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(13+15+15+15+15 pts) 1. Consider the set R[x] of polynomials with coefficients in

R as a vector space over R together with the standard operations.

For each n ∈ N+, consider the subspace Pn = {f ∈ R[x] : deg(f) < n} ∪ {0} with

dimR(Pn) = n and let D : R[x] → R[x] be the differentiation operator.

(a) Let f ∈ R[x] be non-zero. Show that the set Sf = {Dk(f) : 0 ≤ k ≤ deg(f)} is

linearly independent.

Set m = deg(f), say, f(x) =
∑m

i=0 βix
i. Observe that for each 0 ≤ k ≤ m, we have

deg(Dk(f)) = m − k and the coefficient of xm−k in Dk(f) is equal to
(
m
k

)
k!βm. Now let

α0, . . . , αm ∈ R and suppose that α0D
0(f) + · · ·+ αmD

m(f) = 0. By our observation on

degrees, the coefficient of xm on the left hand side equals α0βm. Since βm ̸= 0, we have

that α0 = 0. It follows that α1D
1(f) + · · · + αmD

m(f) = 0. Similarly, the coefficient

of xm−1 on the left hand side equals α1mβm. Since mβm ̸= 0, we have that α1 = 0. It

follows that α2D
2(f) + · · · + αmD

m(f) = 0. Continuing in this fashion inductively, we

obtain that α0 = · · · = αm = 0. Therefore D0(f), . . . , Dm(f) are linearly independent.

(b) Prove that any D-invariant subspace of R[x] with dimension n ∈ N+ is equal to Pn.

Let n ∈ N+ and let V ⊆ R[x] be a D-invariant subspace of dimension n. Let 0 ̸= f ∈ V .

We shall show that deg(f) < n. Since V is D-invariant, Sf = {D0(f), . . . , Dm(f)} ⊆ V

where m = deg(f). By Part (a), Sf is linearly independent. Since V is of dimension n,

we must have m+1 = |Sf | ≤ n and hence m < n. It follows that V ⊆ Pn. However, both

subspaces V and Pn have dimension n and hence, V = Pn.

In the rest of this question, consider R[x] as an inner product space over R with the inner

product ⟨f | g⟩ =
∫ 1

−1

f(x)g(x)dx. Let W = span({x2n+1 : n ∈ N}) = ⟨x, x3, x5, . . . ⟩.

(c) Let k, ℓ ∈ N. Show that xk and xℓ are orthogonal if and only if k and ℓ have different

parity. Using this fact, conclude that D(W ) ⊆ W⊥.

Suppose that k and ℓ have different parity. Then k+ ℓ is odd and xk+ℓ is an odd function.

It follows that 0 =
∫ 1

−1
xk+ℓdx =

∫ 1

−1
xkxℓdx = ⟨xk | xℓ⟩ and hence, xk and xℓ are

orthogonal. Now suppose that k and ℓ have the same parity. Then k + ℓ is even. It

follows that 2
k+ℓ+1

=
∫ 1

−1
xk+ℓdx =

∫ 1

−1
xkxℓdx = ⟨xk | xℓ⟩ and hence, xk and xℓ are not

orthogonal. Since W = ⟨x, x3, x5, . . . ⟩, we have that D(W ) = ⟨D(x), D(x3), D(x5), . . . ⟩ =
⟨1, 3x2, 5x4, . . . ⟩ = ⟨1, x2, x4, . . . ⟩. Let g ∈ D(W ), say, g(x) =

∑m
i=0 βix

2i. Then, for any

f ∈ W , say, f(x) =
∑n

j=0 αjx
2j+1, we have ⟨g | f⟩ =

∑m
i=0

∑n
j=0 αjβi⟨x2i | x2j+1⟩ = 0.

Hence g is orthogonal to every vector in W . It follows that D(W ) ⊆ W⊥



(d) Show that R[x] = W ⊕D(W ). Using this fact, conclude that D(W ) = W⊥.

