*********** PLEASE WRITE YOUR NAME CLEARLY USING CAPITAL LETTERS ************************************		
FULL NAME	STUDENT ID	6 questions on 4 pages, 120 minutes
		100 points in total
		Justify your answer

1. (5+5+10 pts) a) State the definition of an ordinal number.

A set α is an ordinal if α is transitive and (α, \in_{α}) is a strictly well-ordered set.

b) Complete the following statement of the principle of transfinite induction: A property $\varphi(x)$ of sets holds for all ordinal numbers if

- $\varphi(0)$ holds.
- $\varphi(S(\alpha))$ holds whenever $\varphi(\alpha)$ holds, for all ordinals α .
- For all limit ordinals γ , if $\varphi(\alpha)$ holds for all $\alpha < \gamma$, then $\varphi(\gamma)$ holds.

c) Recall that the addition + and the multiplication \cdot on ordinal numbers are recursively defined as follows.

$$\begin{array}{ll} \alpha + 0 &= \alpha & \alpha \cdot 0 &= 0 \\ \alpha + S(\beta) &= S(\alpha + \beta) & \text{and} & \alpha \cdot S(\beta) &= (\alpha \cdot \beta) + \alpha \\ \alpha + \gamma &= \sup\{\alpha + \theta : \theta \in \gamma\} & \alpha \cdot \gamma &= \sup\{\alpha \cdot \theta : \theta \in \gamma\} \end{array}$$

for all ordinals α, β and limit ordinals γ . Recall also that the exponentiation with positive base on ordinals are recursively defined as follows.

$$\begin{array}{ll} \alpha^0 & = 1 \\ \alpha^{S(\beta)} & = \alpha^\beta \cdot \alpha \\ \alpha^\gamma & = \sup\{\alpha^\theta : \theta \in \gamma\} \end{array}$$

for all ordinals $\alpha \ge 1$, β and limit ordinals γ . You are given that $\alpha^{\sup(X)} = \sup\{\alpha^{\theta} : \theta \in X\}$ and $\alpha \cdot \sup(X) = \{\alpha \cdot \theta : \theta \in X\}$ for all ordinals $\alpha \ge 1$ and for all non-empty set X of ordinals. Moreover, you are given that $0 + \alpha = \alpha$ for all ordinals α and that $(\alpha \cdot \beta) \cdot \gamma = \alpha \cdot (\beta \cdot \gamma)$ for all ordinals α, β, γ and that $\alpha^{\beta} \ge 1$ for all ordinals $\alpha \ge 1$ and β .

Prove that, for all ordinals $\alpha \geq 1$ and for all ordinals β, γ , we have that

$$\alpha^{\beta+\gamma} = \alpha^{\beta} \cdot \alpha^{\gamma}$$

WARNING: If you use an identity involving ordinal arithmetic other than the identities given in the question, you are supposed to prove it.

We shall prove this by transfinite induction on γ . Let $\alpha \geq 1$ and β .

• Base case. For $\gamma = 0$, by the definition of operations and given identities, we have $\alpha^{\beta+0} = \alpha^{\beta} = 0 + \alpha^{\beta} = \alpha^{\beta} \cdot 0 + \alpha^{\beta} = \alpha^{\beta} \cdot S(0) = \alpha^{\beta} \cdot 1 = \alpha^{\beta} \cdot \alpha^{0}$

Hence the given identity holds for $\gamma = 0$.

• Successor stage Let γ be an ordinal. Suppose that $\alpha^{\beta+\gamma} = \alpha^{\beta} \cdot \alpha^{\gamma}$. Then, by the definition of operations, inductive assumption and given identities, we have

$$\alpha^{\beta+S(\gamma)} = \alpha^{S(\beta+\gamma)} = \alpha^{\beta+\gamma} \cdot \alpha = \left(\alpha^{\beta} \cdot \alpha^{\gamma}\right) \cdot \alpha = \alpha^{\beta} \cdot \left(\alpha^{\gamma} \cdot \alpha\right) = \alpha^{\beta} \cdot \alpha^{S(\gamma)}$$

Hence the given identity holds for $S(\gamma)$.

• Limit case Let γ be a limit ordinal. Suppose that $\alpha^{\beta+\theta} = \alpha^{\beta} \cdot \alpha^{\theta}$ holds for all $\theta < \gamma$. Then, by the definition of operations, inductive assumption and given identities, we have

$$\alpha^{\beta+\gamma} = \alpha^{\sup\{\beta+\theta: \ \theta<\gamma\}} = \sup\{\alpha^{\beta+\theta}: \theta<\gamma\} = \sup\{\alpha^{\beta} \cdot \alpha^{\theta}: \theta<\gamma\} = \alpha^{\beta} \cdot \sup\{\alpha^{\theta}: \theta<\gamma\} = \alpha^{\beta} \cdot \alpha^{\gamma}$$

Hence the given identity holds for γ .

