
On the Implementation of Optimal Receivers for
LFM Signals using Fractional Fourier Transform
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Abstract—We present a novel receiver structure for the de-
tection and parameter estimation of linear frequency modulated
signals. The proposed structure is based on the relations between
the fractional Fourier transform and the ambiguity function.
It has been shown that the optimal ML receiver, which is the
peak detector in the ambiguity plane, can be implemented at
a reduced search complexity with the proposed method. The
proposed method uses two 1-dimensional search operations in two
different fractional Fourier domains instead of a 2-dimensional
search over the ambiguity plane. The performance of the method
is illustrated with an example.

Index Terms—Pulse-Doppler coupling, LFM signals, Radar
receivers

I. I NTRODUCTION

Linear frequency modulated (LFM) waveforms are fre-
quently used radar waveforms with well known advantages
such as high range resolution and Doppler tolerance. A
drawback of LFM signals is the coupling between range and
Doppler estimates. It is known that when a correlation based
receiver is used to detect LFM signals, the detected range
suffers from an offset range which is proportional to the
Doppler frequency of the incoming echo, [1]. In other words,
a target may appear at a closer or at a further away range
than its true position if the return from the target has a non-
zero Doppler frequency. In the applications where the pulse
duration is shorter than a few miliseconds, range-Doppler
coupling has a negligible effect on the range estimation. In
other applications where the pulse duration can be on the order
of seconds, as in sonar applications, the offset due to coupling
can be significant, [2].

In this paper we examine a receiver structure based on the
cross-ambiguity function. We use the following definition for
the cross-ambiguity function:

Ars(τ, fd) =
∫ ∞

−∞
r(t + τ/2)s∗(t− τ/2)ei2πfdtdt (1)

When r(t) = s(t) the cross-ambiguity function reduces to
the ambiguity function which is also called as the auto-
ambiguity function. The magnitude square of ambiguity func-
tion, |Ars(τ, fd)|2, is called ambiguity surface. It is known
that the ambiguity surface is the ML detection statistics for
the estimation of delay and Doppler frequency of the echo
signal under white noise and flat fading channel conditions,
[3]. In other words, an optimal ML estimator executes a two

dimensional search for the peak location to estimate the delay
and Doppler frequency of the target:

[τ̂ , f̂d] = arg max
τ,fd

|Ars(τ, fd)|2 (2)

The contours of equal height in the ambiguity plane indicate
the locus of equally likely delay and Doppler frequency pairs.
In conventional systems, the operation of the ML receiver is
approximated with a filterbank of matched filters, [1], [3].

When LFM signals are used as radar waveforms, a char-
acteristic feature of LFM signals can be used to reduce the
dimensionality of the search in the ambiguity plane. A LFM
signal with the chirp ratek and durationT is defined as
s(t) = ejπkt2rect(t/T ), where rect(t/T ) = 1 when t < |T |/2
and zero otherwise. For illustration purposes, the ambiguity
surface of LFM signal with the chirp rate0.6 and duration of
4 seconds is shown in Figure 1.
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Fig. 1. Ambiguity surface for the LFM signal withk = 0.6 andT = 4.

For LFM signals with infinite duration, the ambiguity func-
tion reduces to a line impulse over its instantaneous frequency,
A(τ, fd) = δ(fd − τk). For finite duration LFM signals, the
signal is spread over the ambiguity plane, but its energy is
concentrated along the instantaneous frequency line.

The conventional method to detect LFM signals is matched
filtering. The output of the matched filter in the absence of
noise is the cross-correlation between transmitted LFM signal
and the received signal. The output is also equal to the slice
of the cross-ambiguity function atfd = 0, Ar,s(τ, 0). In other



words, the conventional receiver evaluates the cross-ambiguity
function along the linefd = 0.

Here we present an alternative receiver evaluating differ-
ent slices of ambiguity function. We introduce a two stage
detection process similar to the filterbank of method of the
conventional receivers. In the proposed method, the first stage
operates in the fractional domain which is orthogonal to the
instantaneous frequency line of the chirp signal. The domain
of the first stage is shown with line (I) in Figure 1. The second
stage operates in the fractional domain which is aligned with
the instantaneous frequency line as shown with line (II). 1-
dimensional search operations along the lines (I) and (II) are
conducted sequentially to detect the peak in the ambiguity
plane.

Methods similar to the one proposed in this paper can be
found in the literature. Wang, Ozdemir and Akay indepen-
dently proposed to use Radon-ambiguity transform to detect
chirp signals, [4], [5], [6]. The results of Ozdemir [5] have
been refined and proposed as a detection solution in [7]. More
recently Radon ambiguity transform has been used to detect
other chirp like signals in [8].

Here we present a solution for the joint estimation of
range and Doppler frequency for LFM signals. The proposed
method is similar to the one proposed in [7]. In [7], authors
use multiple domains to detect the target range and Doppler
frequency. Here, we use two domains as illustrated in Figure 1.

