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(15+13 pts) 1. Consider the set V = {(an)n∈N : ∀n ∈ N an ∈ R and limn→∞ an = 0} of real-valued

sequences converging to 0. Then V is a vector space over R where the vector addition and the scalar

multiplication are given by

(an)n∈N + (bn)n∈N = (an + bn)n∈N and α · (an)n∈N = (αan)n∈N

Consider the linear operator T : V → V given by T
(
(an)n∈N

)
= (an+1)n∈N. In other words, we have

T (a0, a1, a2, . . . ) = (a1, a2, a3, . . . ).

(a) Prove that if λ ∈ R is an eigenvalue of T , then |λ| < 1.

Suppose λ ∈ R is an eigenvalue of T , say, T (a0, a1, a2 . . . ) = λ · (a0, a1, a2 . . . ) for some eigenvector

a = (a0, a1, . . . ) ∈ V . Then we have (a1, a2, a3, . . . ) = (λa0, λa1, λa2, . . . ) and hence an+1 = λan for all

n ∈ N. It now follows from induction that an = λna0 for all n ∈ N. Since a ∈ V , we have

lim
n→∞

an = lim
n→∞

λna0 = a0 lim
n→∞

λn = 0

As a is an eigenvector, we have a 6= 0 and this implies that a0 6= 0. Consequently, limn→∞ λn = 0. If it

were that |λ| ≥ 1, we would have that limn→∞ λn 6= 0. Therefore |λ| < 1.

(b) Prove that f(T ) 6= 0 for any non-zero polynomial f ∈ R[x], where 0 is the zero operator on V .

Explain why this does not contradict the existence of minimal polynomial of a linear operator.

Observe that T k(a0, a1, a2, . . . ) = (ak, ak+1, ak+2, . . . ) for all k ∈ N. Let f(x) =
∑n

i=0 αkx
k ∈ R[x] be a

non-zero polynomial. Then, for all (a0, a1, a2, . . . ) ∈ V , we have that

f(T )(a0, a1, a2, . . . ) =

(
n∑

k=0

αkT
k

)
(a0, a1, a2, . . . ) =

n∑
k=0

αk(ak, ak+1, ak+2, . . . )

and consequently, the first entry of f(T )(a0, a1, a2, . . . ) equals
∑n

k=0 αkak. Now consider the sequence

(α0, α1, . . . , αn, 0, 0, . . . ) ∈ V . Then f(T )(α0, α1, . . . , αn, 0, 0, . . . ) 6= 0 since its first entry equals∑n
k=0 α

2
k > 0. Thus f(T ) 6= 0. This does not contradict the existence of minimal polynomial be-

cause we have proven that such polynomials exist in the finite dimensional case. However, V is infinite

dimensional (and it is not necessary that the ideal of polynomials annihilating T is non-zero in this case.)

(12 pts) 2. Let V be a vector space over the field Z2 = {0, 1} with two elements and let T : V → V be

a linear operator on V . Determine whether or not the set
{
f ∈ Z2[x] : f2(T ) = 0

}
is an ideal of Z2[x],

where f2(T ) = (f · f)(T ) = f(T ) ◦ f(T ).

We shall prove that the set S =
{
f ∈ Z2[x] : f2(T ) = 0

}
is an ideal. First, observe that S 6= ∅ since S

contains the zero polynomial. Let f, g ∈ S. Since (−f)2 = f2, we have that (−f)2(T ) = f2(T ) = 0 and

so −f ∈ S. Moreover, since 2 = 0 in Z2 and f2(T ) = g2(T ) = 0, we have that (f + g)2 = f2 + 2fg+ g2 =

f2 + g2 and that (f + g)2(T ) = (f2 + g2)(T ) = f2(T ) + g2(T ) = 0 + 0 = 0. Thus f + g ∈ S. This shows

that S is a subgroup of (Z2[x],+). Now let f ∈ S and g ∈ Z2[x]. Then, since f2(T ) = 0, we have that

(g · f)2(T ) = (f · g)2(T ) = (f2 · g2)(T ) = f2(T ) ◦ g2(T ) = 0 ◦ g2(T ) = 0

Hence f · g = g · f ∈ S. It follows that S is an ideal.



