*********** PLEASE WRITE YOUR NAME CLEARLY USING CAPITAL LETTERS ************************************		
FULL NAME	STUDENT ID	7 questions on 4 pages, 120 minutes
		100 points in total
		Justify your answer

1. (10 pts) Prove or disprove the following: For every cardinal κ , the set

 $\{\lambda : \lambda < \kappa \text{ and } \lambda \text{ is an infinite cardinal}\}\$

has cardinality less than κ .

Hint. Recall that every infinite cardinal is of the form \aleph_{α} for some ordinal α . Think whether or not it is possible to have a fixed point of the non-decreasing class function $\alpha \mapsto \aleph_{\alpha}$.

2. (10 pts) Let κ be an infinite cardinal. We define the generalized beth numbers $\beth_{\alpha}(\kappa)$ by transfinite recursion on α as follows.

 $\exists_0(\kappa) = \kappa, \ \exists_{\alpha+1}(\kappa) = 2^{\exists_\alpha(\kappa)} \text{ for all ordinals } \alpha \text{ and } \exists_\gamma(\kappa) = \sup \{ \exists_\theta(\kappa) : \ \theta < \gamma \} \text{ for all limit ordinals } \gamma.$ In this notation, the standard beth number \exists_α is simply equal to $\exists_\alpha(\aleph_0)$.

Using transfinite induction on β , prove that $\beth_{\beta}(\beth_{\alpha}(\kappa)) = \beth_{\alpha+\beta}(\kappa)$ for all ordinals α and β .

3. (6+6+6+7=25 pts) Assuming the Generalized Continuum Hypothesis (GCH), that is, the statement $2^{\aleph_{\alpha}} = \aleph_{\alpha+1}$ for every ordinal α , find the corresponding \aleph numbers of the following computations in cardinal arithmetic. (You can use **all** identities and theorems we learned in class regarding cardinal arithmetic.)

 $a) \,\,\aleph_1^{\left(\aleph_3^{\aleph_2}\right)} =$

b)
$$\left(\aleph_2^{\aleph_{\omega_1}} + \aleph_3 + 5\right) \cdot \left(\aleph_{\omega}^{\aleph_0} + \aleph_1\right) =$$

$$c)\,\left(\aleph_{\aleph_\omega}^{\aleph_0}\right)^{\aleph_\omega}=$$

d)
$$\sum_{\alpha < \omega_1} \aleph_{\alpha} =$$

4. (10 pts) Using König's theorem, show that $\prod_{n \in \mathbb{N}} \aleph_n > \aleph_{\omega}$.

5. (10+5+5 pts) Let κ be a cardinal. We define the factorial of κ by

 $\kappa! = |\operatorname{Sym}(\kappa)|$

where $\text{Sym}(\kappa) = \{\varphi : \kappa \to \kappa \mid \varphi \text{ is a bijection}\}\$ is the set of bijections on κ . Under this definition, we have 0! = 1, 3! = 6 and the factorial behaves as traditionally expected for finite cardinals. In this question, we shall together prove that $\kappa! = 2^{\kappa}$ whenever κ is an infinite cardinal.

For the rest of the question, let κ be an infinite cardinal.

a) Construct an injection from κ^2 to Sym $(2 \times \kappa)$.

Hint. Think of the cartesian product $2 \times \kappa$ as the 2-by- κ matrix whose $n\alpha$ -th entry is the ordered pair (n, α) . Given a sequence $f \in {}^{\kappa}2$, how could you use the data encoded in f to permute the entries of this matrix?

b) Prove that $|\text{Sym}(2 \times \kappa)| \le 2^{\kappa}$

c) Conclude that $\kappa! = 2^{\kappa}$.

6. (5+10 pts)

a) State the Continuum Hypothesis without using \aleph or \beth numbers.

b) Recall that the von Neumann hierarchy of sets is defined via transfinite recursion as follows.

- $V_0 = \emptyset$
- V_{α+1} = P(V_α) for all ordinals α, and
 V_γ = U_{β<γ}V_β for all limit ordinals γ.

Recall also that the set V_{α} is transitive for every α . Prove that, for any set x and for any ordinal $\alpha, \bigcup x \in V_{\alpha}$ implies $x \in \mathcal{V}_{\alpha+2}.$

7. (10 pts) List the axioms of ZFC. Each correctly stated axiom will earn you one point.