METU Department of Mathematic	s, Math 779,	Midterm,	June 7,	2022
-------------------------------	--------------	----------	---------	------

PLEASE WRITE YOUR NAME CLEARLY USING CAPITAL LETTERS				
FULL NAME	STUDENT ID	DURATION		
		140 MINUTES		
5 QUESTIONS	TOTAL 100(+	20 BONUS) POINTS		

By signing below, I pledge that I will write this examination as my own work and without the assistance of others or the usage of unauthorized material or information. I understand that possession of any kind of electronic device during the exam is prohibited. I also understand that not obeying the rules of the examination will result in immediate cancellation and disciplinary procedures.

Signature

(20 pts) 1. Let κ be an uncountable singular cardinal. Show that there exists a κ -Aronszajn tree, i.e. a tree (T, <) such that $\operatorname{height}(T) = \kappa$, $|\operatorname{level}_{\alpha}(T)| < \kappa$ for every $\alpha < \kappa$ and every branch of T has size $< \kappa$.

(20 pts) 2. Show that \Diamond implies CH.

(20+20 pts) 3. Let $I \subseteq \mathbb{R}$ be a bounded non-empty open interval. Consider the poset $(\mathbb{P}_I, \subseteq)$ where

 $\mathbb{P}_I = \{ U \subseteq \mathbb{R} : U \text{ is non-empty open and } \overline{U} \subseteq I \}$

a) Show that the poset $(\mathbb{P}_I, \subseteq)$ is ccc.

For the next part of this question, you are given that $\bigcap_{U \in G} \overline{U}$ is non-empty for any filter $G \subseteq \mathbb{P}_I$ and any bounded non-empty open interval $I \subseteq \mathbb{R}$.

b) Assuming Martin's axiom, prove that for every $\aleph_0 \leq \kappa < 2^{\aleph_0}$ and every sequence $\{U_{\alpha}\}_{\alpha < \kappa}$ of open dense subsets of \mathbb{R} , we have that $\bigcap_{\alpha < \kappa} U_{\alpha}$ is dense in \mathbb{R} .

(20 pts) 4. Let $M \models \text{ZFC}$ be a countable transitive model and consider the forcing poset $(\mathbb{P}, \leq, \mathbf{1}) = (\text{Fin}(\omega_1^M, \mathcal{P}(\omega)^M), \supseteq, \emptyset) \in M$. Let G be a \mathbb{P} -generic filter over M. Show that $M[G] \models \mathcal{P}(\omega)^M$ is countable.

(20 pts) 5. Let $M \models \text{ZFC}$ be a countable transitive model, $(\mathbb{P}, \leq, 1) \in M$ be a forcing poset and $E \subseteq \mathbb{P}$ be such that $E \in M$. Let $G \subseteq \mathbb{P}$ be a \mathbb{P} -generic filter over M. Show that

either
$$\exists q \in G \ \forall r \in E \ q \perp r \text{ or } G \cap E \neq \emptyset$$