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Abstract—We present a novel receiver structure for the de- dimensional search for the peak location to estimate the delay
tection and parameter estimation of linear frequency modulated and Doppler frequency of the target:
signals. The proposed structure is based on the relations between .
the fractional Fourier transform and the ambiguity function. [7, fa] = argmax |A,(1, fa)|? 2
It has been shown that the optimal ML receiver, which is the m.fd
peak detector in the ambiguity plane, can be implemented at The contours of equal height in the ambiguity plane indicate
a reduced search complexity with the proposed method. The e |ocus of equally likely delay and Doppler frequency pairs.

proposed method uses two 1-dimensional search operations intwoIn conventional svstems. the operation of the ML receiver is
different fractional Fourier domains instead of a 2-dimensional Yy ! P

search over the ambiguity plane. The performance of the method aPProximated with a filterbank of matched filters, [1], [3].

is illustrated with an example. When LFM signals are used as radar waveforms, a char-
Index Terms—Pulse-Doppler coupling, LFM signals, Radar acteristic feature of LFM signals can be used to reduce the
receivers dimensionality of the search in the ambiguity plane. A LFM
signal with the chirp ratek and durationT is defined as
I. INTRODUCTION s(t) = e?™*rect(t/T), where redtt/T) = 1 whent < |T)/2

Linear frequency modulated (LFM) waveforms are fre@md zero otherwise. For illustration purposes, the ambiguity

quently used radar waveforms with well known advantag&face of LFM signal with the chirp rate6 and duration of
such as high range resolution and Doppler tolerance. ‘AS€conds is shown in Figure 1.
drawback of LFM signals is the coupling between range and
Doppler estimates. It is known that when a correlation based
receiver is used to detect LFM signals, the detected range
suffers from an offset range which is proportional to the
Doppler frequency of the incoming echo, [1]. In other words,
a target may appear at a closer or at a further away range
than its true position if the return from the target has a non-
zero Doppler frequency. In the applications where the pulse -
duration is shorter than a few miliseconds, range-Doppler
coupling has a negligible effect on the range estimation. In
other applications where the pulse duration can be on the order
of seconds, as in sonar applications, the offset due to coupling
can be significant, [2].

In this paper we examine a receiver structure based on the
cross-ambiguity function. We use the following definition for
the cross-ambiguity function:
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Fig. 1. Ambiguity surface for the LFM signal with = 0.6 andT" = 4.

Ars(7, fa) = / r(t+7/2)s*(t —7/2)e*™¢dt (1) For LFM signals with infinite duration, the ambiguity func-
- tion reduces to a line impulse over its instantaneous frequency,

When r(t) = s(t) the cross-ambiguity function reduces tQA(r, f4) = 6(fa — 7k). For finite duration LFM signals, the
the ambiguity function which is also called as the autssignal is spread over the ambiguity plane, but its energy is
ambiguity function. The magnitude square of ambiguity fun@oncentrated along the instantaneous frequency line.
tion, | A.s(7, f4)|?, is called ambiguity surface. It is known The conventional method to detect LFM signals is matched
that the ambiguity surface is the ML detection statistics fdiltering. The output of the matched filter in the absence of
the estimation of delay and Doppler frequency of the echmise is the cross-correlation between transmitted LFM signal
signal under white noise and flat fading channel conditionand the received signal. The output is also equal to the slice
[3]. In other words, an optimal ML estimator executes a twof the cross-ambiguity function g, = 0, A, 4(,0). In other



words, the conventional receiver evaluates the cross-ambigugyelated to the time-frequency distributions. It is well known

function along the linef; = 0. that the fractional Fourier transformation of a function has a
Here we present an alternative receiver evaluating difféVigner distribution which is the rotated version of the original

ent slices of ambiguity function. We introduce a two stag®inction by a fractional of 90 degrees in clockwise direction,

detection process similar to the filterbank of method of tH8]. The rotation property also applies to the ambiguity func-

conventional receivers. In the proposed method, the first stdgm.

operates in the fractional domain which is orthogonal to the Next we examine the connection between fractional Fourier

instantaneous frequency line of the chirp signal. The domaiansform and ambiguity function. The following two proper-

of the first stage is shown with line (I) in Figure 1. The seconiies are well known for the ambiguity function:

stage operates in the fractional domain which is aligned with

the instantaneous frequency line as shown with line (Il). 1- Ay s(1,0) = /00 r(t)s*(t — 7)dt @)
dimensional search operations along the lines (I) and (Il) are ’ —0
conducted sequentially to detect the peak in the ambiguit o o
e cted sequentally P W st fPdta = [ r0)Plste - )P (6)

