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Digital Wideband Integrators With Matching Phase
and Arbitrarily Accurate Magnitude Response

Cagatay Candan

Abstract—A new class of linear-phase infinite-impulse-response
digital wideband integrators based on the numerical integration
rules is presented. The proposed class of integrators exactly
matches the desired phase response of the continuous-time in-
tegrator (after group delay compensation) and can approximate
the magnitude response as closely as desired by increasing the
number of system zeros, i.e., the order of the integrator. The
low-order integrators (up to the fourth degree) generated by this
technique can be immediately utilized in many applications such
as strapdown inertial navigation systems, sampled data systems,
and other applications that require accurate integration.

Index Terms—Digital integrators, Lagrange interpolation,
Newton–Cotes, numerical integration, quadrature.

I. INTRODUCTION

THE DIGITAL integrators are utilized in many applica-
tions including sampled data systems, navigation, and

control applications. In this brief, we present a new class
of discrete-time infinite-impulse-response filters whose fre-
quency response approximates the frequency response of the
continuous-time integrator as accurately as it is desired, i.e.,

H(ejω) ≈ 1
jω

= D(ejω)

where −π < ω < π.
In the equation previously shown, H(ejω) denotes the digital

integrator, and D(ejω) denotes the desired response.
Several digital integrator designs have been proposed in

the literature [2]–[8]. Among these, the zero-order hold1

H(z) = 1/(1 − z−1) and the trapezoidal rule H(z) = (1 +
z−1)/(2(1 − z−1)) are the simplest and the most well known
approximations to the desired response. It can be easily ob-
served that, as ω → 0, response H(ejω) → 1/jω for both ap-
proximations. These simplest approximations can be sufficient
for the integration of oversampled signals (signals sampled
much above the Nyquist rate), but a closer inspection shows
that there is still room for better designs, particularly when the
signals are critically sampled at the Nyquist rate.
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1Throughout this brief, we assume that the continuous-time signal is sampled
at the rate of 1 sample per second. The integrators discussed in this brief should
be multiplied by the sampling period T if T �= 1.

Fig. 1. Fourth- and fifth-order Lagrange interpolators for the illustration of
even- and odd-order cases.

In this brief, we present a method exactly matching the phase
response of the continuous-time integrator and closely approx-
imating the desired magnitude response in a wideband. Our
approach can be considered as an adaptation of the numerical
integration (quadrature) rules to the integrator design.

In the literature, Ngo and Tseng have suggested the usage
of quadrature rules, such as the Newton–Cotes and Gauss–
Legendre rules, for the digital integrator design [4]–[6]. The
integrators based on the Newton–Cotes rules can be expressed
in the following general form [4]:

H(z) = GN (z)
1

1 − z−1
. (1)

Here, GN (z) is an N th-order causal finite impulse response
(FIR) filter. As previously discussed, the zero-order hold and
the trapezoidal rule filters can be put in this form by selecting
GN (z) appropriately [4].

The Newton–Cotes quadrature is based on finding the N th-
order polynomial passing through N + 1 consecutive input
samples (N th-order Lagrange interpolator) and then calculating
the area under the interpolating polynomial. In the top panel of
Fig. 1, an example for the fourth-order Lagrange interpolator is
given. In the conventional system, the calculated area is the area
between samples (k − 1) and k (shown with gray shading) [4].
The task of the GN (z) filter is to execute the area calculation
from the given set of N + 1 samples. The term following
GN (z) on the right-hand side of (1), which is 1/(1 − z−1), is
the conventional accumulator that is used to sum the area strips
calculated up to that instant [4].
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After [4], Tseng has extended and presented improved tech-
niques using similar quadrature rules in [5] and [6]. Unfortu-
nately, the method of Tseng requires fractional sampling rates
complicating both the design and the implementation of these
integrators. Tseng suggests using the Lagrange interpolators
to elevate some of these problems. The most recent proposal
by Tseng et al. suggests to implement the fractional delays in
the Hartley transform domain [8]. In this brief, our goal is to
present digital integrators using simple quadrature rules that
utilize uniformly sampled data and does not require a change in
sampling rate; therefore, we do not focus on fractional delays
or transform domain techniques.