Let f ∈ R[x], say, f(x) =
∑n

i=0 αix
i. Consider fodd(x) =

∑
0≤2i+1≤n α2i+1x

2i+1 and

feven(x) =
∑

0≤2i≤n α2ix
2i. Observe that fodd ∈ W and feven ∈ D(W ). Moreover, we

have f(x) = fodd(x) + feven(x). It follows that R[x] = W + D(W ). On the other hand,

W ∩D(W ) = {0} since there is no non-zero polynomial whose monomials are both even

and odd degree. Thus R[x] = W ⊕D(W ).

For the conclusion, let g ∈ W⊥. As above, we can write g as g(x) = godd(x) + geven(x)

where godd ∈ W and geven ∈ D(W ). Since godd ∈ W and g ∈ W⊥, we have

0 = ⟨godd | g⟩ = ⟨godd | godd + geven⟩ = ⟨godd | godd⟩+ ⟨godd | geven⟩ = ⟨godd | godd⟩ = ∥godd∥2

and hence godd = 0. It follows that g = geven ∈ D(W ). This shows that W⊥ ⊆ D(W ).

We already proved D(W ) ⊆ W⊥ in Part (b). Consequently, D(W ) = W⊥.

(e) Show that we have

(∫ 1

−1

x260f(x)dx

)2

+

(∫ 1

−1

x261f(x)dx

)2

≤ 262

∫ 1

−1

f(x)2dx for

every f ∈ R[x]. By Part (b), the set {x260, x261} is orthogonal and hence, by Bessel’s

inequality, for every f ∈ R[x], we have |⟨f |x260⟩|2

∥x260∥2 + |⟨f |x261⟩|2

∥x261∥2 ≤ ∥f∥2. By an easy calculation,

we have that ∥x260∥2 = 2
521

and ∥x261∥2 = 2
523

. Therefore, the inequality above implies

that (∫ 1

−1

x260f(x)dx

)2

2/521
+

(∫ 1

−1

x261f(x)dx

)2

2/523
≤ ∥f∥2

Thus
(∫ 1

−1
x260f(x)dx

)2

+
(∫ 1

−1
x261f(x)dx

)2

≤ ∥f∥2 =
∫ 1

−1

f(x)2dx ≤ 262

∫ 1

−1

f(x)2dx.

(12 pts) 2. Consider R3 with the standard inner product. Fill in the blanks below to

determine vectors v1, v2, v3 ∈ R3 so that an application of the Gram-Schmidt orthog-

onalization process to the vectors v1, v2, v3 ∈ R3 in this order results in the vectors

(1, 1, 1), (−1, 0, 1), (1,−2, 1) ∈ R3.

Remark. For this question only, there shall be no partial credits and hence, you need not show your computation

but only need to fill in the blanks with appropriate scalars.

v1 = (1, 1, 1)

v2 = (−1, 0, 1) + (5, 5, 5)

v3 = (1,−2, 1) + (2, 6, 10)

Recall the following basic facts: Any odd degree polynomial in R[x] has a root in R and

any quadratic polynomial polynomial in R[x] with no roots in R has distinct roots in C.
(15 pts) 3. Let A ∈ M3×3(R) be not trianguable over R. Show that A is diagonalizable

over C. Consider the characteristic polynomial p(x) and the minimal polynomial m(x)

of the matrix A. Since deg(p(x)) = 3, the polynomial p(x) has at least one root in R. If
p(x) had more than one root in R, then p(x) would be a product of linear factors in R[x]
and, since m(x) | p(x) by the Cayley-Hamilton theorem, m(x) would a product of linear

factors in R[x], implying that A is trianguable over R, which we know is not the case.

Thus p(x) has exactly one root in R. But then, by the given fact, p(x) must have three

distinct roots in C. It now follows from m(x) | p(x) that m(x) is a product of distinct

linear factors in C[x] and hence A is diagonalizable over C.
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