Methods similar to the one proposed in this paper can be
found in the literature. Wang, Ozdemir and Akay indepen- The first property is the cross-correlation property which has
dently proposed to use Radon-ambiguity transform to detd¥@en mentioned earlier. The second property does not appear
chirp signals, [4], [5], [6]. The results of Ozdemir [5] haven classical texts, but appears in [11].
been refined and proposed as a detection solution in [7]. MoreA brief proof for the second property can be given by the
recently Radon ambiguity transform has been used to detBérseval’s relation for the conventional Fourier transform. For
other chirp like signals in [8]. a fixed, the ambiguity function can be viewed as the Fourier
Here we present a solution for the joint estimation dfansform of the time functiom(t + 7/2)s*(t — 7/2). When
range and Doppler frequency for LFM signals. The proposé&rseval’s relation is applied to this function, we immediately
method is similar to the one proposed in [7]. In [7], authorget (5).
use multiple domains to detect the target range and DopplerThe second property can be interpreted in three different
frequency. Here, we use two domains as illustrated in Figurevtays: It can be interpreted as the area under the slice of
ambiguity surface function for a fixed. It can also be
Il. AMBIGUITY FUNCTION AND FRACTIONAL FOURIER  interpreted as the projection BiL,.. (7, £4)? to T axis, or can
TRANSFORM be interpreted as the marginalization of the time-frequency
The fractional Fourier transform generalizes the ordinagprrelation function A, (7, fa)|* over the variablef,.
Fourier transform to a continuum of transforms. The definition The fractional Fourier transform generalizes the relations

of fractional Fourier transform is given as given in (4) and (5) to the following forms:
]_-a{f}(ta) — A¢ / f(t)eiﬂ(ta cot p—2t4t csc p+t° cot @) dt (3) AT,S(T Cos ¢7 7 sin d)) = / Ta (ta)sz (t(l - T)dt (6)

where¢ = aZ and A, is a unit norm constant depending on . . 2
¢, [9]. When2a =1, tﬁe definition in (3) becomes identical to /'AT’S(T cos ¢ — usin ¢, 7 sin ¢ + u cos ¢)"du =
the definition of the ordinary Fourier transform. Whenr- 0, oo 5 9
the transform approaches identity transform, that is:as / ra(ta)["|sa(ta = 7)[7dt — (7)
0, fo(t) — f(t) and the kernel of the transform approaches
5(t —t,). For any value ofi, f,(t,) is a unitary transform of ~ The equation (6) states that a radial slice of ambiguity
f(@). function along the linef; = tan(¢)r can be calculated
Fractional Fourier transform is intimately connected to tHgom cross-correlation of theth domain fractional Fourier
Wigner distribution and the ambiguity function. The relatransforms ofr(¢) and s(t). Similarly equation (7) can be
tionship between Wigner distribution and fractional Fourignterpreted as the the projection @, (7, f4)|*> onto the
transform has been used extensively in time-frequency andipe f; = tan(¢)r. Note that wheny = 0 the generalized
sis, [10]. But its relationship with the ambiguity function isequations reduce to their special cases given in (4) and (5).
dispersed in the literature, [9], [6], [4] even though the central Proofs of the generalized relations can be based on the
relation, which is instrumental for our purposes, appears in thetation property of fractional Fourier transform. It is known
classical text of Van Trees [3, page 310]. that the fractional Fourier transform rotates the ambiguity
There are two fundamentally important results on the frafunction as it rotates the Wigner distribution, [9]. When
tional Fourier transform. Fractional Fourier transform carelations (4) and (5) are used og(t¢,) and s, (t,) (the ath
localize a chirp signal to a delta function in a fractional dosrder fractional Fourier transformations oft) and s(t)),
main. This property makes the transform useful in applicatiotise generalized results are obtained. The generalized relations
involving chirp signals such as free space propagation, lefsve been proved in the literature independently by various
wave interaction and LFM signal detection. The second resalithors. One can consult [5], [6] and [7] for the algebraic
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proofs of (6) and (7).

Ill. PROPOSEDRECEIVER !

The proposed receiver is described with an example. ALFM o
signal with the duration of 8 seconds and with the chirp rate of
0.6 is used as the transmit waveform. The transmitted signal is 50 s s 4 - 0o 2 4 6 8 10
received at an unknown delay and unknown Doppler frequency (t) : Received Signal (Real Part)
offset. Figure 2 shows the real part of the transmitted and * ‘ ‘ ‘ ‘ ‘
received signals.

s(t) : Transmitted Signal (Real Part)

0

-1
-10 -8 -6 -4 -2 0 2 4 6 8 10

s(t) : Transmitted Signal (Real Part)

