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Chapter 1

Nth Order Circuits

We examine the time-domain description of the Nth order linear time-invariant
circuits. Our interest is the characterization of the dynamic circuits and the types
of solutions with a particular focus on unforced (zero-input) solution. We revisit the
concept of natural frequencies and examine the modes of circuit and give the details
on the response calculation for circuits excited with initial conditions. Finally, we
examine the concepts related to the stability of circuits in the absence of external
forcing. The topics presented in this chapter are fundamental to the general linear
system theory and are part of the fundamental knowledge base that every engineer
practices.

The chapter starts with the discussion of linearity. Different aspects of linear-
ity conditions for the dynamic circuits (systems) are discusses. Then the types of
responses (particular, homogeneous etc.) and the methods of their calculation are
given. At some parts, the chapter carries a little more detailed information than
typically required required from a second year student. These details are presented
to show the subtle intricacies that may possibly misguide or confuse the careful
readers.

1.1 Operators, Systems, Linearity

An operator maps functions to functions. For the purposes of circuit theory, the
operators can be considered to operate on the time functions. For example, a circuit
with the external input of cos(2t + 45◦) for t ≥ 0 can cause a branch voltage of
1/2 cos(2t) Volts for t ≥ 0. The mapping of the functions between the external
input (external forcing)and the branch voltage can be interpreted as the action
of an operator on the input of cos(2t + 45◦). The conclusion is that the operator
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2 CHAPTER 1. NTH ORDER CIRCUITS

“modifies” or “reshapes” the given input function to another function. To implement
the operators, we build systems, i.e. built circuits. Among all systems, the linear
systems are the most fundamental and also the most suitable for analysis. Our
discussion in this course is solely limited to linear and time-invariant systems.

A system L with the input x(t) and the output y(t), L {x(t)} = y(t), is called
linear if the following conditions are satisfied:

1. Scaling: L{αx(t)} = αy(t), ∀α

2. Superposition: L{αx1(t) + βx2(t)} = αy1(t) + βy2(t), ∀α, ∀β
where L {x1(t)} = y1(t) and L {x2(t)} = y2(t)

It is important to note that the conditions should be satisfied for any x(t) and y(t),
not for specially chosen ones.

It can be noted that when the input is the zero function x(t) = 0 (zero-input
condition), then a linear system should a zero output. (To show this, you may take
x2(t) = x1(t) and α = 1, β = −1 in the superposition property.) The simple zero-
input and zero-output condition can be quick check for the linearity of the system.
But note that, when the zero-input and zero-output check is satisfied; we can not
say that the system is linear or not! If the zero-input and zero-output condition is
not satisfied, we can surely say that the system is not linear. Hence the zero-input
and zero-output condition is not sufficient to claim the linearity of the system; but
it is a necessary condition to declare the linearity of the system.

Some important examples of linear operators, especially related to the circuit
applications, are D = d

dt
, D−1 =

∫ t

−∞(·)dt′ and the multiplication by R operator.
In addition, it is also easy to see that the cascade application of these linear oper-
ators also result in a linear operator; that is multiplication of x(t) by R and then
differentiation is also linear operator. (Make sure to show this result!)

Two linear operatorsA and B are said to commute ifA{B{x(t)}} = B{A{x(t)}}.
For example, if A is the multiplication by R operator and B is the time differen-
tiation, then A{B{x(t)}} = B{A{x(t)}}, i.e. two operators commute. When two
operators commute, this means that the order in their application does not matter.
Hence, for this example it does not matter whether you multiply the function x(t)
by R first and differentiate the result or differentiate first and then multiply the
result by R.

As a second example to the commutativity, lets assume that A = d
dt

and

B =
∫ t

0
(·)dt′. Then A{B{x(t)}} = d

dt
{
∫ t

0
x(t′)dt′} = x(t), while B{A{x(t)}} =∫ t

0
{ d
dt′
x(t′)}dt′ = x(t)− x(0). Hence, these two operators does not commute unless

x(0) = 0. If we change the lower limit of integration operator B from 0 to −∞,
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that is B =
∫ t

−∞(·)dt′; and adopt the convention that x(−∞) = 0 then d
dt

and∫ t

−∞(·)dt′ commute. In this chapter, we use the operator D to denote d
dt

and D−1

to denote
∫ t

−∞(·)dt′ unless otherwise is explicitly stated. With this definition D and

D−1 commute, then the complicated cascade application of these operators, such
as D−1(D + 1)(D + 2), (D + 1)D−1(D + 2), (D + 1)(D + 2)D−1 are identically the
same. Essentially, with the adoption of the presented notation and convention; the
operator D and its inverse D−1 can be treated as like a ordinary polynomial in D.

An operator description such as y(t) =
(

d2

dt2
+ 3 d

dt
+ 2

)
x(t) can be considered

as the cascade of ( d
dt
+ 2) and ( d

dt
+ 1) operators. Here x(t) is the input and y(t)

is the output of the system. In plain words, y(t) can be described as the second
derivative of x(t) plus 3 times the first derivative of x(t) and 2 times the function
x(t). It is easy to see that this operator is linear.

