MIDDLE EAST TECHNICAL UNIVERSITY

ELECTRICAL AND ELECTRONICS ENGINEERING DEPARTMENT

EE 201 Circuit Theory I

Midterm Examination 2

December 6, 2013

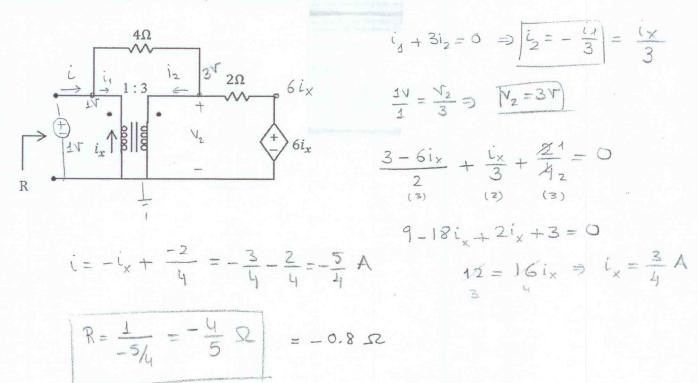
Duration: 120 minutes

Q1	14 pts	
Q2	14 pts	
Q3	14 pts	
Q4	14 pts	
Q5	20 pts	
Q6	24 pts	
Total	100 pts	

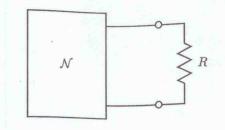
Name:		
Surname:		
ID No:		
Section:		
Signature:		

Question 1 (14 pts) Find the input resistance, R.

X

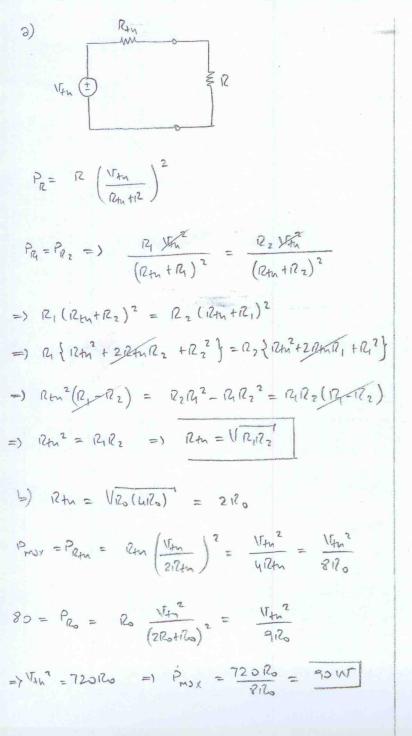


Question 2 (14 pts) The one-port circuit N in the figure below is made up of passive LTI resistors and constant independent sources. The Thevenin resistance of N is denoted by R_{TH} . R is a passive LTI resistor. The power delivered to R is denoted by P.



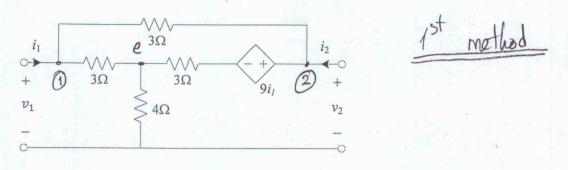
(7) a) It is observed that for two different values of R, R₁ and R₂, P has the same value. Show that $\sqrt{R_1R_2} = R_{TH}$.

(7) b) For both $R = R_0$ and $R = 4R_0$, P is 80 W. What is the maximum power that can be supplied by N?



Electrical and Electronics EngineeringDepartment Middle East Technical University

Question 3 (14 pts) Find the resistance (open circuit) parameters of the two-port circuit shown in the figure.



$$\frac{e - 2i}{3} + \frac{e + 9i_1 - 2i_2}{3} + \frac{e}{4} = 0 \Rightarrow e = \frac{4}{11} 2i_1 + \frac{4}{11} 2i_2 - \frac{36}{11}i_1$$

(1)
$$i_1 = \frac{u_1 - e}{3} + \frac{u_1 - u_2}{3}$$

(2) $i_2 = \frac{u_2 - u_1}{3} + \frac{u_2 - e - 3i_1}{3}$

$$\begin{array}{cccc} \widehat{(1)} & i_1 = \frac{6}{41}u_1 + \frac{12}{41}i_1 - \frac{5}{11}u_2 & 2 \\ \widehat{(2)} & i_2 = -\frac{5}{41}u_1 + \frac{6}{41}u_2 - \frac{5}{11}i_1 \\ \end{array} \right) \quad u_1 = \Im i_1 + \Im i_2 \\ u_2 = \Im i_2 + 4Ii_1 \\ u_2 = -\frac{5}{11}i_1 \\ u_2 = \frac{5}{11}i_1 \\ u_3 = -\frac{5}{11}i_1 \\ u_4 = \frac{5}{11}i_1 \\ u_5 = \frac{5}{11}i_1 \\ u_6 = \frac{5}{11}i_1 \\ u_8 = \frac{5}{11}i_1 \\ u_$$

