PLEASE WRITE YOUR NAME CLEARLY USING CAPITAL LETTERS		
FULL NAME	STUDENT ID	DURATION
		150 MINUTES
3 QUESTIONS ON 4 PAGES		TOTAL 100 POINTS

By signing below, I pledge that I will write this examination as my own work and without the assistance of others or the usage of unauthorized material or information. I understand that possession of any kind of electronic device during the exam is prohibited. I also understand that not obeying the rules of the examination will result in immediate cancellation and disciplinary procedures.

Signature

(12+12+13+13 pts) **1.** a) State Lebesgue's dominated convergence theorem, or, prove that $f_n \to f$ in L^1 implies $f_n \to f$ in measure.

In the remaining parts of this question, you will consider the measure space $(\mathbb{N}, \mathcal{P}(\mathbb{N}), \nu)$ with the measure ν given by

$$\nu(S) = \sum_{n \in S} \frac{1}{2^n}$$

b) Let $f: \mathbb{N} \to \mathbb{R}$ be a bounded function. Prove that f is integrable and

$$\int_{\mathbb{N}} f \, d\nu = \sum_{k=0}^{\infty} \frac{f(k)}{2^k}$$

Hint. Set $f_n(x) = f(x) \cdot \chi_{\{0,1,2,\dots,n\}}(x)$. Observe that $f_n \longrightarrow f$ pointwise. Then apply an appropriate theorem to get the result.

c) Let $f : \mathbb{N} \to \mathbb{R}$ be a function and $(f_n)_{n \in \mathbb{N}}$ be a sequence of functions from \mathbb{N} to \mathbb{R} . Show that if $f_n \to f$ in measure, then $f_n \to f$ pointwise.

d) Let $g(x,k) = x^k$. Compute the integral

$$\int_{[1,3/2]\times\mathbb{N}} g(x,k) \ d(\mathbf{m}\times\nu)$$

in the product measure space $(\mathbb{R} \times \mathbb{N}, \mathcal{B}(\mathbb{R}) \otimes \mathcal{P}(\mathbb{N}), \mathbf{m} \times \nu)$ where $\mathcal{B}(\mathbb{R})$ is the Borel σ algebra of \mathbb{R} and \mathbf{m} is the Lebesgue measure. Explain each step of your computation by referring to the relevant theorems. $(10+10 \ pts) 2$. Consider the signed measure μ on the measurable space $([0, 2\pi], \mathcal{B}([0, 2\pi]))$ given by

$$\mu(A) = \int_A \sin(x) \, d\mathbf{m}$$

a) Find the Hahn decomposition (P, N) of the measure space $([0, 2\pi], \mathcal{B}([0, 2\pi]), \mu)$.

b) Let (μ^+, μ^-) be the Jordan decomposition of the measure μ . Show that $\mu^+ \ll \mathbf{m}$ and find the Radon-Nikodym derivative $\frac{d\mu^+}{d\mathbf{m}}$.

$(10+10+10 \ pts)$ 3. Consider the set

- $A = \left\{ x \in [0,1] : x = (0.a_1a_2a_3\dots)_2 \text{ where } a_n \in \{0,1\} \text{ and } a_{2n} = 1 \text{ for every } n \in \mathbb{N}^+ \right\}$ $= \left\{ x \in [0,1] : \text{ the binary expansion of } x \text{ contains } 1 \text{ at its even numbered digits} \right\}$ $= \bigcap_{n \in \mathbb{N}^+} \left\{ x \in [0,1] : \text{ the binary expansion of } x \text{ contains } 1 \text{ at its digits } a_2, a_4, \dots, a_{2n} \right\}$
- a) Show that $\mathbf{m}(A) = 0$.

b) Show that $[0,1] \setminus A$ is open. Using this, conclude that $\chi_A(x)$ is continuous at every point in $[0,1] \setminus A$.

c) Show that $\chi_A(x)$ is Riemann integrable over [0,1] and find $\int_0^1 \chi_A(x) dx$ by justifying each step of your computation.