A more interesting question is the linearity of the following operator:(
d2

dt2
+ 3

d

dt
+ 2

)
y(t) = f(t)(1.1)

y(0) = y0

y′(0) = y′0

Here f(t) is the input (the forcing term) and y(t) is the output of the system. We
know that the initial conditions of y(t) at t = 0. Hence we have a typical 2nd order
constant coefficient differential equation.

Let’s check whether the system given in (1.1) is linear or not. For linearity,
if the input is zero function (f(t) = 0), the output y(t) should be identical to
zero. If this is not true, the system can not be linear. This shows that unless both
initial conditions are zero, this system can not be linear. So, the initial conditions
should be zero for linearity. (Going back to EE201, you may remember that we
enforce the zero-state condition (all zero initial conditions) for the impulse and
step response calculations. The zero-state responses, by their definition, satisfy the
linearity conditions and this allows us to superpose many external inputs for the
zero-state solution!) Let’s assume zero initial conditions in (1.1):(

d2

dt2
+ 3

d

dt
+ 2

)
y(t) = f(t)(1.2)

y(0) = 0

y′(0) = 0

The zero-initial conditions is not sufficient to guarantee the linearity. To check the
linearity of the system in (1.2), we assume that the input f(t) and causes an output
y(t), i.e. the output y(t) is the zero-state solution to the input f(t). If the input is
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changed to αf(t) (α is an arbitrary scalar), the response should be αy(t) for linearity.
This is indeed true for the given equation. We can show this by multiplying both

sides of the differential equation
(

d2

dt2
+ 3 d

dt
+ 2

)
y(t) = x(t) by α. Once this is done,

we get another differential equation whose input is αf(t). It is clear that αy(t)
satisfies this differential equation. This is what we want to show! (Note that initial
condition for the system with input αx(t) is all zero, so αx(t) also satisfies the initial
condition.)

To check the superposition property of the linear systems, we multiply both

sides of
(

d2

dt2
+ 3 d

dt
+ 2

)
yk(t) = fk(t) by α and β to get

(
d2

dt2
+ 3 d

dt
+ 2

)
αy1(t) =

αf1(t) and
(

d2

dt2
+ 3 d

dt
+ 2

)
βy2(t) = βf2(t). By adding these two equations we get(

d2

dt2
+ 3 d

dt
+ 2

)
{αy1(t) + βy2(t)} = αf1(t) + βf2(t). Hence it is shown that if input

f1(t) causes y1(t) and f2(t) causes y2(t); then the input αf1(t) + βf2(t) results in
αy1(t) + βy2(t) at the output. Again please note that, it initials conditions are
not zero, the superposition principle is not satisfied. If y1(t) and y2(t) are not
zero at t = 0, then αy1(0) + βy2(0) can not be zero (for any α and β), hence the
initial condition of the differential equation can not be satisfied with the solution of
αy1(t) + βy2(t).

In the following section, we start the solution of dynamic circuits. Our goal is
to characterize the mapping between the input and output of a linear time-invariant
dynamic circuit. The input can be the initial conditions, external forcing or both.

1.2 Types of Responses

The solution of Nth order constant coefficient differential equations is accomplished
in a few steps. The steps of solution carry important on their own. These steps
towards the solution can be considered as the zero-input solution, the zero-state
solution and their combination is the complete solution. We illustrate these solutions
on the following example:

(
d2

dt2
+ 3

d

dt
+ 2

)
y(t) = x(t)

y(0) = y0

y′(0) = y′0
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1.2.1 Circuit Resposes

Zero-Input Response:

As the name implies, this is the response when the input is the zero function (hence
x(t) = 0). This is the response solely due to the initial conditions.(

d2

dt2
+ 3

d

dt
+ 2

)
yzi(t) = 0

y(0) = y0

y′(0) = y′0

The solution of the given differential equation can be found as yzi(t) = c1e
−t +

c2e
−2t for t ≥ 0. Here c1 and c2 are arbitrary real numbers, i.e. for any c1, c2

the differential equation is satisfied. The zero-input solution is the unique solution
satisfying both the differential equation (the signal evolution rule for t > 0) and

the initial conditions. (You may also consider
(

d2

dt2
+ 3 d

dt
+ 2

)
as an operator A{·}.

Then the equation
(

d2

dt2
+ 3 d

dt
+ 2

)
yzi(t) = 0, can be written as A{yzi(t)} = 0. That

is, we are seeking the null space of the operator A. The null space of A is spanned
by e−t and e−2t, that is any function that can be written as a linear combination of
e−t and e−2t is in the null space, c1e

−t + c2e
−2t. The solution we seek is the one in

the null space satisfying the initial conditions.)

The initial conditions are found as follows:

yzi(0) =
[
c1e

−t + c2e
−2t

]
t=0

= c1 + c2 = y0

y′zi(0) =
[
−c1e

−t − 2c2e
−2t

]
t=0

= −c1 − 2c2 = y′o

From these two equations, we can get c1 = 2y0+y′0; c2 = −y′0−y0 and the zero-input
response (the special point in the null-space) is

yzi(t) = (2y0 + y′o)e
−t − (y′o + y0)e

−2t

Zero-state Response:

Zero-state response is the response due to the forcing term, (external excitation). It
is assumed that the circuit or the system at rest, that is having zero initial conditions.
Another way of expressing the same fact is that the system has no energy at t = 0.
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d2

dt2
+ 3

d

dt
+ 2

)
yzs(t) = f(t)

yzs(0) = 0

y
′

zs(0) = 0

The solution for the zero-state response depends on the input f(t) and the initial
conditions. As an example, assume that the input is unit step function, f(t) = u(t),
then the response is yzs(t) =

1
2
+ c1e

−t + c2e
−2t for t > 0. This is solution satisfying

the differential equation for t > 0. To meet the initial conditions, c1, c2 should be
properly selected. If we do that, we get the solution satisfying both the differential
relation and initial conditions as follows yzs(t) =

1
2
− e−t + 1

2
e−2t for t ≥ 0.

