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************* PLEASE WRITE YOUR NAME CLEARLY USING CAPITAL LETTERS *************

1. (5+5+10 pts) a) State the definition of an ordinal number.

A set α is an ordinal if α is transitive and (α,∈α) is a strictly well-ordered set.

b) Complete the following statement of the principle of transfinite induction: A property ϕ(x) of sets holds for all ordinal
numbers if

• ϕ(0) holds.
• ϕ(S(α)) holds whenever ϕ(α) holds, for all ordinals α.
• For all limit ordinals γ, if ϕ(α) holds for all α < γ, then ϕ(γ) holds.

c) Recall that the addition + and the multiplication · on ordinal numbers are recursively defined as follows.

α+ 0 = α
α+ S(β) = S(α+ β)
α+ γ = sup{α+ θ : θ ∈ γ}

and
α · 0 = 0
α · S(β) = (α · β) + α
α · γ = sup{α · θ : θ ∈ γ}

for all ordinals α, β and limit ordinals γ. Recall also that the exponentiation with positive base on ordinals are recursively
defined as follows.

α0 = 1
αS(β) = αβ · α
αγ = sup{αθ : θ ∈ γ}

for all ordinals α ≥ 1, β and limit ordinals γ. You are given that αsup(X) = sup{αθ : θ ∈ X} and α·sup(X) = {α·θ : θ ∈ X}
for all ordinals α ≥ 1 and for all non-empty set X of ordinals. Moreover, you are given that 0 + α = α for all ordinals α
and that (α · β) · γ = α · (β · γ) for all ordinals α, β, γ and that αβ ≥ 1 for all ordinals α ≥ 1 and β.

Prove that, for all ordinals α ≥ 1 and for all ordinals β, γ, we have that

αβ+γ = αβ · αγ

WARNING: If you use an identity involving ordinal arithmetic other than the identities given in the question, you are
supposed to prove it.

We shall prove this by transfinite induction on γ. Let α ≥ 1 and β.

• Base case. For γ = 0, by the definition of operations and given identities, we have

αβ+0 = αβ = 0 + αβ = αβ · 0 + αβ = αβ · S(0) = αβ · 1 = αβ · α0

Hence the given identity holds for γ = 0.

• Successor stage Let γ be an ordinal. Suppose that αβ+γ = αβ · αγ . Then, by the definition of operations,
inductive assumption and given identities, we have

αβ+S(γ) = αS(β+γ) = αβ+γ · α =
(
αβ · αγ

)
· α = αβ · (αγ · α) = αβ · αS(γ)

Hence the given identity holds for S(γ).

• Limit case Let γ be a limit ordinal. Suppose that αβ+θ = αβ · αθ holds for all θ < γ. Then, by the definition
of operations, inductive assumption and given identities, we have

αβ+γ = αsup{β+θ: θ<γ} = sup{αβ+θ : θ < γ} = sup{αβ · αθ : θ < γ} = αβ · sup{αθ : θ < γ} = αβ · αγ

Hence the given identity holds for γ.

It now follows from the principle of transfinite induction that αβ+γ = αβ · αγ holds for all γ.



2. (6+6+6+7=25 pts) Find the Cantor normal forms of the results of the following computations in ordinal
arithmetic. (You can use all the identities we learned in class regarding ordinal arithmetic in Cantor normal form.)

a) (ωω · 2 + ωω
2+ω · 3 + ωω

320 · 5 + 8) + (ωω
3 · 3 + ωω

2+ω · 4 + 9) =

= ωω · 2 + ωω
2+ω · 3 + ωω

320

· 5 + ωω
3

· 3 + ωω
2+ω · 4 + 9

= ωω
320

· 5 + ωω
3

· 3 + ωω
2+ω · 4 + 9

b) (ωω·ω + ωω+1 · 2 + ω2) + (ωω
2

+ ωω+1) =

= ωω·ω + ωω+1 · 2 + ω2 + ωω
2

+ ωω+1

= ωω·ω + ωω+1 · 2 + ωω
2

+ ωω+1

= ωω·ω + ωω
2

+ ωω+1

= ωω
2

+ ωω
2

+ ωω+1

= ωω
2

· 2 + ωω+1

c) (ωω
ω · 3 + ω2 · 2) · (ωωω3

+ 5) =

= (ωω
ω

· 3 + ω2 · 2) · ωω
ω3

+ (ωω
ω

· 3 + ω2 · 2) · 5

= ωω
ω+ωω3

+ (ωω
ω

· 15 + ω2 · 2)

= ωω
ω3

+ ωω
ω

· 15 + ω2 · 2

d) ε0 = ωε0 where ε0 = sup
{
ω, ωω, ωω

ω

, ωω
ωω

, . . .
}

Because if we exponentiate both sides in the definition of ε0, we obtain

ωε0 = ω
sup

{
ω,ωω,ωωω

,ωωωω

, ...

