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(8+6+6+10+10+10=50 pts) 1. In some parts of this question, you will be given

some information. While answering each part, you are supposed to only use the informa-

tion given including and up to that part. Let A ∈ M4×4(R).
(a) Suppose that the characteristic polynomial of A is p(x) = (x − 2)2(x − 6)2. List

all four different possibilities for the Jordan normal form J of A that are different up to

changing the places of the relevant Jordan blocks.

J1 =


2 0 0 0

0 2 0 0

0 0 6 0

0 0 0 6

 J2 =


2 0 0 0

0 2 0 0

0 0 6 1

0 0 0 6

 J3 =


2 1 0 0

0 2 0 0

0 0 6 0

0 0 0 6

 J4 =


2 1 0 0

0 2 0 0

0 0 6 1

0 0 0 6


(b) Suppose furthermore that dimR(ker(A−2I)) = 1. Under this additional assumption,

which of the four possibilities in Part (a) could be the Jordan normal form J of A?

Since dimR(ker(A − 2I)) = dimR(ker(J − 2I)), we check the relevant dimensions. Af-

ter computing the row ranks of relevant matrices, we see that dimR(ker(J1 − 2I)) =

dimR(ker(J2 − 2I)) = 2 and dimR(ker(J3 − 2I)) = dimR(ker(J4 − 2I)) = 1. Hence, among

the four possibilities, only J3 and J4 could be the Jordan form.

(c) Suppose furthermore that dimR(ker(A − 6I)) = 2. If possible, determine the Jor-

dan normal form J of A. If it is not possible to determine J uniquely with the given

information, explain why.

As in Part (b), we observe that dimR(ker(A− 6I)) = dimR(ker(J − 6I)) and compare the

relevant dimensions. Since dimR(ker(J3−6I)) = 2 and dimR(ker(J4−6I)) = 1, we obtain

that the Jordan form J is uniquely determined as J = J3.

For the rest of this question, suppose that A =


2 1 0 0

0 2 0 0

4 −1 6 0

0 4 0 6

. Then A satisfies all

assumptions in Part (a)-(c) and has the Jordan normal form J .



Let W1 and W2 be the eigenspaces of A corresponding its eigenvalues λ1 = 2 and λ2 = 6

respectively.

(d) Find a basis for the eigenspace W1.

Applying Gaussian elimination, we obtain A − 2I =


0 1 0 0

0 0 0 0

4 −1 4 0

0 4 0 4

 −→


1 0 1 0

0 1 0 0

0 0 0 1

0 0 0 0


which corresponds to the system x+ z = 0, y = 0, t = 0 and hence we have

W1 =




x

0

−x

0

 ∈ M4×1(R) : x ∈ R

. A basis for this subspace is B =




1

0

−1

0


.

You are given that W2 =



0

0

z

t

 ∈ M4×1(R) : z, t ∈ R

.

(e) Find P ∈ M4×4(R) such that J = P−1AP . By a theorem, we know that such an

invertible P must exist. Let v1, v2, v3, v4 ∈ M4×1(R) be the columns of P . Then the

equality PJ = AP gives Av1 = 2v1, Av2 = v1 + 2v2, Av3 = 6v3, Av4 = 6v4. Therefore

v3, v4 must be linearly independent eigenvectors for λ2 = 6 and v1 must be an eigenvector

for λ1 = 2 so that the equation Av2 = v1 + 2v2 has a solution for v2. Having computed

the eigenspaces, choose v3 =


0

0

1

0

, v4 =

0

0

0

1

 and v1 =


1

0

−1

0

. We wish to be able to solve

for (A− 2I)v2 = v1. Applying Gaussian elimination to the augmented system, we obtain

that v2 =


0

1

0

−1

 is a solution. Therefore P =


1 0 0 0

0 1 0 0

−1 0 1 0

0 −1 0 1

 is as desired.

It follows from the Jordan-Chevalley decomposition theorem that A can be written as

A = D +N where D is a diagonalizable matrix and N is a nilpotent matrix.

(f) Find D and N , possibly by expressing them in terms of P and other matrices. Make

sure that you explain why the matrices D and N you propose are diagonalizable and

nilpotent, respectively.

Set D = PD̂P−1 and N = PN̂P−1 where D̂ =


2 0 0 0

0 2 0 0

0 0 6 0

0 0 0 6

 and N̂ =


0 1 0 0

0 0 0 0

0 0 0 0

0 0 0 0

.
Then D is diagonalizable since P is invertible and N is nilpotent since N2 = PN̂2P−1 =

P04×4P
−1 = 04×4. Moreover, since J = D̂ + N̂ and J = P−1AP , we have that

A = PJP−1 = P (D̂ + N̂)P−1 = PD̂P−1 + PN̂P−1 = D +N
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(10+5+5=20 pts) 2. Consider the linear operator T : M2×1(R) → M2×1(R) given by

T (X) = MX whereM =

[
4 1

1 4

]
andM2×1(R) is endowed with its standard inner product

⟨X | Y ⟩ = Y ∗X. Then T is a self-adjoint nonnegative operator on M2×1(R) and has a

spectral resolution. You are given that the eigenvalues of T are λ1 = 3 and λ2 = 5 and

the corresponding eigenspaces are

W1 =

{[
x

−x

]
∈ M2×1(R) : x ∈ R

}
and W2 =

{[
x

x

]
∈ M2×1(R) : x ∈ R

}
.