Note that the zero-state response obeys the linearity conditions. Because of
this, we define the impulse response, the step response and other responses only for
the zero-state condition. This is critical and it can be difficult to appreciate the
importance of this at an initial introduction.

Complete Response:

Complete solution of the circuit which is the combination of both zero-input and
zero-state responses.

ycomp(t) = yzi(t) + yzs(t)

For the example given, the complete solution for unit-step input is ycomp(t) =
1
2
+

(2y0 + y′0 − 1)e−t − (y′0 + y0 − 1
2
)e−2t.

1.2.2 Homogeneous and Particular Solutions

Homogeneous Solution:

This is the solution of the differential equation when forcing term is equal to zero.Homogeneous
solution is similar to the zero-input response, but not the same. The difference
between the homogeneous solution and the zero-input response is that the homo-
geneous solution contains undetermined coefficients typically shown as c1 and c2.
While the zero-input solution, does not have any undetermined parameters; it is the
solution of a circuit when the input is zero (as the name implies) and there is only
initial conditions exciting the circuit. In other words, when you fix the undetermined
parameters of the homogeneous solution to match a given set of initial conditions,
you have the zero-input solution.

The following shows the distinction between homogeneous and zero-input so-
lutions
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d2

dt2
+ 3

d

dt
+ 2

)
yh(t) = 0(1.3)

yh(t) = c1e
−t + c2e

−2t

yzi(t) = yh(t)
y

c1=2, c2=−2
= 2e−t − 2e−2t

As shown in (1.3), the zero-input solution is formed by setting c1 and c2 to meet
zero-initial conditions. In this example, they are arbitrarily selected to be 2 and -2.

From a more general perspective, yh(t) is not a response to a particular initial
conditions; but it is a solution space which is the null space of the operator, yh(t) =
c1e

−t + c2e
−2t . The zero-input solution is a specific point in the null space. We

select this specific point by setting c1 and c2.

Particular Solution:

This is the solution of the differential equation due to the forcing terms. This
solution is similar to the zero-state solution, but not the same.(

d2

dt2
+ 3

d

dt
+ 2

)
yp(t) = x(t)(1.4)

For x(t) = 1, yp(t) = 1
2
. The zero-state solution for this input is yzs(t) = 1

2
+

c1e
−t + c2e

−2t where c1 and c2 should be selected to meet zero-initial conditions, i.e.
all state variables are zero.

Complete Solution: This is the solution of the system, which is

ycomp(t) = yh(t) + yp(t)(1.5)

Note that yh(t) contains undetermined c1 and c2 coefficients. These coefficients
should be set to meet the given initial conditions.

The same complete solution can also be written as ycomp(t) = yzi(t) + yzs(t).
Note that yzi(t) and yzs(t) does not contain any undetermined coefficients.

1.3 Solution of Nth order Dynamic Circuits

We proceed towards the solution of Nth order dynamic circuits. In EE201, we have
studied RC, RL and RLC circuits. These circuits form the special cases of first and
second order circuits of the general Nth order circuits.
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Figure 1.1: A 2nd order circuit for the illustration of the solution approach.

We present two analysis approaches. In the first approach, we use a scalar Nth
order differential equation and find its solution. Then we repeat the analysis with the
state equations. We would like to illustrate the equivalency of two techniques and
emphasize the power of state-equation formalism in comparison to other methods.
In this section, we examine the circuit given in Figure 1.1.

1.3.1 Solution by 2nd order scalar differential equation

The circuit contains two nodes (not counting datum) and a single voltage source,
therefore the solution can be expressed through a single node equation. Then writing
KCL at node whose voltage is VC(t), we get

CV̇c(t) +
VC(t)

R
−

(
iL(0) +

1

L

∫ t

0

(Vs(τ)− VC(τ))dτ

)
= 0(1.6)

By taking the second derivative of the equation above and remembering the funda-
mental theorem of calculus, d

dt

∫ t

0
x(τ)dτ = x(t), we get

CV̈c(t) +
V̇c(t)

R
+

VC(t)

L
=

Vs(t)

L
(1.7) (

D2 +
1

RC
D +

1

LC

)
VC(t) =

Vs(t)

LC
.

To solve the differential equation, we need two initial conditions. We can get
these initial conditions at t = 0+ through the analysis given in Figure 1.2.

From the circuit given in figure 1.2, we get the initial conditions for VC(0
+)

and V ′c(0+) as follows:

VC(0
+) = V0

V
′
c(0+) =

1

C

(
I0 −

V0

R

)
(1.8)
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I0

+
- RVs(0

+) +
- V0

Ic(0)=CV’c(0
+)

at t=0+

+

Vc(0
+)

-

I0

+
-
+
- RVs(0

+) +
-
+
- V0

Ic(0)=CV’c(0
+)

at t=0+

+

Vc(0
+)

-

Figure 1.2: Circuit shown Figure1.1 at t = 0+.

