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(10+15+15 pts) 1. Consider the matrix A =

2 3 3

3 2 3

3 3 2

 ∈ M3×3(R).

(a) Without doing any computations, explain why A is diagonalizable. Since A is a real

symmetric matrix, by a theorem we learned in class, A is diagonalizable.

You are given that the eigenvalues of A are λ1 = 8 and λ2 = −1 and that the corresponding

eigenspaces are

W1 =


xy
z

 ∈ M3×1(R) : x = y = z

 and W2 =


xy
z

 ∈ M3×1(R) : x+ y + z = 0


(b) Find an orthogonal matrix P ∈ M3×3(R) such that P−1AP is diagonal. Make sure

that you explain why the matrix that you constructed is orthogonal. The dimensions

of the eigenspaces are dimR(W1) = 1 and dimR(W2) = 2. Therefore, we wish to choose

w1 ∈ W1 and w2, w3 ∈ W2 so that {w1, w2, w3} is an orthonormal basis for M3×1(R).

Choose, for example, w1 =

1/
√
3

1/
√
3

1/
√
3

 w2 =

−1/
√
2

0

1/
√
2

 w3 =

 1/
√
6

−2/
√
6

1/
√
6

.
Note. These vectors are not unique and can be chosen in the following way: Pick an

arbitrary vector in W1 and normalize it to choose w1. Pick two linearly independent

vectors in W2, apply Gram-Schmidt to orthogonalize them and then, normalize them to

choose w2, w3. Now, set P =

1/
√
3 −1/

√
2 1/

√
6

1/
√
3 0 −2/

√
6

1/
√
3 1/

√
2 1/

√
6

. Since the columns of P form

an orthonormal set of vectors, P is orthogonal. Moreover, P−1AP =

8 0 0

0 −1 0

0 0 −1

.
(c) Find a cube root of A, that is, find a matrix B ∈ M3×3(R) such that B3 = A.

Set B = P

2 0 0

0 −1 0

0 0 −1

P−1. Then, by Part (b), B3 = P

2 0 0

0 −1 0

0 0 −1


3

P−1 = A.



(15 pts) 2. Recall that every matrix A ∈ M3×3(C) defines a (sesqui-linear) form fA on

M3×1(C) via the rule f(X, Y ) = Y ∗AX. Complete the blanks appropriately so that the

form fB defined by the matrix B ∈ M3×3(C) is a positive form, that is, an inner product.

M =

1/2 2i 0

−2i 10 0

0 0 1


Remark. For this question only, there shall be no partial credits and you shall receive full or no points for each

blank. Hence, you need not show your computation but only need to fill in the blanks with appropriate scalars.

(15+15+15 pts) 3. Consider the set V = {(an)n∈N ∈ RN : ∃m ∈ N ∀n ≥ m an = 0} of

real-valued sequences that are eventually zero. Then V is an inner product space over R
where the vector addition and the scalar multiplication are usual component-wise addition

and multiplication, and the inner product is given by

⟨(an)n∈N | (bn)n∈N⟩ =
∞∑
n=0

anbn

Consider the left-shift operator L : V → V given by L
(
(an)n∈N

)
= (an+1)n∈N. In other

words, we have L(a0, a1, a2, . . . ) = (a1, a2, a3, . . . ).

(a) You are given that L∗ exists. Find L∗ and verify that the linear operator you

propose is indeed L∗ using the definition of adjoint. By definition, L∗ is the unique

linear operator on V such that ⟨L ((an)n∈N) | (bn)n∈N⟩ = ⟨(an)n∈N | L∗ ((bn)n∈N)⟩ for

all (an)n∈N, (bn)n∈N ∈ V . Consider the right-shift operator R : V → V given by

R(a0, a1, a2, a3, . . . ) = (0, a0, a1, a2, . . . ). Then R is a linear operator on V and more-

over, ⟨L ((an)n∈N) | (bn)n∈N⟩ =
∑∞

n=0 an+1bn = a1b0+a2b1+ · · · = a00+a1b0+a2b1+ · · · =
⟨(an)n∈N | (0, b0, b1, b2, . . . )⟩ = ⟨(an)n∈N | R ((bn)n∈N)⟩ for all (an)n∈N, (bn)n∈N ∈ V . Thus

L∗ = R.

Remark. Although we defined normality of a linear operator for finite dimensional inner product spaces, that

definition indeed extends to arbitrary inner product spaces as long as the adjoint of the operator exists.

(b) Determine whether or not L is normal. Observe that

LL∗ (1, 0, 0, 0, . . . ) = L (L∗ (1, 0, 0, 0, . . . )) = L(0, 1, 0, 0, . . . ) = (1, 0, 0, 0, . . . )

L∗L (1, 0, 0, 0, . . . ) = L∗ (L (1, 0, 0, 0, . . . )) = L∗(0, 0, 0, 0, . . . , ) = (0, 0, 0, 0, . . . )

Thus LL∗ ̸= L∗L on V . By definition, this means that L is not normal.

Consider U : V → V given by U(a0, a1, a2, a3, a4, a5, . . . ) = (a1, a0, a3, a2, a5, a4 . . . ), that

is, given a sequence a ∈ V , the map U permutes the entries a2k and a2k+1 for each k ∈ N.
You are given that U is a vector space isomorphism.

(c) Show that U is a self-adjoint unitary operator. We have ⟨U ((an)n∈N) | (bn)n∈N⟩ =

⟨(a1, a0, a3, a2, a5, a4 . . . ) | (bn)n∈N⟩ = a1b0 + a0b1 + a3b2 + b2a3 + · · · = a0b1 + a1b0 +

b2a3 + a3b2 + · · · = ⟨(an)n∈N | (b1, b0, b3, b2, b5, b4 . . . )⟩ = ⟨(an)n∈N | U ((bn)n∈N)⟩ for all

(an)n∈N, (bn)n∈N ∈ V . Observe that, the terms in the sum can be rearranged in the third

equality because this infinite sum is indeed a finite sum due to terms being eventually

zero. Now, by definition of adjoint, we have U = U∗, that is, U is self-adjoint. Observe

that U2 = I. But then, UU∗ = U∗U = U2 = I which implies that U is a unitary operator.

(Alternatively, since U is given to be a vector space isomorphism, one can show that U is

unitary by showing that it preserves inner product.)
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