II. A MBIGUITY FUNCTION AND FRACTIONAL FOURIER

TRANSFORM

The fractional Fourier transform generalizes the ordinary
Fourier transform to a continuum of transforms. The definition
of fractional Fourier transform is given as

Fa{f}(ta) = Aφ

∫
f(t)eiπ(t2a cot φ−2tat csc φ+t2 cot φ)dt (3)

whereφ = aπ
2 andAφ is a unit norm constant depending on

φ, [9]. Whena = 1, the definition in (3) becomes identical to
the definition of the ordinary Fourier transform. Whena → 0,
the transform approaches identity transform, that is asa →
0, fa(t) → f(t) and the kernel of the transform approaches
δ(t− ta). For any value ofa, fa(ta) is a unitary transform of
f(t).

Fractional Fourier transform is intimately connected to the
Wigner distribution and the ambiguity function. The rela-
tionship between Wigner distribution and fractional Fourier
transform has been used extensively in time-frequency analy-
sis, [10]. But its relationship with the ambiguity function is
dispersed in the literature, [9], [6], [4] even though the central
relation, which is instrumental for our purposes, appears in the
classical text of Van Trees [3, page 310].

There are two fundamentally important results on the frac-
tional Fourier transform. Fractional Fourier transform can
localize a chirp signal to a delta function in a fractional do-
main. This property makes the transform useful in applications
involving chirp signals such as free space propagation, lens-
wave interaction and LFM signal detection. The second result

is related to the time-frequency distributions. It is well known
that the fractional Fourier transformation of a function has a
Wigner distribution which is the rotated version of the original
function by a fractional of 90 degrees in clockwise direction,
[9]. The rotation property also applies to the ambiguity func-
tion.

Next we examine the connection between fractional Fourier
transform and ambiguity function. The following two proper-
ties are well known for the ambiguity function:

Ar,s(τ, 0) =
∫ ∞

−∞
r(t)s∗(t− τ)dt (4)

∫ ∞

−∞
|Ar,s(τ, fd)|2dfd =

∫ ∞

−∞
|r(t)|2|s(t− τ)|2dt (5)

The first property is the cross-correlation property which has
been mentioned earlier. The second property does not appear
in classical texts, but appears in [11].

A brief proof for the second property can be given by the
Parseval’s relation for the conventional Fourier transform. For
a fixedτ , the ambiguity function can be viewed as the Fourier
transform of the time functionr(t + τ/2)s∗(t − τ/2). When
Parseval’s relation is applied to this function, we immediately
get (5).

The second property can be interpreted in three different
ways: It can be interpreted as the area under the slice of
ambiguity surface function for a fixedτ . It can also be
interpreted as the projection of|Ar,s(τ, fd)|2 to τ axis, or can
be interpreted as the marginalization of the time-frequency
correlation function|Ar,s(τ, fd)|2 over the variablefd.

The fractional Fourier transform generalizes the relations
given in (4) and (5) to the following forms:

Ar,s(τ cosφ, τ sinφ) =
∫ ∞

−∞
ra(ta)s∗a(ta − τ)dt (6)

∫
|Ar,s(τ cosφ− u sin φ, τ sin φ + u cos φ)|2du =

∫ ∞

−∞
|ra(ta)|2|sa(ta − τ)|2dt (7)

The equation (6) states that a radial slice of ambiguity
function along the linefd = tan(φ)τ can be calculated
from cross-correlation of theath domain fractional Fourier
transforms ofr(t) and s(t). Similarly equation (7) can be
interpreted as the the projection of|Ar,s(τ, fd)|2 onto the
line fd = tan(φ)τ . Note that whenφ = 0 the generalized
equations reduce to their special cases given in (4) and (5).

Proofs of the generalized relations can be based on the
rotation property of fractional Fourier transform. It is known
that the fractional Fourier transform rotates the ambiguity
function as it rotates the Wigner distribution, [9]. When
relations (4) and (5) are used onra(ta) and sa(ta) (the ath
order fractional Fourier transformations ofr(t) and s(t)),
the generalized results are obtained. The generalized relations
have been proved in the literature independently by various
authors. One can consult [5], [6] and [7] for the algebraic



proofs of (6) and (7)1.

III. PROPOSEDRECEIVER

The proposed receiver is described with an example. A LFM
signal with the duration of 8 seconds and with the chirp rate of
0.6 is used as the transmit waveform. The transmitted signal is
received at an unknown delay and unknown Doppler frequency
offset. Figure 2 shows the real part of the transmitted and
received signals.
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Fig. 2. Transmitted signal, received signal and the matched filter output.
Signal is received at a delay of 2 seconds and has no Doppler shift.