Now, we are ready to go and find the solution to the differential equation. We
rewrite the equation below for convenience.(

D2 +
1

RC
D +

1

LC

)
VC(t) =

Vs(t)

LC
(1.9)

VC(0
+) = V0

V
′
c(0+) =

1

C

(
I0 −

V0

R

)

First, we focus on the zero-input response, that is(
D2 +

1

RC
D +

1

LC

)
V zi
C (t) = 0(1.10)

V zi
C (0+) = V0(1.11)

d

dt
V zi
C (0+) =

1

C

(
I0 −

V0

R

)
(1.12)

Then, we use the method of undetermined coefficients, that is we assume that

V zi
C (t) = ceλt(1.13)

This is a guess (an educated guess) about the form of the solution. We do not know
c and λ yet and we hope to get them right so that we have the solution of the
differential equation. Due to uniqueness of the solution for differential equations, if
we can find a solution, it is the solution.

At this point we set some numerical values for R, L and C. Setting R =
1/3,C = 1 and L = 1/2, we get
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D2 + 3D + 2

)
VC(t) = 2Vs(t)(1.14)

VC(0
+) = V0

V
′
c(0+) = I0 − 3V0

By substituting V zi
C (t) = ceλt into (D2 + 3D + 2)V zi

C (t) = 0 we get,(
λ2 + 3λ+ 2

)
ceλt = 0

This equation has to be satisfied. Since eλt > 0 for all t and λ, we can divide both
sides by eλt and get (

λ2 + 3λ+ 2
)
c = 0(1.15)

To satisfy the last equation, we can set c = 0. This indeed guarantees the equality
of right and left hand side of (1.15); but this is an uninteresting solution, V zi

C (t) = 0.
Furthermore it is not possible to satisfy the given non-zero initial conditions with
this solution (this solution is called trivial solution). So we would better assume
that c ̸= 0 and look for another way satisfying (1.15). Since c ̸= 0, we can dividing
both sides of (1.15) by c to get(

λ2 + 3λ+ 2
)
= 0

The solution of this polynomial equation is λ = {−1,−2}. Then for c ̸= 0 and
λ = {−1,−2} are two possible non-trivial solutions!

V zi
C (t) = ce−t + de−2t(1.16)

Each term in the zero-input solution is called a mode of the system. The given
example has two modes, ce−t and de−2t. The modes have different decay rates. In
this example, the second mode (the mode with λ = −2) decays two times faster
than the other mode. First order RC and RL circuits have a single mode, their
decay is 1/τ where τ is the time-constant of the circuit.

Single Mode Excitation

In this section, we examine an interesting problem. The problem is the selection
of initial conditions such that there is only mode of the circuit is excited. In other
words, we would like to find a specific initial condition to excite a single mode of
the circuit or equivalently, we would like to have solution in the form V zi

C (t) = ce−t

or V zi
C (t) = de−2t for the example given in Figure 1.1.

If the solution is in the form, V zi
C (t) = ce−t; then at t = 0+, we have V zi

C (0) = c
and d

dt
V zi
C (0) = −c. From Figure 1.2, we can note the relation between initial

conditions and the capacitor voltage and its derivates as follows:
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VC(0
+) = V0

V
′

C(0
+) = I0 − 3V0

Finally, then by setting I0 = 2c, V0 = c, or

[
VC(0

+)
IL(0

+)

]
= c

[
1
2

]
, leads to a solution

in the form V zi
C (t) = ce−t. So by setting the the initial voltage of capacitor half of

the initial current of inductor, we can excite the mode with λ = −1.

Similarly to excite the mode with λ = −2, we seek a solution in the form
V zi
C (t) = de−2t; we should have initial conditions V zi

C (0) = d and d
dt
V zi
C (0) = −2d.

Then setting I0 = d, V0 = d, or

[
VC(0

+)
IL(0

+)

]
= d

[
1
1

]
, enables us to excite the faster

decaying mode.

Response to arbitrary initial conditions

Assume that

[
VC(0

+)
IL(0

+)

]
=

[
V0

I0

]
is given. It is possible to express is any initial

condition as a linear combination of

{[
1
2

]
,

[
1
1

]}
as shown below:

[
V0

I0

]
= (I0 − V0)︸ ︷︷ ︸

α

[
1
2

]
+ (2V0 − I0)︸ ︷︷ ︸

β

[
1
1

]

= α

[
1
2

]
+ β

[
1
1

]
Hence, every initial condition can be expressed as a linear combination of two special
vectors with the combination coefficients α and β. Note that, when either α = 0
or β = 0; we have the single mode excitation. Therefore, it can also be noted from
the last equation that we have expressed an arbitrary initial condition as a linear
combination of single mode exciting initial conditions. Then the solution for an
arbitrary input is as follows:[

VC(t)
IL(t)

]
= α

[
1
2

]
e−t + β

[
1
1

]
e−2t

where α = I0 − V0 and β = 2V0 − I0.

It can be observed if both α and β have the same order of magnitude, then
the mode with slower decay rate becomes the dominant mode as t → ∞.



