PLEASE WRITE YOUR NAME CLEARLY USING CAPITAL LETTERS							
F U L L N A M E	S T U D E N T I D	DURATION					
		$90+\epsilon$ MINUTES					
3 QUESTIONS ON 2 PAGES	TOTAL 80 POINTS						

By signing below, I pledge that I will write this examination as my own work and without the assistance of others or the usage of unauthorized material or information. I understand that possession of any kind of electronic device during the exam is prohibited. I also understand that not obeying the rules of the examination will result in immediate cancellation and disciplinary procedures.

Signature
$(10+15+15 \mathrm{pts})$ 1. (a) Let (X, d) be a metric space. Complete the following definition appropriately: A set $S \subseteq X$ is said to be compact if for every collection $\left\{O_{\alpha}\right\}_{\alpha \in I}$ of open sets with $S \subseteq \bigcup_{\alpha \in I} O_{\alpha} \ldots \ldots \ldots$ there exists a finite set $F \subseteq I$ such that $S \subseteq \bigcup_{\alpha \in F} O_{\alpha}$
(b) Let (X, d) be a compact metric space and $\left\{C_{\alpha}\right\}_{\alpha \in I}$ be a collection of closed subsets of X. Suppose that the collection $\left\{C_{\alpha}\right\}_{\alpha \in I}$ has the finite intersection property, that is, for any finite $F \subseteq I$ we have $\bigcap_{\alpha \in F} C_{\alpha} \neq \emptyset$. Prove that $\bigcap_{\alpha \in I} C_{\alpha} \neq \emptyset$.

Assume towards a contradiction that $\bigcap_{\alpha \in I} C_{\alpha}=\emptyset$. Then, by De Morgan's law, we obtain $\bigcup_{\alpha \in I} X \backslash C_{\alpha}=X$ and hence $\left\{X \backslash C_{\alpha}\right\}_{\alpha \in I}$ is an open cover for X. Since X is compact, there exists a finite $F \subseteq I$ such that $\bigcup_{\alpha \in F} X \backslash C_{\alpha}=X$. It now follows from De Morgan's law that $\bigcap_{\alpha \in F} C_{\alpha}=\emptyset$ which contradicts the given assumption.
(c) Let (X, d) be a metric space, $K \subseteq X$ be a compact subset and $w \in X$. Show that $\inf _{x \in K} d(w, x)=d(w, k)$ for some $k \in K$.
Hint. Consider the map $x \mapsto d(w, x)$ from K to \mathbb{R}. First show that this map is continuous. What do you know about continuous maps on compact spaces?

We first show that the map $x \mapsto d(w, x)$ from K to \mathbb{R} is continuous, and indeed, uniformly continuous. Let $\epsilon>0$. Choose $\delta=\epsilon$. Let $x, y \in K$. Observe that, by the triangle inequality and the symmetry of d, we have $d(w, y)-d(x, y) \leq d(w, x) \leq d(w, y)+d(x, y)$ and hence $|d(w, x)-d(w, y)| \leq d(x, y)$. Therefore,

$$
\text { if } d(x, y)<\delta \text {, then }|d(w, x)-d(w, y)| \leq d(x, y)<\delta=\epsilon
$$

This shows that this map is uniformly continuous and in particular, continuous.

Since the map $x \mapsto d(w, x)$ is continuous on K and K is compact, by the Extreme Value theorem, the map $x \mapsto d(w, x)$ attains its minimum value on K. More precisely, there exists $k \in K$ such that $d(w, k)=\inf _{x \in K} d(w, x)$.
$\left(\mathbf{1 0 + 1 0}\right.$ pts) 2. Let $f_{n}:[0,1] \rightarrow \mathbb{R}$ be given by $f_{n}(x)=e^{\frac{x^{2}}{n+1}}$ for each $n \in \mathbb{N}$ and let $f:[0,1] \rightarrow \mathbb{R}$ be given by $f(x)=1$.
(a) Show that $f_{n} \longrightarrow f$ uniformly.

Recall that $f_{n} \longrightarrow f$ uniformly iff $f_{n} \longrightarrow f$ with respect to the sup metric. Observe that, since f_{n} is increasing and $f_{n}(x) \geq 1$ on $[0,1]$, we have that

$$
0 \leq d_{\sup }\left(f_{n}, f\right)=\sup _{x \in[0,1]}\left|f_{n}(x)-f(x)\right| \leq \sup _{x \in[0,1]}\left|e^{\frac{1}{n+1}}-1\right|=e^{\frac{1}{n+1}}-1 \xrightarrow{n \rightarrow \infty} 0
$$

and hence $\lim _{n \rightarrow \infty} d_{\text {sup }}\left(f_{n}, f\right)=0$. This implies that $f_{n} \longrightarrow f$ with respect to the sup metric and so $f_{n} \longrightarrow f$ uniformly.
(b) Compute $\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}(x) d x$. You can freely use the fact in Part (a) even if you could not prove it.

Since $f_{n} \longrightarrow f$ uniformly by Part (a), we have

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}(x) d x=\int_{0}^{1} \lim _{n \rightarrow \infty} f_{n}(x) d x=\int_{0}^{1} f(x) d x=\int_{0}^{1} 1 d x=1
$$

$(10+10 \mathrm{pts}) 3$. (a) Let (X, d) be a metric space. State the definition of a totally bounded (or sometimes also called, precompact) subset of X : A set $S \subseteq X$ is said to be totally bounded if $\ldots \ldots$.....for every $\epsilon>0$ there exists $x_{1}, x_{2}, \ldots, x_{n} \in X$ such that $S \subseteq \bigcup_{i=1}^{n} B_{d}\left(x_{i}, \epsilon\right)$.
(d) Consider the metric space $\left(\mathbb{Z}^{+}, d\right)$ where $d(k, \ell)=\left|\frac{1}{k}-\frac{1}{\ell}\right|$. Show that \mathbb{Z}^{+}is totally bounded.

Let $\epsilon>0$. By the Archimedean property, we can find $n \in \mathbb{Z}^{+}$such that $\frac{1}{n}<\epsilon$. We claim that the points $1,2, \ldots, n$ satisfies the required property in the definition of totally boundedness. Observe that, for any $k \geq n$, we have

$$
d(n, k)=\left|\frac{1}{n}-\frac{1}{k}\right|=\frac{1}{n}<\epsilon
$$

and hence $k \in B_{d}(n, \epsilon)$. Thus we have $\{n, n+1, n+2, \ldots\} \subseteq B_{d}(n, \epsilon)$. Since $i \in B_{d}(i, \epsilon)$ for each $i=1, \ldots, n$ as well, it now follows that $\mathbb{Z}^{+} \subseteq \bigcup_{i=1}^{n} B_{d}(i, \epsilon)$. Therefore \mathbb{Z}^{+}is totally bounded.