In this brief, our goal is to improve the performance of
digital integrators as a standalone component. A reduction in
the integration error can be critical for the systems in which the
integration error is the predominant error source effecting the
overall performance. To that aim, we present a modification on
the integrators based on the Newton–Cotes rule and suggest to
calculate the area of the center strip (shown with blue shading)
instead of the most recent strip as done in [4]. We show that this
simple modification improves the accuracy of the magnitude
response significantly and leads to a perfect match of the phase
response.

In [5], Tseng has presented a general theory of integrators
based on the numerical integration rules and the fractional
delays. It has been recognized during the review stage of this
brief that the GN (z) polynomial of the integrators discussed
here is numerically equivalent to the UM (z) polynomial given
in [5], if M and L appearing in [5, eqs. (39)–(41)] are taken as
M = N and L = (N − 1)/2. To the best of our understanding,
the linkage is purely coincidental (due to the choice of the
Lagrange interpolation for the fractional delay implementa-
tion), and parameter L appearing in [5] is considered to be an
integer delay to causally implement the fractional delays. This
brief can be interpreted as a novel and much simpler deriva-
tion (free of fractional delays) for a subclass of the general
theory given in [5]. Furthermore, we show that the presented
class of integrators surpasses previously suggested integrators
including the ones in [5], which is a result not known in the
literature.

This brief is organized as follows. In the following section,
we explain our design motivation, then present a derivation for
area calculating the GN (z) filter for even–odd values of N ,
and finally present a compact formula for general N . Then, we
compare the proposed integrators with the existing proposals in
the literature and conclude with further remarks.

II. PROPOSED INTEGRATORS

A causally implementable digital integrator in the form of (1)
should a have right-sided GN (z). If GN (ejω) is the response
of a causal and linear-phase filter, then GN (ejω) can be written
as Gzp

N (ejω)e−j(N/2)ω. Here, N is the order of the filter, and
Gzp

N (ejω) is the zero- or constant-phase version of GN (ejω).
Under these conditions, the frequency response of the integrator
can be written as follows:

H(ejω) =
Gzp

N (ejω)e−j N
2 ω

e−j ω
2 (ej ω

2 − e−j ω
2 )

=
Gzp

N (ejω)
2j sin

(
ω
2

)e−jω(N−1)/2.

(2)

This relation shows that a causal and linear-phase GN (z) can
only approximate the integrator with a delay of (N − 1)/2
samples. It can be easily checked that, among the four types of
linear-phase systems, only the type-1 and type-2 linear-phase
systems with symmetric impulse responses (h[n] = h[N − n])
are suitable for the approximation of the integrator [9, p. 257].

The main idea of this brief is to impose type-1 or type-2
symmetry conditions on GN (z). To do that, we propose to
calculate the area under the central strip (shown with blue
shading in Fig. 1) instead of the strip conventionally calculated
with the Newton–Cotes rule (shown with gray shading) [4].
This choice can be explained as follows. The blue strip contains
an equal number of samples on its left and right sides. If
the samples on the left and right sides are interchanged, i.e.,
the samples on each side are flipped to the other side, the
interpolation curve also flips to the other side; however, the
area under the center strip does not change. This shows that
the GN (z) filter, which calculates the area of the center strip,
should be a symmetric polynomial. In the rest of this brief,
we pursue this idea and derive type-1 and type-2 linear-phase
GN (z) filters. The derivation is separately given for types 1
(even N ) and 2 (odd N ) for the sake of clarity.

A. Proposed System With Even-Order Interpolators

We present a derivation for GN (z) based on the discrete-
time Taylor series. To introduce the discrete-time Taylor se-
ries, we first review the difference operators and the factorial
polynomials.2

The factorial polynomial t[N ] is an N th degree polyno-
mial that is defined as t[N ] = t(t + 1) . . . (t + N − 1). The
backward difference operator ∆ is defined as ∆f [n] = f [n] −
f [n − 1]. When the backward difference operation is executed
on the factorial polynomials, we get ∆t[N ] = Nt[N−1]. Hence,
with the application of the difference operator, we get a factorial
polynomial with one less degree, in complete analogy with the
continuous-time derivative operator and tN polynomial.

