PLEASE WRITE YOUR NAME CLEARLY USING CAPITAL LETTERS			
F U L L N A M E	S T U D E N T I D	DURATION	
		TOTAL 100 POINTS	

By signing below, I pledge that I will write this examination as my own work and without the assistance of others or the usage of unauthorized material or information. I understand that possession of any kind of electronic device during the exam is prohibited. I also understand that not obeying the rules of the examination will result in immediate cancellation and disciplinary procedures.

Signature \qquad
$(12+12+13+13$ pts $)$ 1. a) State Lebesgue's dominated convergence theorem, or, prove that $f_{n} \rightarrow f$ in L^{1} implies $f_{n} \rightarrow f$ in measure.

In the remaining parts of this question, you will consider the measure space ($\mathbb{N}, \mathcal{P}(\mathbb{N}), \nu)$ with the measure ν given by

$$
\nu(S)=\sum_{n \in S} \frac{1}{2^{n}}
$$

b) Let $f: \mathbb{N} \rightarrow \mathbb{R}$ be a bounded function. Prove that f is integrable and

$$
\int_{\mathbb{N}} f d \nu=\sum_{k=0}^{\infty} \frac{f(k)}{2^{k}}
$$

Hint. Set $f_{n}(x)=f(x) \cdot \chi_{\{0,1,2, \ldots n\}}(x)$. Observe that $f_{n} \longrightarrow f$ pointwise. Then apply an appropriate theorem to get the result.
c) Let $f: \mathbb{N} \rightarrow \mathbb{R}$ be a function and $\left(f_{n}\right)_{n \in \mathbb{N}}$ be a sequence of functions from \mathbb{N} to \mathbb{R}. Show that if $f_{n} \rightarrow f$ in measure, then $f_{n} \rightarrow f$ pointwise.
d) Let $g(x, k)=x^{k}$. Compute the integral

$$
\int_{[1,3 / 2] \times \mathbb{N}} g(x, k) d(\mathbf{m} \times \nu)
$$

in the product measure space $(\mathbb{R} \times \mathbb{N}, \mathcal{B}(\mathbb{R}) \otimes \mathcal{P}(\mathbb{N}), \mathbf{m} \times \nu)$ where $\mathcal{B}(\mathbb{R})$ is the Borel σ algebra of \mathbb{R} and \mathbf{m} is the Lebesgue measure. Explain each step of your computation by referring to the relevant theorems.
(10+10 pts) 2. Consider the signed measure μ on the measurable space $\overline{([0,2 \pi], \mathcal{B}([0,2 \pi])})$ given by

$$
\mu(A)=\int_{A} \sin (x) d \mathbf{m}
$$

a) Find the Hahn decomposition (P, N) of the measure space $([0,2 \pi], \mathcal{B}([0,2 \pi]), \mu)$.
b) Let $\left(\mu^{+}, \mu^{-}\right)$be the Jordan decomposition of the measure μ. Show that $\mu^{+} \ll \mathbf{m}$ and find the Radon-Nikodym derivative $\frac{d \mu^{+}}{d \mathbf{m}}$.

$$
\begin{aligned}
A & =\left\{x \in[0,1]: x=\left(0 . a_{1} a_{2} a_{3} \ldots\right)_{2} \text { where } a_{n} \in\{0,1\} \text { and } a_{2 n}=1 \text { for every } n \in \mathbb{N}^{+}\right\} \\
& =\{x \in[0,1]: \text { the binary expansion of } x \text { contains } 1 \text { at its even numbered digits }\} \\
& =\bigcap_{n \in \mathbb{N}^{+}}\left\{x \in[0,1]: \text { the binary expansion of } x \text { contains } 1 \text { at its digits } a_{2}, a_{4}, \ldots, a_{2 n}\right\}
\end{aligned}
$$

a) Show that $\mathbf{m}(A)=0$.
b) Show that $[0,1] \backslash A$ is open. Using this, conclude that $\chi_{A}(x)$ is continuous at every point in $[0,1] \backslash A$.
c) Show that $\chi_{A}(x)$ is Riemann integrable over $[0,1]$ and find $\int_{0}^{1} \chi_{A}(x) d x$ by justifying each step of your computation.