(a) Find the linear operators E1 : M2×1(R) → M2×1(R) and E2 : M2×1(R) → M2×1(R)
such that T = 3E1 + 5E2 is the spectral resolution of T .

We know from the Spectral Theorem that E1 and E2 are the orthogonal projection maps

onto W1 and W2 respectively. Since W1 is 1-dimensional, the orthogonal projection E1

can be computed by projecting a vector along the unit vector

[
1/
√
2

−1/
√
2

]
∈ W1. It follows

that

E1

([
a

b

])
=

〈[
a

b

]
|

[
1/
√
2

−1/
√
2

]〉[
1/
√
2

−1/
√
2

]
=

[
a−b
2

−a−b
2

]
Similarly, since W2 is 1-dimensional, the orthogonal projection E2 can be computed by

projecting a vector along the unit vector

[
1/
√
2

1/
√
2

]
∈ W2 and hence

E2

([
a

b

])
=

〈[
a

b

]
|

[
1/
√
2

1/
√
2

]〉[
1/
√
2

1/
√
2

]
=

[
a+b
2

a+b
2

]

(b) Find the linear operator S : M2×1(R) → M2×1(R) that is the square-root of the

nonnegative operator T , that is, S2 = T .

Set S =
√
3E1 +

√
5E2. Then, since E2

1 = E1, E
2
2 = E2 and E1E2 = E2E1 = 0, we have

S2 = (
√
3E1 +

√
5E2)

2 = 3E2
1 +

√
3
√
5E1E2 +

√
3
√
5E2E1 + 5E2

2 = 3E1 + 5E2 = T

(c) Explicitly find a matrix N ∈ M2×2(R) such that N2 = M .

Consider N = [S]B where B =

{[
1

0

]
,

[
0

1

]}
is the standard ordered basis. Then we know

N2 = [S]2B =
[
S2
]
B = [T ]B = M

Computing N explicitly, we obtain

N =


√
3 +

√
5

2

−
√
3 +

√
5

2
−
√
3 +

√
5

2

√
3 +

√
5

2


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(7+8 pts) 3. (a) Disprove the following: For any inner product space V and for any

subspaces W,Z ⊆ V , if V = W ⊕ Z, then Z = W⊥.

We provide a counterexample. Consider V = R2 with its standard inner product and

choose W = {(x, 0) : x ∈ R} and Z = {(x, x) : x ∈ R}. Then we have V = W ⊕ Z

however Z ̸= W⊥ = {(0, x) : x ∈ R}.

(b) Prove the following: For any inner product space V and for any subspaces W,Z ⊆ V ,

if V = W ⊕ Z and Z ⊆ W⊥, then Z = W⊥.

Let V be an inner product space and W,Z ⊆ V be subspaces. Assume that V = W ⊕ Z

and Z ⊆ W⊥. Since we already have Z ⊆ W⊥, we wish to prove W⊥ ⊆ Z. Let ŵ ∈ W⊥.

Since V = W ⊕ Z, ŵ = w + z for some w ∈ W and z ∈ Z ⊆ W⊥. Since ŵ, z ∈ W⊥, we

have

0 = ⟨w | ŵ⟩ = ⟨w | w + z⟩ = ⟨w | w⟩+ ⟨w | z⟩ = ⟨w | w⟩

It follows that w = 0 and hence ŵ = w + z = z ∈ Z.

(7+8 pts) 4. For the parts of this question, similar versions of which were asked as

midterm questions during the semester, no partial credit will be given unless the answer

is detailed and completely correct.

(a) Let A ∈ M2×2(R) be not trianguable over R. Show that A is diagonalizable over C.

Let m(x) be the minimal polynomial of A. Since A is not trianguable over R, m(x) is not

a product of linear factors in R[x]. But then, since deg(m(x)) ≤ 2, it must be a quadratic

irreducible polynomial over R. It follows that m(x) = (x − α)(x − β) for some distinct

α, β ∈ C. (Indeed, we must have α = β.) It follows that A is diagonalizable over C.

(b) Consider the vector space V = {(an)n∈N ∈ RN : ∃m ∈ N ∀n ≥ m an = 0} together

with the inner product given by

⟨(an)n∈N | (bn)n∈N⟩ =
∞∑
n=0

anbn

Consider U : V → V given by U(a0, a1, a2, a3, a4, a5, . . . ) = (a1, a0, a3, a2, a5, a4 . . . ), i.e.,

given a sequence a ∈ V , the map U swaps the entries a2k and a2k+1 for each k ∈ N. You
are given that U is a vector space isomorphism. Prove that U is self-adjoint using the

definition of adjoint map.

Let (an)n∈N, (bn)n∈N ∈ V . Then we have ⟨U(an)n∈N | (bn)n∈N⟩ = ⟨(a1, a0, a3, a2, . . . ) |
(b0, b1, b2, b3, . . . )⟩ = a1b0 + a0b1 + a3b2 + a2b3 + · · · = a0b1 + a1b0 + a2b3 + a3b2 + · · · =
⟨(a0, a1, a2, a3, . . . ) | (b1, b0, b3, b2, . . . )⟩ = ⟨(an)n∈N | U(bn)n∈N⟩. Observe that the third

equality holds because the terms being eventually zero implies that we can rearrange the

terms of this sum as shown. It follows from the definition of adjoint that U = U∗.
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