12 CHAPTER 1. NTH ORDER CIRCUITS
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Figure 1.3: An RLC Circuit and its proper tree

1.3.2 Solution by 1st Order Matrix Differential Equations
(State Equations)

We examine the same circuit via the state equations. Figure 1.3 shows the circuit
and its proper tree.

The state equations of the circuit can be written as follows:[
V̇c(t)

İL(t)

]
=

[ −1
RC

1
C

−1
L

0

] [
VC(t)
IL(t)

]
+

[
0
1
L

]
Vs(t)(1.17)

The initial conditions for the first order 2x2 matrix differential equation is given as
follows: [

VC(0
+)

IL(0
+)

]
=

[
V0

I0

]
(1.18)

First, we show that two descriptions of the circuit that is the state equation
form and node equation form can be retrieved from each other.

To get the node equation form the state equation,

1. Take derivative of the first state equation to get V̈C(t) =
−1
RC

V̇C(t) +
1
C
İL(t).

2. Substitute IL(t) from second state equation to get V̈C(t) =
−1
RC

V̇C(t)+
1
C
(−1

L
VC(t)+

1
L
Vs(t)).

3. After moving all terms involving unknowns to the left, we get
(
D2 + 1

RC
D + 1

LC

)
VC(t) =

Vs(t)
LC

.

The step given above show that the two formalisms, i.e. the 2nd order scalar differ-
ential equation and the 1st order 2× 2 matrix differential equation, are equivalent;
that is one can go back and forth between these two descriptions. This does not
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mean that we should use only one of them. We use whichever is more appropriate
for our purposes.

Now let’s set R = 1/3, C = 1 and L = 1/2 in the state equations:[
V̇C(t)

İL(t)

]
=

[
−3 1
−2 0

] [
VC(t)
IL(t)

]
+

[
0
2

]
Vs(t)(1.19)

[
VC(0

+)
IL(0

+)

]
=

[
V0

I0

]
(1.20)

Now, we adopt the classical notation for state variables:

x(t) =

[
VC(t)
IL(t)

]
(1.21)

The vector x(t) is called the state vector. The state vector traces the locus of
state variables in time. The state equation can be written in the following canonical
form

ẋ(t) = Ax(t) + bu(t)(1.22)

x(0) = x0

Here A is a matrix corresponding to

[
−3 1
−2 0

]
, b is a vector corresponding to[

0
2

]
, u(t) is the external excitation (Vs(t)) and x0 is the initial condition vector.

As we did before, we focus on zero-input response.

The solution of this system is similar to the scalar case. We assume that
xzi(t) = ceλt and substitute this guess into the matrix differential equation. Once
we do that, we get:

cλeλt = Aceλt

By dividing both sides by eλt we get,

Ac = λc(1.23)

This shows that the eigenvalues of A are the natural frequencies that we are looking
for.
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For the presented example, the eigenvalues of A are the roots of the following
equation:

det(λI−A) =

∣∣∣∣[ λ+ 3 −1
2 λ

]∣∣∣∣ = λ2 + 3λ+ 2(1.24)

Hence, they are λ = {−1,−2}. Then the form of the solution is

xzi(t) = ce−t + de−2t(1.25)

Note that if the system examined here is a 2nd order system. If the system an Nth
order system the same result is exactly valid. In other words, the natural frequencies
are the eigenvalues of A matrix and the only difference is that A is a N×N matrix.

Single Mode Excitation

To excite only one mode, we need to find suitable initial conditions. By setting
either c or d in xzi(t) = ce−t + de−2t to the zero vector, we can find the conditions
for single mode excitation.

Let’s find the initial conditions to excite the mode with λ = −1 for the pre-
sented example. Then xzi(t) = ceλt and substituting this equation into ẋ(t) =
Ax(t) (remember that u(t) = 0, since this is the zero-input solution), we get

Ac = λc(1.26)

This equation shows that the c vector is should be the eigenvector of A for single
mode excitation. To find this eigenvector, we solve for c in Ac = λc. By moving
λc to the left hand side we get (λI−A)c = 0. After substituting λ = −1 into this
equation, we get: [

2 −1
2 −1

]
c =

[
0
0

]
(1.27)

Then we get c =Γ1

[
1
2

]
. The eigenvector of A corresponding to the λ = −2 can

be found similarly as d =Γ2

[
1
1

]
. The variables Γ1 and Γ2 are arbitrary scalars,

scaling the eigenvectors.

Response to arbitrary initial conditions

Let’s assume that initial conditions for the studied problem is given as

[
VC(0

−)
IL(0

−)

]
=[

10
14

]
. The given initial conditions pass to t = 0+ as it is, since there are no
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impulses or switches that are produce a discontinuity in the state variables. The
initial conditions at t = 0+ can be written as a linear combination of eigenvectors
of A. [

VC(0
+)

IL(0
+)

]
=

[
10
14

]
= Γ1

[
1
2

]
+ Γ2

[
1
1

]
=

[
1 1
2 1

] [
Γ1

Γ2

]
From the last equation, we can solve for Γ1 and Γ2 to get Γ1 = 4 and Γ2 = 6. Hence
the initial condition vector x0 can be written as x0 = Γ1e1 + Γ2e2. (Remember ek
is the eigenvector of A corresponding to the eigenvalue of λk.) If either Γ1 or Γ2 is
equal to zero, then a single mode is excited and the response is Γkeke