In Figure 2, the received signal has a delay of 2 seconds with
no Doppler frequency shift. Under these conditions matched
filter produces the correct estimate of the signal delay.

In Figure 3, we observe the effect of range-Doppler cou-
pling. In this figure, the received signal has the same delay,
but it has a Doppler frequency shift of 0.6 Hz. Under these
conditions, the target has an apparent delay of 1 seconds
when a matched filter based receiver is used. As noted before,
unknown Doppler frequency shift affects the matched filter
output and therefore a filterbank of receivers is needed to
correctly estimate the signal delay and Doppler frequency.

Figure 4 shows the cross-ambiguity function of received
signal and transmitted signal. The target is located at the point
(2, 0.6) as shown with a cross. It is clear from this figure that
a peak search in the cross - ambiguity function results can
extract the true parameters of the target.

In this paper, we propose to make use of LFM signal
characteristics to reduce the search dimensionality in the
ambiguity plane. With the proposed method, the 2-dimensional
search is reduced to two 1-dimensional search operations.

In the first stage of the search process, we calculate the
projections of|Ar,s(τ, fd)|2 over the domain shown with (I).

1Note that [5] uses a different definition of the ambiguity function and
a different choice of axis orientations. Therefore the relation derived in [5]
looks different from the one presented here, but identical to ours in principle.
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Fig. 3. Transmitted signal, received signal and the matched filter output.
Signal is received at a delay of 2 seconds and has a Doppler frequency shift
of 0.6 Hz

The projection on the cross - ambiguity plane can be calculated
from equation (7) through the fractional Fourier transforms
of r(t) and s(t) at domain ofa = 2

π arctan(k) + 1 where
k is the chirp rate. Then a peak search is executed on the
projection result. The location of the peak gives us the point
of intersection of lines (I) and (II). The radial distance of the
peak location to the origin is labeled asdI in Figure 4.

In the second stage of the search process, we calculate
the slice of the ambiguity function along the line (II) using
equation (6). To calculate the slice, theath order fractional
Fourier transform ofr(t) and s(t) is calculated wherea =
2
π arctan(k). Note that the slice of cross ambiguity function
along the line (II) is not a radial one. As explained in [5], the
non-radial slice is calculated by a coordinate change onr(t)
ands(t):

d0 = dI/ sin(arctan(k)) (8)

r̃(t) = r(t + d0/2) (9)

s̃(t) = s(t− d0/2) (10)

Hered0 is the distance between the origin and the intersection
point of line (II) and τ axis. (The parameterd0 is also the
peak location of the matched filter output.) The functionsr̃(t)
ands̃(t) are formed by delaying and advancing corresponding
waveforms. The non-radial slice of the ambiguity function
along the axis (II) can then be calculated using fractional
Fourier transforms of̃r(t) ands̃(t) from equation (6) as in [5].

Figure 5 shows the result of the proposed algorithm on the
presented example. The peak location given in the top panel
of Figure 5 is the intersection of the lines (I) and (II). One can
observe that the projection operation successfully localizes the
LFM signal at the radial distance ofdI = 0.5257.

In the second window of Figure 5, the non-radial slice of
the ambiguity function is evaluated. As expected, the slice has
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Fig. 4. Cross-ambiguity function forr(t) and s(t). The target location is
shown by X.

a triangular shape along this axis, since the chirp modulation
is removed. The peak location in the slice indicates the target
location. For the given example, the peak occurs atdII =
1.176.

Finally, the target delay and Doppler frequency is estimated
using the following formulas:

τ̂ = d0 + dII cos(arctan(k)) (11)

f̂d = dII sin(arctan(k)) (12)

For the given example, the target delay and Doppler frequency
is estimated as 2.015 seconds and 0.6028 Hz.
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Fig. 5. Results of the proposed algorithm

On the Implementation. There are two methods available
for the calculation of the fractional Fourier transform. The first

method usesO(N log N) operations and is an approximation
to the fractional Fourier transform kernel, [12]. The approxi-
mation is based on the Nyquist theorem.

The second method generalizes DFT matrix to fractional
DFT matrices, [13]. This method does not have a fast imple-
mentation therefore requiresO(N2) operations. Furthermore
this method requires an a-priori eigenvector calculation which
should be done offline.

For the presented example, we have used the fast method
where the samples ofs(t) and r(t) are formed in[−10, 10]
with the sampling period of 1/20 seconds. A total of 400
samples are collected for each signal.

IV. CONCLUSIONS

We have presented an alternative method for the parameter
estimation of LFM signals. The method uses the inherent
structure of LFM signals in the ambiguity plane to reduce
the 2-dimensional search required for ML detection to two 1-
dimensional search operations. The method is illustrated with
an example.

The method can be attractive in the applications where
the pulse duration is long. Such situations may arise in
high Doppler resolution applications and also in sonar sig-
nal processing. The performance of the method under noisy
conditions is to be examined at a later work.
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