PLEASE WRITE YOUR NAME CLEARLY USING CAPITAL LETTERS		
FULL NAME	STUDENT ID	DURATION
		90 MINUTES
2 QUESTIONS ON 2 PAGES	TOTAL 100 POINTS	

By signing below, I pledge that I will write this examination as my own work and without the assistance of others or the usage of unauthorized material or information. I understand that possession of any kind of electronic device during the exam is prohibited. I also understand that not obeying the rules of the examination will result in immediate cancellation and disciplinary procedures.

Signature

<u>(6 × 15 pts)</u> 1. Consider the first quadrant $V = \{(x, y) \in \mathbb{R}^2 : x, y > 0\}$ in the plane together with the operations $\oplus : V \times V \to V$ and $\otimes : \mathbb{R} \times V \to V$ given by

 $(x_1, y_1) \oplus (x_2, y_2) = (x_1 x_2, y_1 y_2)$ and $\alpha \otimes (x, y) = (x^{\alpha}, y^{\alpha})$

Recall that (V, \oplus, \otimes) is a vector space over \mathbb{R} whose zero vector is the vector (1, 1). Moreover, the set $\mathcal{B} = \{(e, 1), (1, e)\}$ is a basis of V. Indeed, for any $(x, y) \in V$, we have that $(x, y) = \ln(x) \otimes (e, 1) \oplus \ln(y) \otimes (1, e)$.

(a) Show that the map $f: V \to \mathbb{R}$ defined by $f(x, y) = \ln(x^2 y)$ is a linear functional.

Let $\alpha \in \mathbb{R}$ and $(x, y), (z, w) \in V$. Then we have

$$f(\alpha \otimes (x,y) \oplus (z,w)) = f((x^{\alpha}, y^{\alpha}) \oplus (z,w)) = f(x^{\alpha}z, y^{\alpha}w) = \ln((x^{\alpha}z)^{2}y^{\alpha}w)$$
$$= \ln((x^{2}y)^{\alpha}z^{2}w) = \alpha\ln(x^{2}y) + \ln(z^{2}w)$$
$$= \alpha f(x,y) + f(z,w)$$

Hence f is a linear functional.

(b) Explicitly write the elements of the dual basis \mathcal{B}^* . Then express the linear functional f in Part (a) as a linear combination of the elements of \mathcal{B}^* . By the given information in the question statement, the maps $f_1: V \to \mathbb{R}$ and $f_2: V \to \mathbb{R}$ given by $f_1(x, y) = \ln(x)$ and $f_2(x, y) = \ln(y)$ are the coordinate functionals associated to the basis \mathcal{B} . Therefore, the set $\mathcal{B}^* = \{f_1, f_2\}$ is the dual basis of \mathcal{B} . Moreover, we have $f(x, y) = \ln(x^2 y) = 2\ln(x) + \ln(y) = 2f_1(x, y) + f_2(x, y)$ for all $(x, y) \in V$ and hence $f = 2f_1 + f_2$.

(c) Determine the nullity of f and find a basis for the subspace ker(f). Since f is a non-zero functional, its image is a non-zero subspace of \mathbb{R} and hence equals \mathbb{R} , from which it follows that rank(f) = 1. Since we have rank $(f) + \text{nullity}(f) = \dim_{\mathbb{R}}(V) = 2$ by the rank-nullity theorem, we obtain that nullity(f) = 1. Since dim_{\mathbb{R}}(ker(f)) = 1, any non-zero vector in ker(f) will form a basis for ker(f). In particular, we have $(\frac{1}{2}, 4) \in \text{ker}(f)$ as $f(\frac{1}{2}, 4) = \ln(\frac{1}{4} \cdot 4) = 0$, and so $\{(\frac{1}{2}, 4)\}$ is a basis for ker(f). **NOTE: This is only a solution. You can actually solve this part by explicitly computing ker**(f) as well.

(d) You are given that the map $U: V \to V$ given by $U(x, y) = \left(xy, \frac{x^2}{y}\right)$ is a linear transformation. Find the matrix representation $[U]_{\mathcal{B}}$ of the linear transformation U with respect to the ordered basis \mathcal{B} . It suffices to find $[U(e, 1)]_{\mathcal{B}}$ and $[U(1, e)]_{\mathcal{B}}$ and form a matrix whose columns are these coordinate matrices. Recall that we are given in the question statement that $(x, y) = \ln(x) \otimes (e, 1) \oplus \ln(y) \otimes (1, e)$ for all $(x, y) \in V$. It follows that

$$[U(e,1)]_{\mathcal{B}} = \left[\left(e, e^2 \right) \right]_{\mathcal{B}} = \begin{bmatrix} 1\\ 2 \end{bmatrix} \text{ and } [U(1,e)]_{\mathcal{B}} = \left[\left(e, e^{-1} \right) \right]_{\mathcal{B}} = \begin{bmatrix} 1\\ -1 \end{bmatrix}$$

Consequently, by a theorem proven in class, we have $[U]_{\mathcal{B}} = \begin{bmatrix} 1 & 1 \\ 2 & -1 \end{bmatrix}$.

