
FULL NAME	STUDENT ID	5 questions on 5 pages 100 points in total Justify your answer

<u>1.</u> (8 pts) Using transfinite induction on γ , prove that for all ordinals α, β, γ if $\alpha \leq \beta$, then $\alpha + \gamma \leq \beta + \gamma$.

2. $(4 \times 9 = 36 \text{ pts})$ Let \mathcal{I} denote the set of non-decreasing functions from ω to ω_1 , that is,

$$\mathcal{I} = \{ f \in {}^{\omega}\omega_1 : \forall i \in \omega \ f(i) \le f(i+1) \}$$

Consider the relation E on \mathcal{I} given by

 $h \to k$ if and only if $\sup\{h(i) : i \in \omega\} = \sup\{k(i) : i \in \omega\}$

for all $h, k \in \mathcal{I}$.

- a) Show that E is an equivalence relation.
- b) Show that \mathcal{I}/E is of cardinality \aleph_1 .
- c) Find $g \in \mathcal{I}$ such that $[g]_E$ is finite.
- d) Find $k \in \mathcal{I}$ such that $[k]_E$ is of cardinality 2^{\aleph_0} . **OR** d') Find $h \in \mathcal{I}$ such that $[h]_E$ is countably infinite.

3. $(3 \times 8 = 24 \text{ pts})$ Assuming the Generalized Continuum Hypothesis (GCH), that is, the statement $2^{\aleph_{\alpha}} = \aleph_{\alpha+1}$ for every ordinal α , find the corresponding \aleph numbers of the following computations in cardinal arithmetic. (You can use **all** identities and theorems we learned in class regarding cardinal arithmetic.)

- $a)\,\left(\aleph_{\aleph_1}\right)^{\aleph_{320}}=$
- b) $320^{\aleph_{\omega}} + \aleph_{\omega}^{320} =$
- c) $|\mathcal{P}(\mathbb{R})| \cdot |^{\omega_1} \omega| =$

4. (8+8 = 16 pts)

- a) Prove or disprove: There exists an infinite cardinal number κ such that $\kappa = cf(\kappa)^{\kappa}$.
- b) Prove or disprove: There exists an infinite cardinal number κ such that $\aleph_\kappa=2^\kappa.$

5. (8 + 8= 16 pts) Let $f: \omega_1 \to \omega_1$ be a function such that

- $\alpha \leq f(\alpha)$ for all $\alpha \in \omega_1$, and
- $f(\sup(A)) = \sup\{f(\alpha) : \alpha \in A\}$ for all non-empty countable subsets $A \subseteq \omega_1$.
- a) Prove that for all $\beta \in \omega_1$ there exists $\eta \in \omega_1$ such that $\beta \leq \eta$ and $f(\eta) = \eta$.
- b) Show that the set of fixed points of f is uncountable, that is, $\{\alpha \in \omega_1 : f(\alpha) = \alpha\}$ is uncountable.