- 1. Consider the following circuit.
 - (a) Obtain the state equation.
 - (b) Find the natural frequencies of the circuit in terms of β .

For parts (c) and (d) take $v_s(t) = 0$.

- (c) Let $\beta = 2$ and $v_c(0) = 4$ V. Find a possible initial inductor current $i_L(0)$ so that only a single mode is excited.
- (d) Given $v_c(t) = \cos(\omega t) V$, determine β and ω .

2. Consider the following circuit.

- (a) Obtain the state equation.
- (b) Find the natural frequencies of the circuit.
- (c) Convert the state equation of part (a) into Laplace domain. Find the zero input solution of $i_L(t)$ for $i_L(0^-) = 2A$ and $v_C(0^-) = -2V$.
- (d) Find the particular solution of $i_L(t)$.

3. Consider the following circuit.

- a) Obtain the node/ modified node/ mesh equation in matrix form.
- b) Determine the natural frequencies from the mesh equation.
- c) Write the form of the homogeneous solution for $v_x(t)$.
- d) For $v_{s1}(t) = 3e^{-4t}$ V, $v_{s2}(t) = 10$ V, $i_s(t) = 0$, find the particular solution for $v_x(t)$.
- **4.** Consider the circuit below.

- a) Obtain the node equation in matrix form.
- **b)** Express the natural frequencies in terms of *K*.
- c) Determine the value of K so that the natural frequencies are purely imaginary. For this value of K, write the form of the homogeneous solution for $v_C(t)$.
- **d)** For K = 4 find the natural frequencies; write the form of the homogeneous solution for $v_C(t)$; and find the particular solution for $v_C(t)$.