}
= sup

{
ωω, ωω

ω

, ωω
ωω

, ωω
ωωω

, . . .

}
= ε0



3. (10 pts) Recall that 3N is the set of functions from 3 = {0, 1, 2} to N. Consider the relation 4 on 3N given by

f 4 g iff f = g or

(
f 6= g and f(k) < g(k) where k = min{i ∈ {0, 1, 2} : f(i) 6= g(i)}

)
You are given that

(
3N,4

)
is a well-ordered set. Find the order type θ = ot

(
3N,4

)
of the well-ordered set

(
3N,4

)
by

constructing an order isomorphism ϕ : 3N→ θ.

We claim that θ = ω3 is the order type of this well-ordered set. Consider the map ϕ : 3N→ θ given by

ϕ(f) = ω2 · f(0) + ω · f(1) + f(2)

for all f ∈ 3N. Because the Cantor normal form of an ordinal is unique, ϕ is injective. We also have that ϕ is surjective
because every ordinal α < ω3 will have a Cantor normal form α = ω2 · a+ ω · b+ c for some a, b, c ∈ N and consequently
ϕ(f) = α where f ∈ 3N is the function with f(0) = a, f(1) = b, f(2) = c. Thus ϕ is a bijection.

To prove that ϕ is order preserving, it is sufficient to show f 4 g implies ϕ(f) ≤ ϕ(g). Let f, g ∈ 3N. Suppose f 4 g.
Then, by definition, we have f = g, or, f 6= g and f(k) < g(k) where k = min{i ∈ {0, 1, 2} : f(i) 6= g(i)}. We split into
cases.

• Case I: In the case that f = g, we have ϕ(f) = ϕ(g).
• Case II: In the case that f 6= g and f(k) < g(k) where k = min{i ∈ {0, 1, 2} : f(i) 6= g(i)}, we split into three

cases depending on k.
– Case II.a If k = 0, then

ϕ(f) = ω2 · f(0) + ω · f(1) + f(2) < ω2 · f(0) + ω2 = ω2 · (f(0) + 1) ≤ ω2 · g(0) ≤ ω2 · g(0) + ω · g(1) + g(2) = ϕ(g)

– Case II.b If k = 1, then

ϕ(f) = ω2·f(0)+ω·f(1)+f(2) < ω2·f(0)+ω·f(1)+ω = ω2·f(0)+ω·(f(1)+1) ≤ ω2·g(0)+ω·g(1) ≤ ω2·g(0)+ω·g(1)+g(2) = ϕ(g)

– Case II.c If k = 2, then

ϕ(f) = ω2 · f(0) + ω · f(1) + f(2) < ω2 · f(0) + ω · f(1) + f(2) + 1 ≤ ω2 · g(0) + ω · g(1) + g(2) = ϕ(g)

In all cases, we obtained that ϕ(f) < ϕ(g)
Therefore, in both cases, we have ϕ(f) ≤ ϕ(g). This shows that ϕ is order preserving and hence is an order
isomorphism.

4. (10+10+5 pts) Let ω1 denote the first uncountable ordinal. A function f : ω1 → ω1 is called regressive if we have
f(0) = 0 and f(α) < α for all 1 ≤ α < ω1. For Part (a) and (b) of this question, fix a regressive function f : ω1 → ω1.
By recursion on N, define the sets (Sn)n∈N as follows:

S0 = {0} and Sn+1 = f−1 [Sn] = {α ∈ ω1 : f(α) ∈ Sn}
For example, if it is the case that f(ω) = 320 and f(320) = 0, then 320 ∈ S1 and ω ∈ S2.

a) Prove that ω1 =
⋃
n∈N

Sn.

