PLEASE WRITE YOUR NAME CLEARLY USING CAPITAL LETTERS							
F U L L N A M E	S T U D E N T I D	DURATION					
		$90+\epsilon$ MINUTES					
2 QUESTIONS ON 2 PAGES	TOTAL 80 POINTS						

By signing below, I pledge that I will write this examination as my own work and without the assistance of others or the usage of unauthorized material or information. I understand that possession of any kind of electronic device during the exam is prohibited. I also understand that not obeying the rules of the examination will result in immediate cancellation and disciplinary procedures.

Signature
$(6+13+6+13 p t s) 1$. (a) State the definition of an accumulation point of a subset. A point $x \in \mathbb{R}$ is said to be an accumulation point of $S \subseteq \mathbb{R}$ iff \ldots.
For every $\epsilon \in \mathbb{R}^{+}$, the interval $(x-\epsilon, x+\epsilon)$ contains infinitely many elements of S. Equivalently, for every $\epsilon \in \mathbb{R}^{+}$, there exists $s \in S$ such that $s \in(x-\epsilon, x+\epsilon) \backslash\{x\}$.
(b) Let $S \subseteq \mathbb{R}$ be such that S is bounded and $\sup (S) \notin S$. Prove that $\sup (S)$ is an accumulation point of S.
Let $\epsilon \in \mathbb{R}^{+}$. Since $\sup (S)-\epsilon<\sup (S)$, by the definition of supremum, there exists $s \in S$ such that $\sup (S)-\epsilon<s \leq \sup (S)$. On the other hand, since $\sup (S) \notin S$, we must have that $\sup (S)-\epsilon<s<\sup (S)$. Therefore $s \in(\sup (S)-\epsilon, \sup (S)+\epsilon) \backslash\{\sup (S)\}$. It follows from the equivalent characterization of an accumulation point of a set that $\sup (S)$ is an accumulation point of S.
Note: If you use the former definition of an accumulation point, you can still solve this question with a similar idea by choosing $s_{n} \in S$ with $\sup (S)-\frac{\epsilon}{n}<$ $s_{n}<\sup (S)$ for each $n \in \mathbb{N}^{+}$, however, the solution becomes longer.
(c) State the Bolzano-Weierstrass theorem.

Any bounded infinite subset of \mathbb{R} has an accumulation point.
(d) Let $S \subseteq \mathbb{R}$ be a bounded subset with a unique accumulation point $\ell \in \mathbb{R} \backslash S$. Prove that S is countably infinite.
Hint. Ask yourself the following: If I were to take an arbitrary ball $\left(\ell-\frac{1}{n}, \ell+\frac{1}{n}\right)$, how many elements of S could possibly live outside this ball? Can you obtain S from these?
Observe that, since $\ell \notin S$, we have that

$$
S=\{\ell\}^{c} \cap S=\left(\bigcap_{n=1}^{\infty}\left(\ell-\frac{1}{n}, \ell+\frac{1}{n}\right)\right)^{c} \cap S=\bigcup_{n=1}^{\infty}\left(\left(\ell-\frac{1}{n}, \ell+\frac{1}{n}\right)^{c} \cap S\right)
$$

For each $n \in \mathbb{N}^{+}$, the set $S_{n}=\left(\ell-\frac{1}{n}, \ell+\frac{1}{n}\right)^{c} \cap S$ must be finite since otherwise, being a bounded infinite subset of \mathbb{R}, by the Bolzano-Weierstrass theorem, the set S_{n} would have an accumulation point $\hat{\ell} \in S_{n}^{\prime} \subseteq S^{\prime}$; however, as closed sets contain all their accumulation points, we would have

$$
\hat{\ell} \in S_{n}^{\prime} \subseteq\left(\mathbb{R} \backslash\left(\ell-\frac{1}{n}, \ell+\frac{1}{n}\right)\right)^{\prime} \subseteq\left(\mathbb{R} \backslash\left(\ell-\frac{1}{n}, \ell+\frac{1}{n}\right)\right) \subseteq \mathbb{R} \backslash\{\ell\}
$$

and so $\ell \neq \hat{\ell}$, contradicting the existence of a unique accumulation point of S. But then S is a countable union of finite sets and hence is countable. Since finite subsets of \mathbb{R} cannot have any accumulation points, S must also be infinite. Thus S is countably infinite.
(14+14+14 pts) 2. Consider the map $d: \mathbb{Z}^{+} \times \mathbb{Z}^{+} \rightarrow[0, \infty)$ given by

$$
d(m, n)= \begin{cases}0 & \text { if } m=n \\ \frac{1}{\max \left\{k \in \mathbb{N}: 2^{k} \mid m \text { and } 2^{k} \mid n\right\}+1} & \text { if } m \neq n\end{cases}
$$

For example, $d(16,28)=\frac{1}{2+1}=\frac{1}{3}, d(3,32)=\frac{1}{0+1}=1$ and $d(128,256)=\frac{1}{7+1}=\frac{1}{8}$.
(a) Prove that d is a metric on \mathbb{Z}^{+}.