It now follows from the principle of transfinite induction that $\alpha^{\beta+\gamma} = \alpha^{\beta} \cdot \alpha^{\gamma}$ holds for all γ .

2. (6+6+6+7=25 pts) Find the Cantor normal forms of the results of the following computations in ordinal arithmetic. (You can use **all** the identities we learned in class regarding ordinal arithmetic in Cantor normal form.)

a) $(\omega^{\omega} \cdot 2 + \omega^{\omega^2 + \omega} \cdot 3 + \omega^{\omega^{320}} \cdot 5 + 8) + (\omega^{\omega^3} \cdot 3 + \omega^{\omega^2 + \omega} \cdot 4 + 9) =$

$$= \omega^{\omega} \cdot 2 + \omega^{\omega^2 + \omega} \cdot 3 + \omega^{\omega^{320}} \cdot 5 + \omega^{\omega^3} \cdot 3 + \omega^{\omega^2 + \omega} \cdot 4 + 9$$
$$= \omega^{\omega^{320}} \cdot 5 + \omega^{\omega^3} \cdot 3 + \omega^{\omega^2 + \omega} \cdot 4 + 9$$

b) $(\omega^{\omega \cdot \omega} + \omega^{\omega + 1} \cdot 2 + \omega^2) + (\omega^{\omega^2} + \omega^{\omega + 1}) =$

$$= \omega^{\omega \cdot \omega} + \omega^{\omega + 1} \cdot 2 + \omega^{2} + \omega^{\omega^{2}} + \omega^{\omega + 1}$$
$$= \omega^{\omega \cdot \omega} + \omega^{\omega + 1} \cdot 2 + \omega^{\omega^{2}} + \omega^{\omega + 1}$$
$$= \omega^{\omega \cdot \omega} + \omega^{\omega^{2}} + \omega^{\omega + 1}$$
$$= \omega^{\omega^{2}} + \omega^{\omega^{2}} + \omega^{\omega + 1}$$
$$= \omega^{\omega^{2}} \cdot 2 + \omega^{\omega + 1}$$

c) $(\omega^{\omega^{\omega}} \cdot 3 + \omega^2 \cdot 2) \cdot (\omega^{\omega^{\omega^3}} + 5) =$

$$= (\omega^{\omega^{\omega}} \cdot 3 + \omega^{2} \cdot 2) \cdot \omega^{\omega^{\omega^{3}}} + (\omega^{\omega^{\omega}} \cdot 3 + \omega^{2} \cdot 2) \cdot 5$$
$$= \omega^{\omega^{\omega} + \omega^{\omega^{3}}} + (\omega^{\omega^{\omega}} \cdot 15 + \omega^{2} \cdot 2)$$
$$= \omega^{\omega^{\omega^{3}}} + \omega^{\omega^{\omega}} \cdot 15 + \omega^{2} \cdot 2$$

d) $\epsilon_0 = \boldsymbol{\omega}^{\boldsymbol{\epsilon_0}}$

where
$$\epsilon_0 = \sup \left\{ \omega, \omega^{\omega}, \omega^{\omega^{\omega}}, \omega^{\omega^{\omega^{\omega}}}, \ldots \right\}$$

Because if we exponentiate both sides in the definition of ϵ_0 , we obtain

$$\omega^{\epsilon_0} = \omega^{\sup\left\{\omega, \omega^{\omega}, \omega^{\omega^{\omega}}, \omega^{\omega^{\omega^{\omega}}}, \dots\right\}} = \sup\left\{\omega^{\omega}, \omega^{\omega^{\omega}}, \omega^{\omega^{\omega^{\omega}}}, \dots\right\} = \epsilon_0$$

3. (10 pts) Recall that ${}^{3}\mathbb{N}$ is the set of functions from $3 = \{0, 1, 2\}$ to \mathbb{N} . Consider the relation \preccurlyeq on ${}^{3}\mathbb{N}$ given by

$$f \preccurlyeq g \quad \text{iff} \quad f = g \quad \text{or} \quad \left(f \neq g \text{ and } f(k) < g(k) \text{ where } k = \min\{i \in \{0, 1, 2\} : f(i) \neq g(i)\} \right)$$

You are given that $({}^{3}\mathbb{N},\preccurlyeq)$ is a well-ordered set. Find the order type $\theta = \operatorname{ot}({}^{3}\mathbb{N},\preccurlyeq)$ of the well-ordered set $({}^{3}\mathbb{N},\preccurlyeq)$ by constructing an order isomorphism $\varphi : {}^{3}\mathbb{N} \to \theta$.