1 T T r T A S(T,O) : Matched Filter Output (Magnitude)

200 ; 5 ; — ; ; ; ;
0

100 B
_l L L L L L L L
-10 -8 -6 -4 -2 0 2 4 6 8 10 ob— . . . . . - . . .

-9 -7 -5 -3 10 1 3 5 7 9
r(t) : Received Signal (Real Part) T

Fig. 3. Transmitted signal, received signal and the matched filter output.
‘ ‘ ‘ ] ‘ ‘ ‘ | ‘ Signal is received at a delay of 2 seconds and has a Doppler frequency shift
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The projection on the cross - ambiguity plane can be calculated
100 1 from equation (7) through the fractional Fourier transforms
‘ ‘ | L ‘ of r(¢) and s(t) at domain ofa = 2 arctan(k) + 1 where
0 8 6 4 2 o 2 4 6 8 10 k is the chirp rate. Then a peak search is executed on the
t projection result. The location of the peak gives us the point
of intersection of lines (I) and (I). The radial distance of the
Fig. 2. Transmitted signal, received signal and the matched filter outp i iain i i i
Signal is received at a delay of 2 seconds and has no Doppler shift. Hele:]k tlr?gagggofdths?a(;gglgf I?hlsbse;zc:cﬁg [;?Olzgsu;e Vé\te calculate
m§ slice of the ambiguity function along the line (Il) using

In Figure 2, the received signal has a delay of 2 seconds wi ) ) T cul he sl héh order fractional
no Doppler frequency shift. Under these conditions match Suqtlon (6). To calculate the s Ic€, t order fractiona
ourier transform ofr(¢t) and s(t) is calculated wheres =

filter produces the correct estimate of the signal delay. 5 _ - .
In Figure 3, we observe the effect of range-Doppler cour arctan(k). Note that the slice of cross ambiguity function
il/ong the line () is not a radial one. As explained in [5], the

pling. In this figure, the received signal has the same delay, . o N ;
but it has a Doppler frequency shift of 0.6 Hz. Under the on-radial slice is calculated by a coordinate change-(@h

conditions, the target has an apparent delay of 1 secor?(ﬁkds(t):

when a matched filter based receiver is used. As noted before, dy = dj/sin(arctan(k)) (8)
unknown Doppler frequency shift affects the matched filter ) = t 4 de/2 9
output and therefore a filterbank of receivers is needed to i( ) r(t+do/2) )
correctly estimate the signal delay and Doppler frequency. st) = s(t—do/2) (10)

Figure 4 shows the cross-ambiguity function of receivedered, is the distance between the origin and the intersection
signal and transmitted signal. The target is located at the poidint of line (Il) and+ axis. (The parameted, is also the
(2,0.6) as shown with a cross. It is clear from this figure thgieak location of the matched filter output.) The functidtg
a peak search in the cross - ambiguity function results cgRds(¢) are formed by delaying and advancing corresponding
extract the true parameters of the target. waveforms. The non-radial slice of the ambiguity function

In this paper, we propose to make use of LFM signaliong the axis (Il) can then be calculated using fractional
characteristics to reduce the search dimensionality in thgurier transforms of(¢) ands(t) from equation (6) as in [5].
ambiguity plane. With the proposed method, the 2-dimensionalrigure 5 shows the result of the proposed algorithm on the
search is reduced to two 1-dimensional search Operations.presented examp|e_ The peak location given in the top pane|

In the first stage of the search process, we calculate t§€rigure 5 is the intersection of the lines (1) and (I1). One can
projections of|.A,.s(7, fa)|* over the domain shown with (I). opserve that the projection operation successfully localizes the

INote that [5] uses a different definition of the ambiguity function ancll'FM signal at the r.adlal dIStaI.’ICG @l = 0.5257. . .

a different choice of axis orientations. Therefore the relation derived in [5 In the second window of Figure 5, the non-radial slice of
looks different from the one presented here, but identical to ours in principiéfie ambiguity function is evaluated. As expected, the slice has



A Ol method use€®) (N log N) operations and is an approximation
to the fractional Fourier transform kernel, [12]. The approxi-
mation is based on the Nyquist theorem.

The second method generalizes DFT matrix to fractional
DFT matrices, [13]. This method does not have a fast imple-
mentation therefore requiré3(N?) operations. Furthermore
this method requires an a-priori eigenvector calculation which
should be done offline.

For the presented example, we have used the fast method
where the samples of(t) and r(¢) are formed in[—10, 10]
with the sampling period of 1/20 seconds. A total of 400
samples are collected for each signal.

IV. CONCLUSIONS

We have presented an alternative method for the parameter
estimation of LFM signals. The method uses the inherent
structure of LFM signals in the ambiguity plane to reduce
the 2-dimensional search required for ML detection to two 1-
dimensional search operations. The method is illustrated with
Fig. 4. Cross-ambiguity function for(t) and s(t). The target location is gn example.
shown by X. The method can be attractive in the applications where

the pulse duration is long. Such situations may arise in
a triangular shape along this axis, since the chirp modulatibigh Doppler resolution applications and also in sonar sig-
is removed. The peak location in the slice indicates the targi@l processing. The performance of the method under noisy

location. For the given example, the peak occursigt = conditions is to be examined at a later work.
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