- Let $m, n \in \mathbb{Z}^{+}$. If $m=n$, then $d(m, n)=0$ by definition. If $d(m, n)=0$, then, since the value of d in the case $m \neq n$ is always positive, we must have that $m=n$.
- Let $m, n \in \mathbb{Z}^{+}$. If $m=n$, then $d(m, n)=0=d(n, m)$. If $m \neq n$, then

$$
d(m, n)=\frac{1}{\max \left\{k \in \mathbb{N}: 2^{k} \mid m \text { and } 2^{k} \mid n\right\}+1}=\frac{1}{\max \left\{k \in \mathbb{N}: 2^{k} \mid n \text { and } 2^{k} \mid m\right\}+1}=d(n, m)
$$

- Let $m, n, p \in \mathbb{Z}^{+}$. The triangle inequality $d(m, n) \leq(m, p)+d(p, n)$ clearly holds if any two of m, n, p are the same. So suppose that m, n, p are all distinct. Set $K=\max \left\{k \in \mathbb{N}: 2^{k} \mid m\right.$ and $\left.2^{k} \mid n\right\}$ and $L=\max \left\{k \in \mathbb{N}: 2^{k} \mid p\right.$ and $\left.2^{k} \mid n\right\}$. We split into cases
- Case I $(K \geq L)$: Then $d(m, n)=\frac{1}{K+1} \leq \frac{1}{L+1}=d(p, n) \leq d(m, p)+d(p, n)$.
- Case II $(L>K)$: Then $L \geq K+1$ and hence $2^{K+1} \mid p$ and $2^{K+1} \mid n$ by the definition of L. But then we must have $2^{K+1} \nmid m$ by the definition of K. But then we necessarily have that $\max \left\{k \in \mathbb{N}: 2^{k} \mid m\right.$ and $\left.2^{k} \mid p\right\} \leq K$ which implies

$$
d(m, n)=\frac{1}{K+1} \leq \frac{1}{\max \left\{k \in \mathbb{N}: 2^{k} \mid m \text { and } 2^{k} \mid p\right\}+1}=d(m, p) \leq d(m, p)+d(p, n)
$$

So d satisfies the triangle inequality and hence is a metric.
(b) Prove that $\{n\}$ is open with respect to d for every $n \in \mathbb{Z}^{+}$.

Let $n \in \mathbb{Z}^{+}$. We claim that $B_{d}\left(n, \frac{1}{n+1}\right)=\{n\}$. Assume towards a contradiction that there exists $m \in B_{d}\left(n, \frac{1}{n+1}\right)$ with $m \neq n$. Then, since

$$
0<d(m, n)=\frac{1}{\max \left\{k \in \mathbb{N}: 2^{k} \mid m \text { and } 2^{k} \mid n\right\}+1}<\frac{1}{n+1}
$$

we must have that $2^{n} \mid n$ which is a contradiction. Thus $B_{d}\left(n, \frac{1}{n+1}\right)=\{n\}$ and consequently $\{n\}$ is open as open balls are open.

Interlude. Let \bar{d} be the discrete metric on \mathbb{Z}^{+}. It follows from Part (b) that every subset of \mathbb{Z}^{+}is open with respect to d and hence, d and \bar{d} are topologically equivalent metrics.
(c) Prove that d and \bar{d} are not (strongly) equivalent metrics.

Assume towards a contradiction that d and \bar{d} are (strongly) equivalent. Then there exist constants $c, C>0$ such that for all $m, n \in \mathbb{Z}^{+}$we have $c \cdot d(m, n) \leq \bar{d}(m, n) \leq C \cdot d(m, n)$. Set $N=\lfloor C\rfloor$. Then we have

$$
1=\bar{d}\left(2^{N}, 2^{N+1}\right) \leq C \cdot d\left(2^{N}, 2^{N+1}\right) \leq C \cdot \frac{1}{N+1}<C \cdot \frac{1}{C}=1
$$

which is a contradiction. Therefore d and \bar{d} are not (strongly) equivalent