(15+15+15+15 pts) 3. Consider the matrix A =

 4 2 0

2 4 0

−2 −2 2

 ∈M3×3(R).

(a) Show that the eigenvalues of the matrix A are λ1 = 2 and λ2 = 6 by finding its characteristic

polynomial.

The characteristic polynomial is

det(xI −A) = det

x− 4 −2 0

−2 x− 4 0

2 2 x− 2

 = (x− 4) det

[
x− 4 0

2 x− 2

]
− (−2) det

[
−2 0

2 x− 2

]

= (x− 4)2(x− 2) + 2(−2)(x− 2) = (x− 2)(x2 − 8x+ 16− 4)

= (x− 2)(x2 − 8x+ 12) = (x− 2)2(x− 6)

So the eigenvalues, being the roots of the characteristic polynomial, are λ1 = 2 and λ2 = 6.

(b) Find the dimensions of the eigenspaces W1 and W2 corresponding to the eigenvalues λ1 = 2 and

λ2 = 6 respectively.

We need to find the row reduced echelon forms of the matrices 2I − A and 6I − A. Applying Gaussian

elimination for 2I −A, we obtain

2I −A =

−2 −2 0

−2 −2 0

2 2 0

 −−−−−−−−−−−−−−−−−−−−−−−−−−−→
−R1+R2→R2, R1+R3→R3, −1/2R1→R1

1 1 0

0 0 0

0 0 0


Since the rank of this matrix is 1, the corresponding eigenspace W1 = {(x, y, z) ∈ R3 : x + y = 0}
has dimension 2. Choosing two linearly independent elements of W1, we can pick a basis for W1 as

B1 = {(1,−1, 0), (0, 0, 1)}. Applying the same procedure for 6I −A, we obtain

6I −A =

 2 −2 0

−2 2 0

2 2 4

 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
R1+R2→R2, −R1+R3→R3, 1/2R1→R1, 1/4R3→R3, R3+R1→R1

1 0 1

0 0 0

0 1 1


Since the rank of this matrix is 2, the corresponding eigenspaceW2 = {(x, y, z) ∈ R3 : x+z = 0, y+z = 0}
has dimension 1. Choosing a vector in W2, we obtain that B2 = {(1, 1,−1)} is a basis for W2.

Note. It is not necessary to find explicit bases for these eigenspaces in this part to find the dimensions

of these eigenspaces. However, since we shall need these in Part (c), we found them here.

(c) If exists, find a matrix P ∈ M3×3(R) such that P−1AP =

2 0 0

0 6 0

0 0 2

. If such a matrix does not

exist, explain why this is the case.

Since the dimensions of the eigenspaces 2 + 1 = 3 add up to the dimension of the underlying vector space

R3, we know that A is diagonalizable. Indeed, choosing the rows of P as linearly independent eigenvectors

corresponding to 2, 6 and 2, for example, P =

 1 1 0

−1 1 0

0 −1 1

, we will have P−1AP =

2 0 0

0 6 0

0 0 2

.

(d) Find the minimal polynomial of A. First, we know that the minimal polynomial must have all eigen-

values as its roots. Moreover, by the Cayley-Hamilton theorem, we know that the minimal polynomial

must divide the characterisctic polynomial (x − 2)2(x − 6). Therefore the minimal polynomial equals

either f(x) = (x− 2)(x− 6) or g(x) = (x− 2)2(x− 6). Since

P−1f(A)P = f
(
P−1AP

)
= f


2 0 0

0 6 0

0 0 2


 =

0 0 0

0 4 0

0 0 0

 ·
−4 0 0

0 0 0

0 0 −4

 =

0 0 0

0 0 0

0 0 0


we must have that f(A) is the zero matrix, and hence the minimal polynomial is f(x) = (x− 2)(x− 6).
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