(e) If it exists, find the inverse linear transformation $U^{-1}: V \to V$. If it does not exist, explain why the inverse linear transformation does not exist. Observe that $(x, y) \in \ker(U)$ iff $\left(xy, \frac{x^2}{y}\right) = (1, 1)$ iff x = 1 and y = 1. It follows that $\ker(U) = \{(1, 1)\} = \{\mathbf{0}_V\}$ and hence U is injective. Since V is finite dimensional, U must be also surjective. Thus $U^{-1}: V \to V$ exists. In order to find U^{-1} , we shall first find $[U]_{\mathcal{B}}^{-1}$. Applying Gauss-Jordan elimination, we obtain that

$$\begin{pmatrix} 1 & 1 & | & 1 & 0 \\ 2 & -1 & | & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & | & 1 & 0 \\ 0 & -3 & | & -2 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & | & 1/3 & 1/3 \\ 0 & -3 & | & -2 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & | & 1/3 & 1/3 \\ 0 & 1 & | & 2/3 & -1/3 \end{pmatrix}$$

So we have that $[U^{-1}]_{\mathcal{B}} = [U]_{\mathcal{B}}^{-1} = \begin{bmatrix} 1/3 & 1/3 \\ 2/3 & -1/3 \end{bmatrix}$. Since $[(x,y)]_{\mathcal{B}} = \begin{bmatrix} \ln(x) \\ \ln(y) \end{bmatrix}$, we have $[U^{-1}(x,y)]_{\mathcal{B}} = \begin{bmatrix} 1/3 & 1/3 \\ 2/3 & -1/3 \end{bmatrix} \cdot \begin{bmatrix} \ln(x) \\ \ln(y) \end{bmatrix} = \begin{bmatrix} \ln(x^{1/3}y^{1/3}) \\ \ln(x^{2/3}y^{-1/3}) \end{bmatrix}$. Therefore, for any $(x,y) \in V$, we have $U^{-1}(x,y) = \ln(x^{1/3}y^{1/3}) \otimes (e,1) \oplus \ln(x^{2/3}y^{-1/3}) \oplus (1,e) = \left(\sqrt[3]{xy}, \sqrt[3]{x^2/y}\right)$. NOTE: This part can be solved without finding the matrix representation of the inverse transformation, by letting a = xy, $b = x^2/y$ and finding x, y in terms of a, b.

(f) Let $U^{t}: V^{*} \to V^{*}$ be the transpose of the linear transformation U. Find $\left[(U^{t})^{2} \right]_{\mathcal{B}^{*}}$ where \mathcal{B}^{*} is the dual basis of \mathcal{B} .

$$\left[(U^{t})^{2} \right]_{\mathcal{B}^{*}} = \left[(U^{t}) \right]_{\mathcal{B}^{*}}^{2} = \left([U]_{\mathcal{B}}^{T} \right)^{2} = \begin{bmatrix} 1 & 2 \\ 1 & -1 \end{bmatrix}^{2} = \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}$$

(10 pts) 2. Find an example of a vector space W over the field \mathbb{R} and a **non-zero** linear transformation $T: W \to W$ such that ker(T) is isomorphic to W.

Consider $W = \mathbb{R}[x]$ and $T: W \to W$ given by T(f) = f(0) for all $f \in W$. Then we have that ker $(T) = \{f \in \mathbb{R}[x] : f(0) = 0\} = \{xg(x) : g \in \mathbb{R}[x]\}$, that is, ker(T) is the subspace of polynomials with constant term 0. Observe that the set $\{x^n : n \ge 1\} = \{x, x^2, x^3, \dots\}$ is a basis for the subspace ker(T) and the set $\{x^n : n \ge 0\} = \{1, x, x^2, \dots\}$ is a basis for W. Since the bases $\{x^n : n \ge 1\}$ and $\{x^n : n \ge 0\}$ have the same cardinality, we have that ker(T) and W are isomorphic as vector spaces.