The discrete-time Taylor series, in analogy with its continu-
ous version, is defined as follows:

f(t) =
∞∑

n=0

∆nf [k]
(t − k)[n]

n!
. (3)

It can be easily noted that f(t) is identical to f [k] when t = k.
If ∆ is applied to both sides of (3) and then t is replaced with
k, we get ∆f(t) ↓t=k= ∆f [k]. By repeating this operation, we
can show that f(k − q) = f [k − q] for q ≥ 0. This shows that
f(t) is an interpolating polynomial.

When the discrete-time Taylor series is truncated to a finite
number of terms, the resultant relation is equivalent to fitting an
N th-degree polynomial to samples {f [k], f [k − 1], . . . , f [k −
(N − 1)]}, which is the Lagrange interpolation [10].

The top panel of Fig. 1 illustrates the case for the fourth-order
interpolation. We can explicitly write the relation for this case
as follows:

f(t) = f [k] +
∆f [k]

1!
(t − k) +

∆2f [k]
2!

(t − k)[2]

2Further discussions on the Lagrange interpolation and the discrete-time
Taylor series can be found in [10].
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+
∆3f [k]

3!
(t − k)[3] +

∆4f [k]
4!

(t − k)[4]. (4)

The Newton–Cotes formula immediately emerges when f(t)
given in (4) is integrated between k − 1 and k. Due to the
reasons explained before, we are interested in the area of the
center strip, which is the integral of f(t) between k − (N +
1)/2 and k − (N − 1)/2, i.e.,

k−N−1
2∫

k−N+1
2

f(t)dt =

1
2∫

− 1
2

f

(
t + k − N

2

)
dt

=
N∑

n=0

∆nf [k]
∫ 1/2

−1/2

(
t − N

2

)[n]

n!
dt. (5)

Once the integrals are evaluated, the area under the center strip
can be written as follows:

Area = f [k] + ∆f [k](−2) + ∆2f [k]
(

25
24

)

+ ∆3f [k]
(
−1
24

)
+ ∆4f [k]

(
17

5760

)
. (6)

When the backward difference operators are replaced with
their z-domain counterparts, ∆Lf [k] ↔ (1 − z−1)LF (z); the
system function for the area calculator can be written as

G4(z) = 1 + (1 − z−1)(−2) + (1 − z−1)2
(

25
24

)

+ (1 − z−1)3
(
−1
24

)
+ (1 − z−1)4

(
17

5760

)

= z−2

(
− 17

5760
(z2+z−2)+

77
1440

(z1+z−1)+
863
960

)
︸ ︷︷ ︸

Gzp
4 (z)

.

(7)

As desired, G4(z) is a type-1 linear-phase sequence. A zero-
phase sequence, shown as Gzp

4 (z) in the aforementioned equa-
tion, can be constructed from G4(z) by shifting sequence 2
samples to the left (advancing). In the general case, Gzp

N (z) can
be constructed by advancing GN (z) with N/2 samples.

The frequency response of the N th-order integrator has the
form of H(z) = GN (z)/(1 − z−1) and can be expressed as
follows:

H(ejω) =
GN (ejω)
2j sin(ω

2 )
ej 1

2 ω =
Gzp

N (ejω)
2j sin

(
ω
2

)e−j N−1
2 ω. (8)

When N is taken as 4 in the last relation, the resulting sys-
tem is a linear-phase system with a constant group delay of
(4 − 1)/2 = 3/2 samples. In other words, the kth output
sample of the fourth-order integrator sums the area up to
k − (3/2) samples, which is exactly the scenario shown in the
top panel of Fig. 1.

The part of frequency response given in (8) without the
linear-phase term is an approximation to the ideal integrator∫ t

−∞ f(τ)dτ . The nature of the approximation for the fourth-
order case can be examined as follows:

Gzp
4 (ejω)

2j sin
(

ω
2

) =
863
1920 + 77

1440 cos(ω)− 17
5760 cos(2ω)

j sin
(

ω
2

)

=
1
2−ω2 1

48 +ω4 1
3840 +ω6 13

69120 +O(ω8)
j
(
ω 1

2−ω3 1
48 +ω5 1

3840−ω7 1
645120 +O(ω9)

)
≈ 1

jω
. (9)

In the second line of (9), the Taylor series expansions for the
cosine and sine functions are written for the terms appearing in
the numerator and the denominator. Readers should note that
the numerator polynomial times jω is equal to the denominator
polynomial up to the sixth-power term. It is evident that a
higher order approximation would improve the approximation
accuracy by introducing more terms with identical coefficients.
In the numerical comparisons section, we numerically examine
the accuracy of this approximation for various values of N .