We claim that $\theta = \omega^3$ is the order type of this well-ordered set. Consider the map $\varphi : {}^3\mathbb{N} \to \theta$ given by

$$\varphi(f) = \omega^2 \cdot f(0) + \omega \cdot f(1) + f(2)$$

for all $f \in {}^{3}\mathbb{N}$. Because the Cantor normal form of an ordinal is unique, φ is injective. We also have that φ is surjective because every ordinal $\alpha < \omega^{3}$ will have a Cantor normal form $\alpha = \omega^{2} \cdot a + \omega \cdot b + c$ for some $a, b, c \in \mathbb{N}$ and consequently $\varphi(f) = \alpha$ where $f \in {}^{3}\mathbb{N}$ is the function with f(0) = a, f(1) = b, f(2) = c. Thus φ is a bijection.

To prove that φ is order preserving, it is sufficient to show $f \preccurlyeq g$ implies $\varphi(f) \le \varphi(g)$. Let $f, g \in {}^{3}\mathbb{N}$. Suppose $f \preccurlyeq g$. Then, by definition, we have f = g, or, $f \neq g$ and f(k) < g(k) where $k = \min\{i \in \{0, 1, 2\} : f(i) \neq g(i)\}$. We split into cases.

- Case I: In the case that f = g, we have $\varphi(f) = \varphi(g)$.
- Case II: In the case that $f \neq g$ and f(k) < g(k) where $k = \min\{i \in \{0, 1, 2\} : f(i) \neq g(i)\}$, we split into three cases depending on k.
 - Case II.a If k = 0, then

$$\begin{split} \varphi(f) &= \omega^2 \cdot f(0) + \omega \cdot f(1) + f(2) < \omega^2 \cdot f(0) + \omega^2 = \omega^2 \cdot (f(0) + 1) \le \omega^2 \cdot g(0) \le \omega^2 \cdot g(0) + \omega \cdot g(1) + g(2) = \varphi(g) \\ &- \mathbf{Case II.b If } k = 1, \text{ then} \end{split}$$

$$\varphi(f) = \omega^2 \cdot f(0) + \omega \cdot f(1) + f(2) < \omega^2 \cdot f(0) + \omega \cdot f(1) + \omega = \omega^2 \cdot f(0) + \omega \cdot (f(1) + 1) \le \omega^2 \cdot g(0) + \omega \cdot g(1) \le \omega^2 \cdot g(0) + \omega \cdot g(1) + g(2) = \varphi(g) - Case II.c If k = 2, then$$

$$\begin{split} \varphi(f) &= \omega^2 \cdot f(0) + \omega \cdot f(1) + f(2) < \omega^2 \cdot f(0) + \omega \cdot f(1) + f(2) + 1 \leq \omega^2 \cdot g(0) + \omega \cdot g(1) + g(2) = \varphi(g) \\ \text{In all cases, we obtained that } \varphi(f) < \varphi(g) \end{split}$$

Therefore, in both cases, we have $\varphi(f) \leq \varphi(g)$. This shows that φ is order preserving and hence is an order isomorphism.

4. (10+10+5 pts) Let ω_1 denote the first uncountable ordinal. A function $f : \omega_1 \to \omega_1$ is called *regressive* if we have f(0) = 0 and $f(\alpha) < \alpha$ for all $1 \le \alpha < \omega_1$. For Part (a) and (b) of this question, fix a regressive function $f : \omega_1 \to \omega_1$. By recursion on \mathbb{N} , define the sets $(S_n)_{n \in \mathbb{N}}$ as follows:

$$S_0 = \{0\}$$
 and $S_{n+1} = f^{-1}[S_n] = \{\alpha \in \omega_1 : f(\alpha) \in S_n\}$

For example, if it is the case that $f(\omega) = 320$ and f(320) = 0, then $320 \in S_1$ and $\omega \in S_2$.

a) Prove that $\omega_1 = \bigcup_{n \in \mathbb{N}} S_n$.

By definition, $\omega_1 \supseteq S_n$ for all $n \in \mathbb{N}$ and hence $\omega_1 \supseteq \bigcup_{n \in \mathbb{N}} S_n$.

To prove the other direction, let $\alpha \in \omega_1$. Observe that, since f is regressive, the sequence $(f^k(\alpha))$ is strictly decreasing, that is, $f(\alpha) > f(f(\alpha)) > f(f(f(\alpha))) > \ldots$ unless $f^k(\alpha) = 0$ for some $k \in \mathbb{N}$, after which point the sequence will be constantly 0. Since there is no infinite strictly decreasing sequence ordinals, there indeed must be some $k \in \mathbb{N}$ such that $f^k(\alpha) = 0$. But then $\alpha \in f^{-k}[S_0] = S_k$ and so $\alpha \in \bigcup_{n \in \mathbb{N}} S_n$. This shows that $\omega_1 \subseteq \bigcup_{n \in \mathbb{N}} S_n$.

b) Prove that there exists $\delta \in \omega_1$ such that $f^{-1}(\delta) = \{\alpha \in \omega_1 : f(\alpha) = \delta\}$ is uncountable.