λkt; when both
modes are excited the response becomes x(t) = Γ1e1e

λ1t +Γ2e2e
λ2t, which is in this

case [
VC(t)
IL(t)

]
= Γ1︸︷︷︸

4

[
1
2

]
exp( λ1︸︷︷︸

−1

t) + Γ2︸︷︷︸
6

[
1
1

]
exp( λ2︸︷︷︸

−2

t)

Figure 1.4 shows the state trajectories of the system. In other words, this
figure shows the locus of state variables as time progresses. The circles on the
curve indicates the position of the state variables at the indicated time. It should
be clear that all three curves approach the origin as time progresses, but their
“speed” to reach the final destination is different from each other. Two of the
three curves shown in this figure correspond to single mode excitation. The top
and the bottom curves are actually straight lines and the points on these lines can
corresponding to the initial conditions exciting a single mode. If initial condition
happens to be on these straight lines, the response approaches the origin on these
lines, i.e. IL(t)/VC(t) = IL(0

+)/VC(0
+) for all t. We can also note that the curve

corresponding to the mode with λ = −2 or the response with e−2t term decays faster
than the other mode.

The third curve in the figure corresponds to an initial value of

[
VC(0

+)
IL(0

+)

]
=[

10
14

]
. Note that this curve is not a straight line. As discussed before, the response

to this initial condition can be expressed as superposition of two modes. Hence
the response to this initial condition has a fast decaying mode and a slow decaying
moving mode. As time progresses, the faster moving mode fades away and we are
left with slower moving mode. You can note that the middle curve gets closer to
the slower decaying mode as time progresses.
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Figure 1.4: State trajectories of the system

1.3.3 Particular Solution

The particular solution of a differential equation is the part of the solution due to
the external input. In this section, we examine the the methods of finding particular
solution. The main problem presented in this section is finding the response to the
exponential input.

The Complex Exponential Function

The complex exponential function is the generalization of conventional exponential
function to the complex variables. The conventional exponential function is defined
as follows:

ex =
∑
k

xk

k!
, ∀x ∈ R

The expansion above is called the power series expansion of the exponential function
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and the region of convergence is the whole real line. The complex exponential is the
extension of the same operation to the complex field:

ez =
∑
k

zk

k!
, ∀z ∈ C

We focus on the exponential function f(t) = eλt. Here t is a real variable and λ is a
complex number. We view this function as a complex valued function of a real vari-
able. (Interested students can also research complex valued and complex variable
functions on the internet. These functions are especially important in electromag-
netics and signal processing and some definitions of the specific for the complex
calculus is considered as more fundamental than their real valued special cases.)

We examine 5 important special cases of f(t) = eλt:

1. λ is real and λ > 0, i.e. λ = 2, f(t) = e2t. As t increases, the function
increases without a bound.

2. λ is real and λ < 0, i.e. λ = −1, f(t) = e−t. As t increases, the function
exponentially decays to zero.

3. λ is purely imaginary, i.e. z = jω, (ω ∈ R), f(t) = ejωt. Remember-
ing the Euler’s formula (ejϕ = cos(ϕ) + j sin(ϕ)); we can express f(t) as

f(t) = cos(ωt)+ j sin(ωt). This is an example of real variable, complex valued
functions.

4. λ is zero, f(t) = 1.

5. λ has non-zero real and imaginary parts, i.e. z = σ + jω, f(t) = eσtejωt,
both σ and ω are assumed to be real. Then f(t) is the multiplication of the
cases 1 and 3 (or the multiplication of cases 2 and 3). The magnitude of f(t)
which is |f(t)| = eσt which is either a decaying exponential or a blowing up
exponential.

The cases of listed above cover a fairly general class of inputs called as the
family of exponential inputs. Below, we focus on the response due to the exponential
signals. This type of inputs has an intimate connection with the LTI systems which
we demonstrate in the next section.

Finding the Particular Response of Nth Order Dynamical Systems for
Complex Exponential Input

We continue with the example presented earlier. The circuit shown in Figure 1.1 is
described by the following differential equation:
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D2 + 3D + 2

)
V p
C(t) = 2Vs(t)(1.28)

We do not state the initial conditions, since our goal is the study of the particular
solution. V p

C(t) is the particular solution for the input Vs(t). We assume that
Vs(t) = est and s ∈ C.

Our method of solution is the simplest possible one. We make an educated
guess on the solution and claim the following:

V p
C(t) = Aest

Here A is the unknown parameter of the solution which can be a complex number
in general. Note that the guess is in the same of form of the excitation! (The
educated guess is due to well known properties of the exponential function under
the differentiation, that is Dest = sest. Considering est as the input function at the
specific “frequency” of s, then the output of the differentiation system is the input
times s. In other words, at the differentiation output the function is only scaled
by s, its form remains intact. The functions whose form does not change after a
transformation/operator are called the eigenfunctions of that transformation. Hence
the exponential function is eigenfunction of the derivative operator. Given all these,
the solution of (1.28) when the right hand side of this equation Vs(t) = est can be
V p
C(t) = Aest, since you can not get rid off an exponential by taking its derivative

and summing up by other exponentials!)

