METU Department of Mathematics, Math 406, Final Exam, February 5, 2022

PLEASE WRITE YOUR NAME CLEARLY USING CAPITAL LETTERS			
FULL NAME	STUDENT	I D	DURATION
			150 MINUTES
5 QUESTION ON 4 PAGES	TOTAL 100 POINTS		

By signing below, I pledge that I will write this examination as my own work and without the assistance of others or the usage of unauthorized material or information. I understand that possession of any kind of electronic device during the exam is prohibited. I also understand that not obeying the rules of the examination will result in immediate cancellation and disciplinary procedures.

Signature

(10+10=20 pts) **1**. **a**) Find a suitable language \mathcal{L} and an \mathcal{L} -theory $T \subseteq Sent_{\mathcal{L}}$ such that the class of models of T is precisely the class of pairs of the form (A, R) where A is a non-empty set and R is an equivalence relation on A.

b) Find a sentence $\varphi \in Sent_{\mathcal{L}}$ such that the theory $T' = T \cup \{\varphi\}$ is κ -categorical for all non-zero cardinals κ . Explain your reasoning in detail.

(10+10+10=30 pts) 2. For this question, fix an arbitrary language \mathcal{L} . In what follows, all \mathcal{L} -theories are assumed to be consistent.

a) Prove that for any \mathcal{L} -theory T, there exists a complete \mathcal{L} -theory T' such that $T \subseteq T'$.

b) Let T be a complete \mathcal{L} -theory. Prove that any two models of T are elementarily equivalent.

c) Let T be an \mathcal{L} -theory. Suppose that there exists a model $\mathcal{A} \models T$ such that for every model $\mathcal{B} \models T$ there is an elementary embedding $\pi : A \to B$. Show that T is complete.

(10+10=20 pts) 3. In this question, we shall work in the language $\mathcal{L} = \{<\}$ that consists of a single binary relation symbol. For each $n \in \mathbb{N}^+$, consider the \mathcal{L} -structure

$$\mathcal{A}_n = \left(\{1, 2, \dots, n\}, <^{\mathcal{A}_n}\right)$$

where the interpretation $\langle \mathcal{A}_n \rangle$ of the symbol $\langle \rangle$ is the usual less-than relation on integers. Observe that each \mathcal{A}_n is a strictly linearly ordered set. Fix some non-principal ultrafilter $\mathcal{U} \subseteq \mathcal{P}(\mathbb{N}^+)$ on \mathbb{N}^+ and consider the ultraproduct

$$\mathcal{X} = (X, <^{\mathcal{X}}) = \prod_{n \in \mathbb{N}^+} \mathcal{A}_n / \mathcal{U}$$

Recall that, by Loś's theorem, $\mathcal{X} = (X, <^{\mathcal{X}})$ is a strictly linearly ordered set as well.

a) If it exists, find the greatest element of \mathcal{X} ; if it does not, write "no greatest element". For this part of this question only, you do not have to justify your answer.

b) Consider the formula $\psi(x, y) : (x < y \land \neg \exists z (x < z \land z < y))$. Given $\mathbf{a}, \mathbf{b} \in \mathcal{X}$, we say that **b** is the immediate successor of **a** if we have $\mathcal{X} \models \psi(\mathbf{a}, \mathbf{b})$. Given that it exists, find the immediate successor of the element

$$\overline{(1,1,1,\dots)} \in X$$

and explain in detail why the element you propose is the immediate successor.

(10 pts) 4. Consider the language $\mathcal{L} = \{<\}$ that consists of a single binary relation symbol. Using the compactness theorem, show that there does not exist an \mathcal{L} -theory $\Sigma \subseteq Sent_{\mathcal{L}}$ such that for any \mathcal{L} -structure $\mathcal{A} = (A, <^{\mathcal{A}})$, we have $\mathcal{A} \models \Sigma$ if and only if \mathcal{A} is a strictly well-ordered set.

(10+10=20 pts) 5. a) State the Omitting Types Theorem.

b) Let \mathcal{L} be a countable language and T be a complete \aleph_0 -categorical \mathcal{L} -theory. Show that every complete *n*-type of T is principal. (**Hint.** Recall that any *n*-type of a complete theory over a countable language can be realized in some countable model.)