Since $\omega_1 = \bigcup_{n \in \mathbb{N}} S_n$, a countable union of countable sets is countable and ω_1 is uncountable, we must have that some S_n 's are uncountable. Consider the least $k \in \mathbb{N}$ for which S_k is uncountable. Clearly $k \neq 0$. Observe that

$$S_{k} = f^{-1}[S_{k-1}] = \bigcup_{\delta \in S_{k-1}} f^{-1}(\delta)$$

Since S_k is uncountable and the index set S_{k-1} is countable, as a countable union of countable sets is countable, we must have that $f^{-1}(\delta)$ is uncountable for some $\delta \in S_{k-1}$.

c) Construct a surjective regressive function $g: \omega_1 \to \omega_1$.

Consider the map $g: \omega_1 \to \omega_1$ given by

$$g(\alpha) = \begin{cases} \delta & \text{if } \alpha = S(\delta) \text{ for some } \delta \in \omega_1 \\ 0 & \text{if } \alpha \text{ is a limit or } \alpha = 0 \end{cases}$$

Then g is regressive because g(0) = 0 and for all $\alpha < \omega_1$, if α is a successor, then $S(g(\alpha)) = \alpha$ and so $g(\alpha) < \alpha$; and if α is a limit, $g(\alpha) = 0 < \alpha$. g is surjective because for any $\beta \in \omega_1$, by the definition of g, we have $g(S(\beta)) = \beta$.

5. (10 pts) Prove that for all ordinals $\alpha > 0$, if α is a limit ordinal, then $\bigcup \alpha = \alpha$.

Let $\alpha > 0$ be an ordinal. Suppose that α is a limit. We wish to show $\bigcup \alpha = \alpha$.

Let $\delta \in \bigcup \alpha$. Then, by definition, $\delta \in \beta$ for some $\beta \in \alpha$. Since α is transitive, $\beta \subseteq \alpha$ and so $\delta \in \beta \subseteq \alpha$. Hence $\bigcup \alpha \subseteq \alpha$.

Let $\delta \in \alpha$. Since α is limit ordinal, $S(\delta) \in \alpha$ because otherwise we would have $S(\delta) = \alpha$. But now, since $\delta \in S(\delta)$ and $S(\delta) \in \alpha$, by definition, $\delta \in \bigcup \alpha$. Hence $\bigcup \alpha \supseteq \alpha$.

6. (10 pts) Let ω_1 denote the first uncountable ordinal. A subset $C \subseteq \omega_1$ is called a *club* (that is, **closed** and **unbounded**) subset of ω_1 if

- $\sup_{n \in \omega} \alpha_n \in C$ for every sequence $(\alpha_n)_{n \in \omega}$ over C with $\alpha_0 < \alpha_1 < \alpha_2 < \dots$ and
- For every $\alpha < \omega_1$ there exists $\beta \in C$ such that $\alpha < \beta$.

In other words, C is a club subset of ω_1 iff C contains all limit points of its strictly increasing sequences and is unbounded in ω_1 . Show that the intersection of two club subsets of ω_1 is a club subset of ω_1 .

Let C and D be club subsets of ω_1 .

Let $(\alpha_n)_{n\in\omega}$ be a sequence over $C\cap D$ with $\alpha_0 < \alpha_1 < \alpha_2 < \ldots$. In this case, trivially, α can be considered as a strictly increasing sequence over C and over D separately. But because C and D are club subsets, we have $\sup_{n\in\omega} \alpha_n \in C$ and $\sup_{n\in\omega} \alpha_n \in D$. Hence $\sup_{n\in\omega} \alpha_n \in C \cap D$.

Let $\alpha < \omega_1$. Since C is club, we can find some $\beta_0 \in C$ with $\alpha < \beta_0$. Since D is club, we can find some $\delta_0 \in D$ with $\beta_0 < \delta_0$. Using the unboundedness of these sets and continuing recursively, we can construct a sequence $(\beta_n)_{n \in \omega}$ over C and a sequence $(\delta_n)_{n \in \omega}$ over D such that

$$\alpha < \beta_0 < \delta_0 < \beta_1 < \delta_1 < \dots$$

Observe that, since the strictly increasing sequences $(\beta_n)_{n\in\omega}$ and $(\delta_n)_{n\in\omega}$ are intertwined, we must have

$$\sup_{n\in\omega}\beta_n=\theta=\sup_{n\in\omega}\delta_n$$

But since C and D are club subsets, we obtain that $\theta \in C$ and $\theta \in D$. Hence $\theta \in C \cap D$. Therefore there exists $\theta \in C \cap D$ such that $\alpha < \theta$. It follows that $C \cap D$ is a club subset of ω_1 .