$$R = \begin{bmatrix} 9 & 5 \\ 11 & 6 \end{bmatrix} \qquad \Gamma_n = 9\Omega \qquad \Gamma_{21} = 11\Omega \\ \Gamma_{12} = 5\Omega \qquad \Gamma_{22} = 6\Omega \\ \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} 9 & 5 \\ 11 & 6 \end{bmatrix} \begin{bmatrix} i_1 \\ i_2 \end{bmatrix}$$

2nd method: iz=0 and apply i,: gix+gi,-3i,=0 $\Rightarrow i_x = -\frac{2}{3}i_1$ $u_i = 7i_i - 3i_x = 9i_i$ $\Rightarrow C_{i} = \frac{\alpha_{i}}{\hat{\iota}_{i}} = 9\Omega$ $v_2 = 9i, + 3i_x + 4i, = 11i,$ $\Rightarrow r_{21} = \frac{w_2}{v_1} = \frac{11 \Omega}{v_1}$ $i_1=0$ and apply $i_2:$ $9i_{x} + 3i_{2} = 0$ $\frac{1}{3\Omega} = \frac{3\Omega}{4\Omega} = \frac{3\Omega}{4\Omega} = \frac{1}{2} =$ ix=- 13i2 $w_{1} = -3i_{x} + 4i_{2} = 5i_{2}$ $\Rightarrow r_{12} = \frac{2l_1}{i_2} = \frac{52}{i_{-10}}$

 $v_2 = 7i_2 + 3i_x = 6i_2$ $\Rightarrow f_{22} = \frac{v_2}{i_2} \Big|_{i_1 = 0} = 652 //$ Question 4 (14 pts) A linear time-invariant (LTI) resistive 3-terminal two-port circuit with conductance (short circuit) parameters " $g_{11} = 5$ mho, $g_{12} = -2$ mho, $g_{21} = 2$ mho, $g_{22} = 4$ mho" is to be designed. Available elements are LTI resistors, LTI dependent sources and independent sources.

The cost for each type of element is given below:

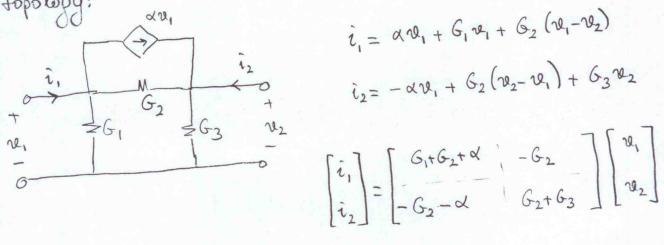
An LTI resistor: 2 CTMU (Circuit Theory Money Unit),

An LTI dependent source: 4 CTMU,

An independent source: 6 CTMU.

Obtain a two-port circuit with minimum cost.

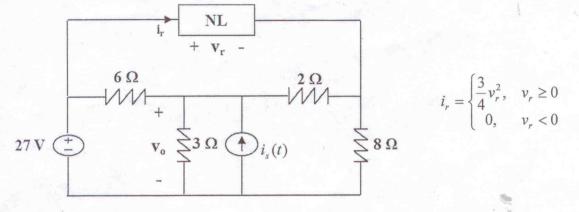
Since g12 7 g21 circuit is not reciprocal and must contain a dependent source. A solution can be obtained by using the following topolopy:



Hence

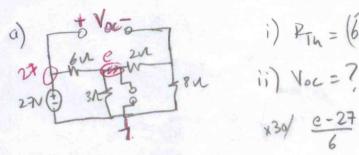
$$G_2 = 2 \nabla \tau$$
; $G_3 = 2 \nabla \tau$
 $\alpha = -4 \nabla \tau$; $G_1 = 7 \nabla \tau$
will satisfy the required short cet parameters.

Question 5 (20 pts) Consider the circuit given below.



a) For $i_s(t) = 0$, find \mathbf{v}_0 .

b) For $i_s(t) = 0.1 \cos(1000\pi t) A$, find the approximate $\mathbf{v}_0(t)$.

