METU Department of Mathematics, Math 320, Final Exam, July 4, 2021, 09:30

$* * * * * * * * * * * * * ~ P L E A S E ~ W R I T E ~ Y O U R ~ N A M E ~ C L E A R L Y ~ U S I N G ~ C A P I T A L ~ L E T T E R S ~ * * * * * * * * * * * * * ~$		
F U L L N A M E	S T U D E N T I D	5 questions on 5 pages 100 points in total Justify your answer

1. (8 pts) Using transfinite induction on γ, prove that for all ordinals α, β, γ if $\alpha \leq \beta$, then $\alpha+\gamma \leq \beta+\gamma$.
2. $(4 \times 9=36$ pts $)$ Let \mathcal{I} denote the set of non-decreasing functions from ω to ω_{1}, that is,

$$
\mathcal{I}=\left\{f \in{ }^{\omega} \omega_{1}: \forall i \in \omega f(i) \leq f(i+1)\right\}
$$

Consider the relation E on \mathcal{I} given by

$$
h E k \text { if and only if } \sup \{h(i): i \in \omega\}=\sup \{k(i): i \in \omega\}
$$

for all $h, k \in \mathcal{I}$.
a) Show that E is an equivalence relation.
b) Show that \mathcal{I} / E is of cardinality \aleph_{1}.
c) Find $g \in \mathcal{I}$ such that $[g]_{E}$ is finite.
d) Find $k \in \mathcal{I}$ such that $[k]_{E}$ is of cardinality $2^{\aleph_{0}}$. OR $\left.d^{\prime}\right)$ Find $h \in \mathcal{I}$ such that $[h]_{E}$ is countably infinite.
3. $(3 \times 8=24$ pts $)$ Assuming the Generalized Continuum Hypothesis (GCH), that is, the statement $2^{\aleph_{\alpha}}=\aleph_{\alpha+1}$ for every ordinal α, find the corresponding \aleph numbers of the following computations in cardinal arithmetic. (You can use all identities and theorems we learned in class regarding cardinal arithmetic.)
a) $\left(\aleph_{\aleph_{1}}\right)^{\aleph_{320}}=$
b) $320^{\aleph} \omega+\aleph_{\omega}^{320}=$
c) $|\mathcal{P}(\mathbb{R})| \cdot\left|{ }^{\omega_{1}} \omega\right|=$
4. $(8+8=16 \mathrm{pts})$
a) Prove or disprove: There exists an infinite cardinal number κ such that $\kappa=c f(\kappa)^{\kappa}$.
b) Prove or disprove: There exists an infinite cardinal number κ such that $\aleph_{\kappa}=2^{\kappa}$.
5. $(8+8=16$ pts $)$ Let $f: \omega_{1} \rightarrow \omega_{1}$ be a function such that

- $\alpha \leq f(\alpha)$ for all $\alpha \in \omega_{1}$, and
- $f(\sup (A))=\sup \{f(\alpha): \alpha \in A\}$ for all non-empty countable subsets $A \subseteq \omega_{1}$.
a) Prove that for all $\beta \in \omega_{1}$ there exists $\eta \in \omega_{1}$ such that $\beta \leq \eta$ and $f(\eta)=\eta$.
b) Show that the set of fixed points of f is uncountable, that is, $\left\{\alpha \in \omega_{1}: f(\alpha)=\alpha\right\}$ is uncountable.