To find the unknown A, we substitute the guess V p
C(t) = Aest into the differ-

ential equation, (D2 + 3D + 2)V p
C(t) = 2est and get the following:(

s2 + 3s+ 2
)
Aest = 2est

From the last equation, we get the unknown A as

A =
2

s2 + 3s+ 2

Then the solution becomes

V p
C(t) =

2

s2 + 3s+ 2
est

Remember that the solution for the differential equations is unique under fairly
general conditions, therefore we do not need to look any further.

An important note is that when s = {−1,−2}, that is when the external input
is e−t or e−2t, the guess of V p

C(t) = Aest does not work. (A becomes undefined due to
the zero in the denominator of A.) In other words, when the input excitation matches
the natural frequencies, we should do something else, probably make another guess.
(As you may remember from the differential equations course, the guess should be
corrected to Ate−t +Be−t.)

Now we examine some special cases:
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Case 1. Vs(t) = e−5t

Our goal is finding the (particular) solution of the following equation, (D2 + 3D + 2)V p
C(t) =

2e−5t. This is the special case of the general problem described earlier, but for
clarity let’s repeat the steps one more time. Assume a solution in the form
V p
C(t) = Ae−5t. Here A is the only unknown of the particular solution. Note

the following, d
dt
V p
C(t) = −5Ae−5t and d2

dt2
V p
C(t) = 25Ae−5t . (The repeated ap-

plication of the differentiation on the exponential function result in the same
exponential exponential apart from scaling.) Then substituting the guess func-
tion into differential equation, we get A = 1

6
.

The complete solution is then

vcomplete(t) = vh(t) + vp(t)

= c1e
−t + c2e

−2t +
1

6
e−5t

The complete solution can be finalized by setting the c1 and c2 to meet the
initial conditions. In this section, we are only interested in the particular
solution and do not pursue any further steps towards the complete solution.

We would like to remind that the part of the complete solution that “remains”
as t → ∞ is called the steady-state solution. The part of the solution that
decays to zero as t progresses is the transient solution. For this solution, the
only possible steady-state solution is the zero function. The whole solution
decays to zero.

Case 2. Vs(t) = 1

By setting s = 0 in Vs(t) = est, we get Vs(t) = 1. Hence the important
DC input case is also covered by the family of the exponential inputs. The
particular solution for the differential equation (D2 + 3D + 2)V p

C(t) = 2 is
V p
C(t) =

1
2
.

This solution can be found by setting s = 0 in the general formula of V p
C(t) =

2
s2+3s+2

est. The complete solution is then vcomplete(t) = c1e
−t + c2e

−2t + 1
2
. It is

clear that f(t) = 1
2
is the steady-state solution for this system. Hence for this

case the particular is the steady-state solution.

Before proceeding with other examples, we would like to show a short-cut
method for finding the particular solution without expressing the differential equa-
tion. Figure 1.5 shows the original circuit with the guess of V p

C(t) substituted for
the capacitor voltage.

We apply the conventional time-domain description of each component to find
its branch current and voltage. In the circuit shown above KVL and KCL should
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Figure 1.5: Finding the particular solution on the circuit diagram.

be satisfied for the complete response, not for the particular response. But our
previous analysis results (cases 1 and 2) imply that the complete solution is in the
form vcomplete(t) = c1e

−t + c2e
−2t + Aest and in the circuit diagram presented in

Figure 1.5, we only illustrate the particular components of the solution. We know
that there exists a homogeneous solution accompanying each particular solution at
every branch.

Since KVL and KCL should be satisfied for ∀t, it should be clear that the terms
involving only est should satisfy KVL and KCL equations on their own. (This is
due to independence of functions est, e−t and e−2t.) Because of this reason, we only
indicate the particular solution on the circuit diagram shown in Figure 1.5. Finally
writing a KVL equation for the loop of voltage source, inductor and capacitor, we
get an equation as follows:

est = V p
L (t) + V p

L (t)

=
A

2
s(s+ 3)est + Aest

=
A

2
(s2 + 3s+ 2)est

From the last equation, we get A = 2
s2+3s+2

and find the particular solution as
before V p

C(t) =
2

s2+3s+2
est. This method demonstrates the ease of approach to find

the particular solution for exponential input family. We do not even need to find
the differential equation to find the particular solution!

Case 3. Vs(t) = cos(5t)

We make the following guess for the particular solution V p
C(t) = A cos(5t) +

B sin(5t). When we substitute the particular solution into the differential
equation of (D2 + 3D + 2)V p

C(t) = 2 cos(5t), we get:

(−25A+ 15B + 2A) cos(5t) + (−25B − 15A+ 2B) sin(5t) = 2 cos(5t)
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To satisfy this equation for ∀t, we need to equate the coefficients of the in-
dependent functions (sine and cosine) at right and left side of the equation.
Once we do that, we get two equations for two unknowns of A and B.[

−23 15
−15 −23

] [
A
B

]
=

[
2
0

]
From the last equation, we can find A = −46

232+152
, B = 30

232+152
and the particular

solution is then V p
C(t) =

−46
232+152

cos(5t) + 30
232+152

sin(5t).