B. Proposed System With Odd-Order Interpolators

The bottom panel of Fig. 1 shows the Lagrange interpolator
for the fifth-order interpolation and highlights the center strip.
The Lagrange interpolator for the fifth-order case contains
all the terms on the right-hand side of (4) and an additional
term of (∆5f [k]/5!)(t − k)[5]. The area under the center strip
can be calculated by integrating f(t) between k − (N + 1)/2
and k − (N − 1)/2, as in the even-order case. Repeating the
steps previously described, we get the type-2 symmetric G5(z)
polynomial as follows:

G5(z) = z−2.5

(
11

1440
(z2.5 + z−2.5) − 31

480
(z1.5 + z−1.5)

+
401
720

(z0.5 + z−0.5)
)

. (10)

The fifth-order approximation for 1/jω is then as follows:

Gzp
4 (ejω)

2j sin
(

ω
2

)
=

11
1440 cos(2.5ω) − 31

480 cos(1.5ω) + 401
720 cos(0.5ω)

j sin
(

ω
2

)
=

1
2 − ω2 1

48 + ω4 1
3840 − ω6 437

276480 + O(ω8)
j
(
ω 1

2 − ω3 1
48 + ω5 1

3840 − ω7 1
645120 + O(ω9)

)
≈ 1

jω
. (11)

It can be seen that the frequency response expression for odd-
order integrators is identical to the expression for even-order
integrators given in (8). The only difference is that even-
order integrators have type-1 symmetric GN (z), whereas odd-
order integrators have a type-2 symmetric filter. The group
delay for both cases is (N − 1)/2, exactly matching both
illustrations given in Fig. 1.

The presented examples can be generalized to an arbitrary
order without much difficulty. For an arbitrary value of N ,
the proposed digital integrators can be written as H(z) =
GN (z)/(1 − z−1) where

GN (z) =
N∑

n=0

(1 − z−1)n

n!

1
2∫

− 1
2

n−1∏
m=0

(t − N/2 + m)

︸ ︷︷ ︸
(t−N

2 )[n]

dt. (12)
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TABLE I
PROPOSED DIGITAL INTEGRATORS; H(z) = GN (z)/(1 − z−1)

The expressions for GN (z) up to the seventh order and the
MATLAB code generating GN (z) for any N are presented in
Table I.

III. NUMERICAL COMPARISONS AND

IMPLEMENTATION ISSUES

Here, we present a numerical comparison of the proposed
integrators with the ones in the literature. The first proposal
on digital integrators utilizing Newton–Cotes rules has been
given in [4]. Recently, similar integrators have been proposed
in [6]. The integrators proposed by Tseng have better per-
formance when compared with other integrators requiring a
similar amount of computation. We choose to compare the pro-
posed integrators with the classical Ngo integrator, the recently
proposed Tseng integrators [6], and the Simpson integrator [7].
(Interested readers can examine [6, Fig. 6] for a comparison of
Tseng’s integrators with the earlier integrators in the literature.)

The definitions for Ngo, Tseng, and Simpson integrators are
given as follows:

HN (z)

=
9 + 19z−1 − 5z−2 + z−3

24(1 − z−1)
HT (z)

=
− 3693+67260z−1+88650z−2−14388z−3+2139z−4

139968(1−z−1)
z

HS(z)

=
1 + 4z−1 + z−2

3(1 − z−2)
. (13)

Different from Ngo and Tseng integrators, the integrator based
on the Simpson’s rule has two poles at z = {1,−1} and has
a symmetric numerator polynomial leading to a perfect phase
match with the ideal integrator. The Simpson integrator and its
improved versions suggested by Tseng can be found in [7]. We
note that the integrators whose poles are uniformly distributed
around the unit circle, such as the Simpson integrator, can be
also expressed in the framework set in [4].

