MATH 782, Descriptive Set Theory, Homework 4

<u>1. (3+5+5+6+5 pts)</u> In this homework, we shall be interested in two-player perfect information games of length ω played on $2 = \{0, 1\}$. Recall that, in Homework 1, we have constructed the Polish space of \mathcal{G} of countable graphs. Let $S \subseteq \mathcal{G}$ be a set and let $f: \mathbb{N} \to [\mathbb{N}]^2$ be a fixed enumeration of two element subsets of \mathbb{N} .

Alice and Bob are playing the graph construction game GC_S with payoff set S which is played as follows:

- Alice starts the game.
- Alice and Bob move alternately.
- At their turn, each player chooses an element of $2 = \{0, 1\}$.
- The game ends after ω moves.

Suppose that, in a play of the game, players make the following moves.

Alice
$$e_0$$
 e_2 e_4 \dots
Bob e_1 e_3 e_5 \dots

Consider the countable graph $E \in \mathcal{G}$,

$$E = \bigcup_{\substack{n \in \mathbb{N} \\ e_n = 1}} \left\{ (k, \ell), (\ell, k) \in \mathbb{N} \times \mathbb{N} : f(n) = \{k, \ell\} \right\}$$

In other words, at the *n*-th stage of the game GC_S , the corresponding player decides whether or not to include the *n*-th edge f(n) in the resulting graph (\mathbb{N}, E) , by choosing 1 to include and choosing 0 to not include. The winning condition is that Alice wins the game GC_S if and only if $E \in S$.

- a) Let \mathbb{E} denote the isomorphism relation on $\mathcal{G} \times \mathcal{G}$. Find $F \in \mathcal{G}$ such that Bob has a winning strategy in $GC_{[F]_{\mathbb{E}}}$.¹
 - b) Show that there exists $S \subseteq \mathcal{G}$ for which the game GC_S is not determined.
- c) Let G be a finite graph. Show that the game $GC_{\mathcal{G}_{G\text{-free}}}$ is determined where $\mathcal{G}_{G\text{-free}} = \{E \in \mathcal{G} : (\mathbb{N}, E) \text{ does not contain an isomorphic copy of } G \text{ as a subgraph}\}$

Recall that we have learned the basic theory of two-player perfect information games of length ω played on \mathbb{N} in class. For each $S \subseteq \mathbb{N}^{\mathbb{N}}$, let G_S denote the corresponding classical game.

- d) Show that the graph construction games are equivalent to the classical games in the following sense: There exists a continuous function $f: \mathbb{N}^{\mathbb{N}} \to \mathcal{G}$ such that, for all $S \subseteq \mathcal{G}$, the classical game $G_{f^{-1}(S)}$ is determined if and only if the game GC_S is determined.
- e) Show that $GC_{[E]_{\mathbb{E}}}$ is determined for every $E \in \mathcal{G}$, provided that there exists a Ramsey cardinal.

¹It is an exercise -actually, a part of the question- to find the suitable definitions of a strategy, a winning strategy, a play, a determined game etc. for the graph construction game.