METU Department of Mathematics, Math 406, Midterm II, January 19, 2022

PLEASE WRITE YOUR NAME CLEARLY USING CAPITAL LETTERS				
FULL NAME	STUDENT	I D	DURATION	
			150 MINUTES	
1 QUESTION, 9 PARTS ON 4 PA	GES	TOTAL 126 POINTS		

By signing below, I pledge that I will write this examination as my own work and without the assistance of others or the usage of unauthorized material or information. I understand that possession of any kind of electronic device during the exam is prohibited. I also understand that not obeying the rules of the examination will result in immediate cancellation and disciplinary procedures.

Signature

 $(9 \times 14 = 126 \text{ pts})$ Throughout this exam, we shall work in the language $\mathcal{L} = \{f\}$ where f is a unary function symbol. Consider the theory T which consists of the following two sentences.

$$\forall x \ \forall y \ (f(x) = f(y) \ \rightarrow \ x = y)$$
$$\forall y \ \exists x \ y = f(x)$$

In other words, T is the theory of bijections of a set.

a) How many models of T are there whose universe is the set $\{1, 2, \ldots, 406\}$?

b) Find an \mathcal{L} -structure $\mathcal{M} = (M, f^{\mathcal{M}})$ such that |M| = 406, $\mathcal{M} \models T$ and \mathcal{M} does not have any proper substructures. (**Hint.** Remember that a substructure is necessarily closed under the application of the interpretation of the functions symbols. Find a suitable structure for which this procedure would exhaust all elements.)

c) Consider the \mathcal{L} -structure $\mathcal{A} = (\mathbb{Z}, f^{\mathcal{A}})$ where the interpretation of the function symbol f is the map $f^{\mathcal{A}} : \mathbb{Z} \to \mathbb{Z}$ given by

$$f^{\mathcal{A}}(n) = \begin{cases} n+2 & \text{if } n \text{ is even} \\ n & \text{if } n \text{ is odd} \end{cases}$$

Let $\mathcal{B} \subseteq \mathcal{A}$ be the substructure of \mathcal{A} whose universe is the set of even integers, that is, $\mathcal{B} = (2\mathbb{Z}, f^{\mathcal{B}})$ where $f^{\mathcal{B}} = f^{\mathcal{A}} \upharpoonright 2\mathbb{Z}$. Show that \mathcal{B} is not an elementary substructure of \mathcal{A} .

d) Consider the \mathcal{L} -structure $\mathcal{A} = (\mathbb{Z}, f^{\mathcal{A}})$ defined in Part (c). Let $X \subseteq \mathbb{Z}$ be definable without parameters in the structure \mathcal{A} such that $406 \in X$. Show that $2\mathbb{Z} \subseteq X$. (**Hint.** What is the relationship between definability and automorphisms?)

For the rest of this question, consider the theory T' which is obtained by adding the following infinitely many sentences to T.

$$\forall x \ f(x) \neq x \forall x \ f(f(x)) = x \exists x_1 \ \exists x_2 \dots \exists x_n \bigwedge_{1 \le i < j \le n} x_i \neq x_j$$
 for each integer $n \ge 2$

In other words, T' is the theory of fixed-point-free involutions of an infinite set.

e) Show that T' is \aleph_0 -categorical. (Hint. Pick an arbitrary countable model of T' and try to understand how the "orbits" of the interpretation of f partitions the model.)

f) Show that T' is complete.

g) Let $\mathcal{W} \models T'$ be a model of T'. Does there necessarily exist a countable elementary substructure $\widetilde{\mathcal{V}} \preccurlyeq \mathcal{W}$? Why?

h) Let $\mathcal{W} \models T'$ be as in Part (g) and let $\mathcal{V} \models T'$ be a countable model of T'. Show that there exists an elementary embedding $\pi : V \to W$. (Hint. Recall what you had in parts (e) and (g).)

For each $n \in \mathbb{N}^+$, set $C_n = \{1, 2, ..., 2n\}$ and consider the \mathcal{L} -structure $\mathcal{C}_n = (C_n, f^{\mathcal{C}_n})$ where the interpretation $f^{\mathcal{C}_n} : C_n \to C_n$ of the function symbol f is the permutation

$$(1\ 2)\ldots(2n-1\ 2n)$$

which is given in the usual cycle notation.

i) Let $\mathcal{U} \subseteq \mathcal{P}(\mathbb{N}^+)$ be a non-principal ultrafilter on \mathbb{N}^+ and consider the ultraproduct

$$\mathcal{X} = (X, f^{\mathcal{X}}) = \prod_{n \in \mathbb{N}^+} \mathcal{C}_n / \mathcal{U}$$

Show that $\mathcal{X} \models T'$.