Frequency Response Comparison: Fig. 2 shows the magni-
tude response of the proposed integrators and the ideal integra-
tor. The next figure shows the approximation error magnitude
D(ejω) − H(ejω), which is the deviation from the desired
response. Here, D(ejω) = 1/(jω) is the response of the ideal
integrator.

For the proposed integrators presented in Figs. 2 and 3,
the group delay values are different from each other. For
comparison purposes, the group delay of each integrator is

Fig. 2. Magnitude response of proposed integrators and the ideal integrator.

Fig. 3. Magnitude spectrum of the approximation error.

compensated, making each system a constant phase. More
specifically, the linear-phase term appearing on the rightmost
side of (8) is removed so that the response approximates 1/jω,
as shown in (9).

It is shown in Figs. 2 and 3 that the proposed integra-
tors, particularly the ones with even orders, perform better
than earlier proposals. The proposed second-order integrator
is better than the Ngo integrator (which is third order) and
marginally better than the Tseng integrator (which is fourth
order). The performance gap widens for the proposed fourth-
order integrator.

Figs. 2 and 3 show that the integrators with even orders sig-
nificantly outperform the odd-ordered ones at high frequencies.
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Fig. 4. Phase response of digital integrators.

This is due to the structure of type-1 and type-2 filters. It should
be remembered that a type-2 sequence has zero at z = −1,
leading to G2L+1(ejω) → 0 as ω → π. On the other hand,
the ideal integrator 1/jω approaches 1/(jπ) as ω → π. The
presence of zero at z = −1 results in an undesired attenuation
of the response at high frequencies leading to an observed
performance gap between even and odd orders.

Fig. 4 compares the phase response of digital integrators.
The proposed integrators, by design, attain the desired phase
of −90◦ at all frequencies. The phase of −90◦ is attained after
the group delay compensation, which is (N − 1)/2 samples.
For even-order integrators, this leads to a half-sample delay, as
shown in the top panel of Fig. 1. It should be noted that Ngo
and Tseng integrators significantly deviate from the desired
response in midfrequency bands. This deviation is expected
since the numerator polynomials given in the corresponding
equations of (13) are not symmetric. On the other hand, the
Simpson integrator has a perfect phase match due to its sym-
metric numerator polynomial.

Implementation Issues: The simplest digital integrator is the
cumulative summer whose system function is 1/(1 − z−1).
The cumulative summer does not require any multipliers for
its implementation. The proposed integrators and the other
integrators with the form of GN (z)/(1 − z−1), such as the
proposals of Ngo and Tseng, as shown in (13), require N
multipliers per output sample where N is the order of the filter.
As shown in Table I, the proposed integrators require �(N +
1)/2	 multipliers per output sample due to their even symmetry.
(Here, �·	 is the function mapping the argument to the smallest
integer greater than or equal to the argument.) Therefore, there
is no computational setback but a minor advantage for the
proposed integrators.

It should be noted that the integrator, by definition, is an
unstable system; therefore, it is only applicable for inputs
having zero mean. Even for a zero-mean input, the word width
of the integrator should be sufficiently large to accurately hold
the accumulation result. As a final note, the two’s complement
(nonsaturating) arithmetic can be adopted in the implementa-
tion to aid the recovery from a potential overflow.

Application Example: To illustrate the suggested integra-
tors, an experiment with a high-precision rate gyroscope has
been conducted. In the experiment, the measurement table is
programmed to make two full rotations about a single axis.
The data collected with the rate gyroscope is integrated to
find the instantaneous position of the object. It has been found
through this experiment that the suggested integrators present
an improvement in accuracy, particularly for the medium fre-
quency inputs, i.e., ω ∈ [0.05π, 0.2π]. Readers can examine
the extended version of this brief for experiment details [11].
As a cautionary note, we would like to note that the error
reduction due to the enhanced integrators can be insignificant
in comparison with other error sources effecting the system
performance in many practical applications.

IV. CONCLUSION

A class of digital integrators that exactly matches the phase
response of the continuous-time integrator and can approximate
the magnitude response of the continuous-time integrator with
an arbitrary degree of accuracy across a wideband of frequen-
cies has been given. The second- and fourth-order integrators,
which require little computation per output sample, can im-
mediately replace earlier proposals that are currently in use in
many applications requiring long-term integration such as the
ones in the navigation applications [1].
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