MATH 782, Descriptive Set Theory, Homework 3

- 1. (4+5+4+5+6 pts) Recall that, in Homework 1, we have constructed the Polish space of \mathcal{G} of countable graphs. In what follows, all topological spaces are endowed with their Borel σ -algebra, all product spaces are endowed with their product σ -algebra and all subsets of these measurable spaces are endowed with the restrictions of the relevant σ -algebras.
 - a) Prove that the degree map $d: \mathcal{G} \to \mathbb{N} \cup \{\infty\}$ given by

$$d(E) = \sup_{n \in \mathbb{N}} \deg_E(n)$$

is a Σ_3^0 -map, that is, the inverse images of open sets are in $\Sigma_3^0(\mathcal{G})$.

b) Prove that the set

 $A = \{E \in \mathcal{G} : (\mathbb{N}, E) \text{ contains an isomorphic copy of each finite graph}\}$ is in $\Pi_2^0(\mathcal{G}) \setminus \Sigma_2^0(\mathcal{G})$.

c) Prove that the left action $S_{\infty} \curvearrowright \mathcal{G}$ of the infinite symmetric group given by

$$(\varphi \cdot E)(i,j) = 1$$
 iff $E(\varphi^{-1}(i), \varphi^{-1}(j)) = 1$ for all $i, j \in \mathbb{N}$

is continuous as a map from $S_{\infty} \times \mathcal{G}$ to \mathcal{G} .

d) Prove the isomorphism relation²

$$\mathbb{E} = \{ (E, F) \in \mathcal{G} \times \mathcal{G} : (\mathbb{N}, E) \cong (\mathbb{N}, F) \}$$

is a Σ_1^1 -subset of $\mathcal{G} \times \mathcal{G}$.

e) Prove that the set

 $A = \{E \in \mathcal{G} : (\mathbb{N}, E) \text{ contains an isomorphic copy of the complete graph } K_{\mathbb{N}} \text{ as a subgraph} \}$ is a Σ_1^1 -complete subset of \mathcal{G} .

¹This is called the *logic action* of S_{∞} since its relations to the model theory of countable structures in countable relational languages in the infinitary logic $\mathcal{L}_{\omega_1\omega}$. You can see Gao's "Invariant Descriptive Set Theory" for a detailed account.

²It turns out that the relation is "as complex as possible" in a very precise sense and also is a Σ_1^1 -complete subset of $\mathcal{G} \times \mathcal{G}$. However, we shall not attempt to formalize and prove these non-trivial facts in this homework.