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(6+13+6+13 pts) 1. (a) State the definition of an accumulation point of a subset. A

point x ∈ R is said to be an accumulation point of S ⊆ R iff ....

For every ϵ ∈ R+, the interval (x − ϵ, x + ϵ) contains infinitely many elements of S.

Equivalently, for every ϵ ∈ R+, there exists s ∈ S such that s ∈ (x− ϵ, x+ ϵ) \ {x}.
(b) Let S ⊆ R be such that S is bounded and sup(S) /∈ S. Prove that sup(S) is an

accumulation point of S.

Let ϵ ∈ R+. Since sup(S)− ϵ < sup(S), by the definition of supremum, there exists s ∈ S

such that sup(S)− ϵ < s ≤ sup(S). On the other hand, since sup(S) /∈ S, we must have

that sup(S)−ϵ < s < sup(S). Therefore s ∈ (sup(S)−ϵ, sup(S)+ϵ)\{sup(S)}. It follows
from the equivalent characterization of an accumulation point of a set that sup(S) is an

accumulation point of S.

Note: If you use the former definition of an accumulation point, you can still

solve this question with a similar idea by choosing sn ∈ S with sup(S) − ϵ
n
<

sn < sup(S) for each n ∈ N+, however, the solution becomes longer.

(c) State the Bolzano-Weierstrass theorem.

Any bounded infinite subset of R has an accumulation point.

(d) Let S ⊆ R be a bounded subset with a unique accumulation point ℓ ∈ R \ S. Prove
that S is countably infinite.

Hint. Ask yourself the following: If I were to take an arbitrary ball
(
ℓ− 1

n
, ℓ+ 1

n

)
, how many elements of S

could possibly live outside this ball? Can you obtain S from these?

Observe that, since ℓ /∈ S, we have that

S = {ℓ}c ∩ S =

(
∞⋂
n=1

(
ℓ− 1

n
, ℓ+

1

n

))c

∩ S =
∞⋃
n=1

((
ℓ− 1

n
, ℓ+

1

n

)c

∩ S

)
For each n ∈ N+, the set Sn =

(
ℓ− 1

n
, ℓ+ 1

n

)c ∩ S must be finite since otherwise, being a

bounded infinite subset of R, by the Bolzano-Weierstrass theorem, the set Sn would have

an accumulation point ℓ̂ ∈ S ′
n ⊆ S ′; however, as closed sets contain all their accumulation

points, we would have

ℓ̂ ∈ S
′

n ⊆
(
R \

(
ℓ− 1

n
, ℓ+

1

n

))′

⊆
(
R \

(
ℓ− 1

n
, ℓ+

1

n

))
⊆ R \ {ℓ}

and so ℓ ̸= ℓ̂, contradicting the existence of a unique accumulation point of S. But then S

is a countable union of finite sets and hence is countable. Since finite subsets of R cannot

have any accumulation points, S must also be infinite. Thus S is countably infinite.



(14+14+14 pts) 2. Consider the map d : Z+ × Z+ → [0,∞) given by

d(m,n) =

0 if m = n
1

max{k ∈ N : 2k|m and 2k|n}+ 1
if m ̸= n

For example, d(16, 28) = 1
2+1

= 1
3
, d(3, 32) = 1

0+1
= 1 and d(128, 256) = 1

7+1
= 1

8
.

(a) Prove that d is a metric on Z+.

� Let m,n ∈ Z+. If m = n, then d(m,n) = 0 by definition. If d(m,n) = 0, then, since

the value of d in the case m ̸= n is always positive, we must have that m = n.

� Let m,n ∈ Z+. If m = n, then d(m,n) = 0 = d(n,m). If m ̸= n, then

d(m,n) =
1

max{k ∈ N : 2k|m and 2k|n}+ 1
=

1

max{k ∈ N : 2k|n and 2k|m}+ 1
= d(n,m)

� Let m,n, p ∈ Z+. The triangle inequality d(m,n) ≤ (m, p) + d(p, n) clearly holds

if any two of m,n, p are the same. So suppose that m,n, p are all distinct. Set

K = max{k ∈ N : 2k|m and 2k|n} and L = max{k ∈ N : 2k|p and 2k|n}. We split

into cases

– Case I (K ≥ L): Then d(m,n) = 1
K+1

≤ 1
L+1

= d(p, n) ≤ d(m, p) + d(p, n).

– Case II (L > K): Then L ≥ K+1 and hence 2K+1|p and 2K+1|n by the definition

of L. But then we must have 2K+1 ∤ m by the definition of K. But then we

necessarily have that max{k ∈ N : 2k|m and 2k|p} ≤ K which implies

d(m,n) =
1

K + 1
≤ 1

max{k ∈ N : 2k|m and 2k|p}+ 1
= d(m, p) ≤ d(m, p)+d(p, n)

So d satisfies the triangle inequality and hence is a metric.

(b) Prove that {n} is open with respect to d for every n ∈ Z+.

Let n ∈ Z+. We claim that Bd(n,
1

n+1
) = {n}. Assume towards a contradiction that there

exists m ∈ Bd(n,
1

n+1
) with m ̸= n. Then, since

0 < d(m,n) =
1

max{k ∈ N : 2k|m and 2k|n}+ 1
<

1

n+ 1

we must have that 2n|n which is a contradiction. Thus Bd(n,
1

n+1
) = {n} and consequently

{n} is open as open balls are open.

Interlude. Let d be the discrete metric on Z+. It follows from Part (b) that every subset of Z+ is open with

respect to d and hence, d and d are topologically equivalent metrics.

(c) Prove that d and d are not (strongly) equivalent metrics.

Assume towards a contradiction that d and d are (strongly) equivalent. Then there exist

constants c, C > 0 such that for all m,n ∈ Z+ we have c ·d(m,n) ≤ d(m,n) ≤ C ·d(m,n).

Set N = ⌊C⌋. Then we have

1 = d(2N , 2N+1) ≤ C · d(2N , 2N+1) ≤ C · 1

N + 1
< C · 1

C
= 1

which is a contradiction. Therefore d and d are not (strongly) equivalent
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