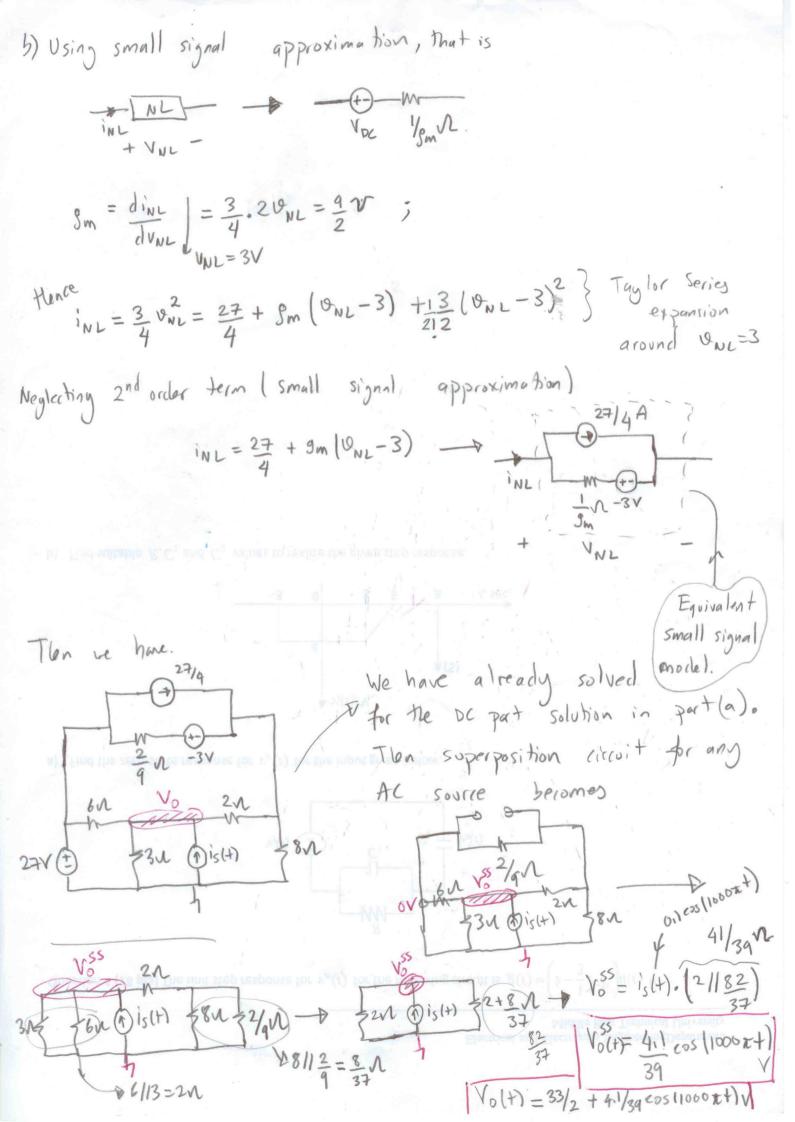


i) $P_{Th} = (6/3 + 2)/8 = 4/18 = 4 \times (1/12) = 4 \cdot \frac{2}{3} = \frac{8}{3} \cdot \frac{1}{3}$ ii) $V_{0C} = ?$ $\times 30/\frac{e-27}{6} + \frac{e}{3} + \frac{e}{10} = 0 \rightarrow e = \frac{27 \cdot 5}{5 + 10 + 3} = \frac{15}{2} \cdot \frac{1}{5} \cdot \frac{1}{5}$ $V_{0C} = 27 - e\frac{8}{8 + 2} = 27 - \frac{15 \cdot 4}{2 \cdot 5} = 21 \cdot \frac{1}{5} \cdot \frac{1}{5} \cdot \frac{1}{5}$ $V_{0L} = 21 + \frac{8}{3} \cdot \frac{1}{10} + \frac{1}{10} \times \frac{1}{5} = 0 \rightarrow \frac{20}{NL} + \frac{1}{5} \cdot \frac{1}{2} = 0$ $\Psi_{NL} = -\frac{1}{1 + \sqrt{1 + 168}} \frac{1}{4} = \frac{1}{5} \cdot \frac{1}{5} \cdot \frac{1}{5} \cdot \frac{1}{5} = \frac{1}{5} \cdot \frac{1}{5} \cdot \frac{1}{5} \cdot \frac{1}{5} = \frac{1}{5} \cdot \frac{1}{5} \cdot \frac{1}{5} \cdot \frac{1}{5} = \frac{1}{5} \cdot \frac{1}{5} \cdot \frac{1}{5} \cdot \frac{1}{5} \cdot \frac{1}{5} \cdot \frac{1}{5} \cdot \frac{1}{5} = \frac{1}{5} \cdot \frac{1}{$

Then
$$V_{NL} = \frac{23}{3} = \frac{3}{3} = \frac{3}{3} = \frac{3}{6} = \frac{27}{2} = \frac{27}{6} = \frac{27}{6}$$

a) logts

b) lopts.



Question 6 (24 pts) Obtain and sketch the transfer $(v_2 - v_1)$ and the input $(i - v_1)$ characteristics.