By definition, ω1 ⊇ Sn for all n ∈ N and hence ω1 ⊇
⋃
n∈N

Sn.

To prove the other direction, let α ∈ ω1. Observe that, since f is regressive, the sequence
(
fk(α)

)
is strictly decreasing,

that is, f(α) > f(f(α)) > f(f(f(α))) > . . . unless fk(α) = 0 for some k ∈ N, after which point the sequence will be
constantly 0. Since there is no infinite strictly decreasing sequence ordinals, there indeed must be some k ∈ N such that

fk(α) = 0. But then α ∈ f−k[S0] = Sk and so α ∈
⋃
n∈N Sn. This shows that ω1 ⊆

⋃
n∈N

Sn.

b) Prove that there exists δ ∈ ω1 such that f−1(δ) = {α ∈ ω1 : f(α) = δ} is uncountable.

Since ω1 =
⋃
n∈N Sn, a countable union of countable sets is countable and ω1 is uncountable, we must have that some

Sn’s are uncountable. Consider the least k ∈ N for which Sk is uncountable. Clearly k 6= 0. Observe that

Sk = f−1 [Sk−1] =
⋃

δ∈Sk−1

f−1(δ)

Since Sk is uncountable and the index set Sk−1 is countable, as a countable union of countable sets is countable, we must
have that f−1(δ) is uncountable for some δ ∈ Sk−1.



c) Construct a surjective regressive function g : ω1 → ω1.

Consider the map g : ω1 → ω1 given by

g(α) =

{
δ if α = S(δ) for some δ ∈ ω1

0 if α is a limit or α = 0

Then g is regressive because g(0) = 0 and for all α < ω1, if α is a successor, then S(g(α)) = α and so g(α) < α; and if α
is a limit, g(α) = 0 < α. g is surjective because for any β ∈ ω1, by the definition of g, we have g(S(β)) = β.

5. (10 pts) Prove that for all ordinals α > 0, if α is a limit ordinal, then
⋃
α = α.

Let α > 0 be an ordinal. Suppose that α is a limit. We wish to show
⋃
α = α.

Let δ ∈
⋃
α. Then, by definition, δ ∈ β for some β ∈ α. Since α is transitive, β ⊆ α and so δ ∈ β ⊆ α. Hence

⋃
α ⊆ α.

Let δ ∈ α. Since α is limit ordinal, S(δ) ∈ α because otherwise we would have S(δ) = α. But now, since δ ∈ S(δ) and
S(δ) ∈ α, by definition, δ ∈

⋃
α. Hence

⋃
α ⊇ α.

6. (10 pts) Let ω1 denote the first uncountable ordinal. A subset C ⊆ ω1 is called a club (that is, closed and unbounded)
subset of ω1 if

• supn∈ω αn ∈ C for every sequence (αn)n∈ω over C with α0 < α1 < α2 < . . . and
• For every α < ω1 there exists β ∈ C such that α < β.

In other words, C is a club subset of ω1 iff C contains all limit points of its strictly increasing sequences and is unbounded
in ω1. Show that the intersection of two club subsets of ω1 is a club subset of ω1.

Let C and D be club subsets of ω1.

Let (αn)n∈ω be a sequence over C ∩D with α0 < α1 < α2 < . . . . In this case, trivially, α can be considered as a strictly
increasing sequence over C and over D separately. But because C and D are club subsets, we have supn∈ω αn ∈ C and
supn∈ω αn ∈ D. Hence supn∈ω αn ∈ C ∩D.

Let α < ω1. Since C is club, we can find some β0 ∈ C with α < β0. Since D is club, we can find some δ0 ∈ D with
β0 < δ0. Using the unboundedness of these sets and continuing recursively, we can construct a sequence (βn)n∈ω over C
and a sequence (δn)n∈ω over D such that

α < β0 < δ0 < β1 < δ1 < . . .

Observe that, since the strictly increasing sequences (βn)n∈ω and (δn)n∈ω are intertwined, we must have

sup
n∈ω

βn = θ = sup
n∈ω

δn

But since C and D are club subsets, we obtain that θ ∈ C and θ ∈ D. Hence θ ∈ C∩D. Therefore there exists θ ∈ C∩D
such that α < θ. It follows that C ∩D is a club subset of ω1.


