*********** PLEASE WRITE YOUR NAME CLEARLY USING CAPITAL LETTERS ************************************			
FULL NAME	STUDENT I	[D	6 questions on 4 pages, 135 minutes
			100 points in total
			Justify your answer

1. (15 pts) Recall that the addition + and the multiplication \cdot on ordinal numbers are recursively defined as follows.

$$\begin{array}{lll} \alpha + 0 &= \alpha & & \alpha \cdot 0 &= 0 \\ \alpha + S(\beta) &= S(\alpha + \beta) & \text{and} & \alpha \cdot S(\beta) &= (\alpha \cdot \beta) + \alpha \\ \alpha + \gamma &= \sup\{\alpha + \theta : \theta \in \gamma\} & & \alpha \cdot \gamma &= \sup\{\alpha \cdot \theta : \theta \in \gamma\} \end{array}$$

for all ordinals α, β and limit ordinals γ . You are **given** that

 $\bullet~+$ is associative and

• $\alpha + \sup(X) = \sup\{\alpha + \beta : \beta \in X\}$ and $\alpha \cdot \sup(X) = \sup\{\alpha \cdot \beta : \beta \in X\}$

for all α and every non-empty set of ordinals X. Using transfinite induction on the appropriate variable, prove that

$$\alpha(\beta + \delta) = \alpha \cdot \beta + \alpha \cdot \delta$$

for all ordinals α, β, δ . Show all your steps while referring to the relevant identity and theorem for each step.

WARNING: If you use an identity involving ordinal arithmetic other than the identities given in the question, you are supposed to prove it.

2. (5+5+5+5+5=25 pts) Assuming the Generalized Continuum Hypothesis (GCH), that is, the statement

$$2^{\aleph_{\alpha}} = \aleph_{\alpha+1}$$

for every ordinal α , find the corresponding \aleph numbers of the following computations in cardinal arithmetic. You can use **all** identities and theorems we learned in class regarding cardinal arithmetic.

a) $\aleph_{\omega+3} \cdot (2^{\aleph_{\omega+1}} + 3^{\aleph_{\omega}}) =$

b) $(\aleph_{\aleph_2} + \aleph_{2^{\aleph_0}}) + ((\aleph_{\aleph_0})^{320} + 1) =$

c) $(\aleph_{\omega+1})^{\aleph_0+\aleph_\omega} =$

d) $(\aleph_{\aleph_{\omega}})^{\aleph_1} =$

 $e) \ \left| \mathcal{P}(\mathcal{P}(\mathbb{Q})) \times \mathbb{R} \right|^{\left| \mathbb{N} \mathbb{R} \right|} =$

3. (10 pts) Prove that $cf(\aleph_{\alpha}) \leq cf(\alpha)$ for all limit ordinals α .

4. (10+10 = 20 pts) Set $\mathcal{P}_{c}(\omega_{1}) = \{S \subseteq \omega_{1} : S \text{ is countable}\}$ and consider the poset $(\mathcal{P}_{c}(\omega_{1}), \subseteq)$.

a) Prove that every countable chain has an upper bound in $(\mathcal{P}_{c}(\omega_{1}), \subseteq)$ but there are uncountable chains with no upper bound in $(\mathcal{P}_{c}(\omega_{1}), \subseteq)$.

a) A subset $\mathcal{A} \subseteq \mathcal{P}_{c}(\omega_{1})$ is called an **antichain** if X and Y are not comparable for any two distinct elements $X, Y \in \mathcal{A}$. Show that there are antichains of size $2^{\aleph_{0}}$ in $(\mathcal{P}_{c}(\omega_{1}), \subseteq)$.

5. (5+5+10=20 pts)

- a) State the Continuum Hypothesis (CH).
- b) State the definition of Hartogs number. The Hartogs number of a set X is ...

c) Recall that the von Neumann hierarchy of sets is defined via transfinite recursion as follows.

- $V_0 = \emptyset$
- V_{α+1} = P(V_α) for all ordinals α, and
 V_γ = U_{β<γ}V_β for all limit ordinals γ.

Using transfinite induction, prove that $\alpha \in V_{\alpha+1}$ for all ordinals α . (You can freely use the fact that V_{α} is transitive for all ordinals α .)

6. (10 pts) Recall that Cantor's theorem states that $|X| < |\mathcal{P}(X)|$ for any set X. Prove Cantor's theorem.