Now, we present a faster procedure. We choose to write Vs(t) = cos(5t) as
Vs(t) = Re{ej5t}. Then the guess for the particular solution is the following
V p
C(t) = Re{Aej5t}.We should substitute this guess into (D2 + 3D + 2)V p

C(t) =
2Re{ej5t} and find A. (Note that A for this guess is a complex number different
from the earlier cases.)

We would like to mention the following simple fact on the derivative of the
complex valued functions. Considering the application of fracddt to ej5t. The
derivative operators on the real and imaginary parts of the argument, that
is d

dt
ej5t = d

dt
cos(5t) + j d

dt
sin(5t). Then the following relation d

dt
Re{ej5t} =

Re{ d
dt
ej5t} is true.

Then substituting V p
C(t) = Re{Aej5t} for (D2 + 3D + 2)V p

C(t) = 2Re{ej5t}
we get the following:

d2

dt2
Re{Aej5t}+ 3

d

dt
Re{Aej5t}+ 2Re{Aej5t} = 2Re{ej5t}

Re{A d2

dt2
ej5t}+Re{3A d

dt
ej5t}+Re{2Aej5t} = Re{2ej5t}

Re{(j5)2A d2

dt2
ej5t}+Re{3(j5)A d

dt
ej5t}+Re{2Aej5t} = Re{2ej5t}

Re{(j5)2Aej5t + 3(j5)3Aej5t + 2Aej5t} = Re{2ej5t}
Re{ej5tA((j5)2 + 3(j5) + 2)} = Re{2ej5t}

The last equation is obviously satisfied with the choice of

A =
2

(j5)2 + 3(j5) + 2

=
2

−23 + j15

=
2(−23− j15)

232 + 152
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Then the solution becomes

V p
C(t) = Re{Aej5t}

= Re

{
2(−23− j15)

232 + 152
ej5t

}
=

2

232 + 152
Re {(−23− j15)(cos 5t+ j sin 5t)}

=
2

232 + 152
(−23 cos 5t+ 15 sin 5t)

which is exactly the same equation that we have got before. The method with
the complex number is the basis of AC circuit analysis which is to be examined
later.

1.4 Stability

The concept of stability is fundamental for the study of the dynamical systems.
In circuit theory, we introduce the concepts of asymptotically stable, stable and
unstable circuits. These concepts are build on the behaviour of the circuit due
to initial conditions. After the study of these types of stability, we also introduce
the BIBO (Bounded Input Bounded Output) stability which is fundamental for the
study linear systems with input.

We illustrate the stability concept with the following 2nd order example:(
D2 − (λ1 + λ2)D + λ1λ2

)
x(t) = f(t)

Here we have two natural frequencies at λ = {λ1, λ2} which can be complex numbers.
The function f(t) is the forcing term of the differential equation.

Asymptotical Stability

A system is called asymptotically stable if the response due to any initial con-
dition decays to zero as t → ∞. For example, xh(t) = c1e

−t + c2e
−2t goes to zero

for any initial condition. Therefore a system with such a homogeneous solution or
natural frequencies of -1 and -2 is an example of asymptotically stable systems. The
condition for the asymptotical stability can be expressed as follows:

Re{λk} < 0 , ∀λk ⇔ Asymptotically Stable

Stability
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Figure 1.6: Definitions of stability. The crosses show the position of natural fre-
quencies on the complex plane.

A system is called stable if the response to initial conditions remains bounded
as t → ∞. (A function is called bounded if |f(t)| < M for a finite M .) For example,
xh(t) = c1 + c2e

−2t is a stable system. In general, the condition can be expressed
as follows:

Re{λk} ≤ 0 , ∀λk ⇔ Stable

Note that if the system has a purely imaginary natural frequency or have a natural
frequency of λ = 0; then the system is said to be stable but not asymptotically
stable.

Unstable

A system is called unstable if the response to the initial condition is unbounded
as t → ∞. An example for an unbounded function can be xh(t) = c1 + c2e

2t. The
general condition can be expressed as follows:

Re{λk} > 0 , ∃λk ⇔ Unstable

Figure 1.6 illustrates the definitions of stability for a set of natural frequencies on
the complex plane.

BIBO Stability

A system with input f(t)and output g(t) is stable if every bounded f(t) results
in a bounded g(t). As the name implies the bounded input results in a bounded out-
put. Considering the exponential inputs, the complete solution due to exponential
inputs is as follows:

gcomplete(t) = c1e
λ1t + c2e

λ2t + Aest

Here est is the input function and λ1 and λ2 are the natural frequencies as
before. We assume for now that s ̸= {λ1, λ2}. Input being bounded means s ≤ 0,
then
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1. If either Re{λ1} or Re{λ2} is positive (an unstable system as shown in Figure
1.6), then the output is unbounded. Therefore the system is not BIBO stable.

2. If both Re{λ1} and Re{λ2} is negative (an asymptotically stable system as
shown in Figure 1.6), then the output is bounded. Therefore the system is
BIBO stable.

3. If either Re{λ1} or Re{λ2} (or both) is equal to zero (a stable system as shown
in Figure 1.6), then the output is unbounded either for s = λ1 or s = λ2. As
an example assume that λ1 = −5 and λ2 = 0, and the input f(t) = 1 then the
output becomes

gcomplete(t) = c1e
−5t + c2 + A+Bt

The response is unbounded. The system is not BIBO stable.


