

 ≈ ∂ 

∂θ
ln f (x ; θ̄ ) + 

∂ 2 

∂θ2 
ln f (x ; θ̄ )( ̂  θ − θ̄ ) (B.7) 

ecomes valid as ˆ θ
a.s. → θ̄ as N → ∞ . Rearranging, we obtain 

∂ 

∂θ
ln f (x ; θ̄ ) ≈ − ∂ 2 

∂θ2 
ln f (x ; θ̄ )( ̂  θ − θ̄ ) (B.8) 

s N → ∞ . Substituting ∂ 
∂θ

ln f (x ; θ̄ ) in (B.8) into (B.5) , we get 

n 

f (x ; θ̄ + 2 ε) 

f (x ; θ̄ ) 
≈ −2 ε

∂ 2 

∂θ2 
ln f (x ; θ̄ )( ̂  θ − θ̄ − ε) (B.9) 

s ε → 0 and N → ∞ . We can now substitute the result (B.9) into

he the probability in the integrand of ̂ MSE ML ( ̄θ ) in (13) to obtain 

 

(
f (x ; θ̄ + 2 ε) 

f (x ; θ̄ ) 
≥ 1 

)
= P 

(
− ε

∂ 2 

∂θ2 
ln f (x ; θ̄ )( ̂  θ − θ̄ − ε) ≥ 0 

)
. 

(B.10) 
14 
sing assumptions A1-A4, it can be shown that (See [33, 

emma 2.1 Part-i] or [34, Lemma 4.1 Part-i] ) 

1 

N 

∂ 2 

∂θ2 
ln f (x ; θ̄ ) 

p → − E 

[ 
∂ 2 

∂θ2 
ln f (x ; θ̄ ) 

] 
= I( ̄θ ) > 0 (B.11) 

s N → ∞ where we used the law of large numbers. This allows us

o write (B.10) as 

 

(
f (x ; θ̄ + 2 ε) 

f (x ; θ̄ ) 
≥ 1 

)
= P 

(
ε( ̂  θ − θ̄ − ε) ≥ 0 

)
= 

⎧ ⎨ ⎩ 

P 
(

ˆ θ − θ̄ ≥ ε
)
, ε > 0 

1 , ε = 0 

P 
(

ˆ θ − θ̄ ≤ ε
)
, ε < 0 

, (B.12) 

or ε → 0 and N → ∞ . Note that the probabilities P 
(

ˆ θ − θ̄ ≥ ε
)
,

> 0 and P 
(

ˆ θ − θ̄ ≤ ε
)
, ε < 0 would vanish as N → ∞ , just as the

robability P 
(

f (x ; θ̄ + 2 ε) / f (x ; θ̄ ) ≥ 1 
)
, ε 	 = 0 , itself, thanks to the

act that ˆ θ
a.s. → θ̄ . As a result, we can substitute the right hand side 

f (B.12) into the finite support version of the integral (13) to get 

̂ SE ML ( ̄θ ) � 2 

∫ θmax −θ̄
2 

θmin −θ̄

2 

| ε| P 
(

f (x ; θ̄ + 2 ε) 

f (x ; θ̄ ) 
≥ 1 

)
d ε

= 2 

∫ θmax −θ̄

θmin −θ̄
| ε| P 

(
f (x ; θ̄ + 2 ε) 

f (x ; θ̄ ) 
≥ 1 

)
d ε (B.13a) 

= −2 

∫ 0 

θmin −θ̄
εP 

(
ˆ θ − θ̄ ≤ ε

)
d ε + 2 

∫ θmax −θ̄

0 

εP 
(

ˆ θ − θ̄ ≥ ε
)

d ε

(B.13b) 

= 

∫ 0 

θmin −θ̄
ε2 f ˆ θ−θ̄

(ε) d ε + 

∫ θmax −θ̄

0 

ε2 f ˆ θ−θ̄
(ε) d ε

= 

∫ θmax −θ̄

θmin −θ̄
ε2 f ˆ θ−θ̄

(ε) d ε = E [( ̂  θ − θ̄ ) 2 ] � MSE ML ( ̄θ ) , (B.13c) 

s N → ∞ , which completes the proof of (17) . The proof of (18) fol-

ows trivially if the ML estimate ˆ θ is also asymptotically efficient. 
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