PLEASE WRITE YOUR NAME CLEARLY USING CAPITAL LETTERS		
FULL NAME	STUDENT ID	DURATION
		80 MINUTES
3 QUESTIONS ON 2 PAGES	TOTAL 100 POINTS	

By signing below, I pledge that I will write this examination as my own work and without the assistance of others or the usage of unauthorized material or information. I understand that possession of any kind of electronic device during the exam is prohibited. I also understand that not obeying the rules of the examination will result in immediate cancellation and disciplinary procedures.

Signature

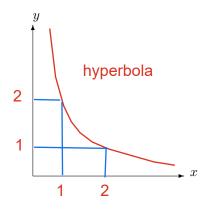
(20+25+25 pts) 1. Consider the first quadrant $V = \{(x, y) \in \mathbb{R}^2 : x, y > 0\}$ in the plane together with the operations $\oplus : V \times V \to V$ and $\otimes : \mathbb{R} \times V \to V$ given by

 $(x_1, y_1) \oplus (x_2, y_2) = (x_1 x_2, y_1 y_2)$ and $\alpha \otimes (x, y) = (x^{\alpha}, y^{\alpha})$

Recall that (V, \oplus, \otimes) is a vector space over \mathbb{R} whose zero vector is the vector (1, 1). Moreover, recall that $W = \{(x, y) \in V : xy = 1\}$ is a subspace of V.

(a) Find the coset $(1,2) \oplus W$: First find an equation that defines $(1,2) \oplus W$ and then sketch it in the given plane on the right.

 $(1, 2) \oplus W = \{(1, 2) \oplus (a, b) : (a, b) \in W\} = \{(a, 2b) \in V : (a, b) \in W\} = \{(a, 2b) \in V : ab = 1\} = \{(x, y) \in V : xy = 2\}$ and hence the given coset is defined by the equation xy = 2 in the first quadrant.



(b) Show that $\mathcal{B}_1 = \{(1,2), (3,4)\}$ is a basis for V.

We first argue that \mathcal{B}_1 is linearly independent.

Let $\alpha, \beta \in \mathbb{R}$. Suppose that $(\alpha \otimes (1,2)) \oplus (\beta \otimes (3,4)) = (1,1)$. Then, by the definition of operations, we have $(1^{\alpha}, 2^{\alpha}) \oplus (3^{\beta}, 4^{\beta}) = (3^{\beta}, 2^{\alpha}4^{\beta}) = (1,1)$. Since $3^{\beta} = 1$, we obtain $\beta = 0$. But then we get $2^{\alpha} = 1$, which implies $\alpha = 0$ as well. Hence \mathcal{B}_1 is linearly independent.

We now argue that $\operatorname{span}(\mathcal{B}_1) = V$. Clearly $\operatorname{span}(\mathcal{B}_1) \subseteq V$. Now let $(x, y) \in V$. Consider $\alpha = \log_2(y) - 2\log_3(x)$ and $\beta = \log_3(x)$. Then

$$(\alpha \otimes (1,2)) \oplus (\beta \otimes (3,4)) = (1^{\alpha}, 2^{\alpha}) \oplus (3^{\beta}, 4^{\beta}) = (3^{\beta}, 2^{\alpha}4^{\beta}) = (3^{\beta}, 2^{\alpha+2\beta})$$
$$= (3^{\log_3(x)}, 2^{\log_2(y)-2\log_3(x)+2\log_3(x)}) = (3^{\log_3(x)}, 2^{\log_2(y)}) = (x, y)$$

Hence $(x, y) \in \operatorname{span}(\mathcal{B}_1)$. This shows that $\operatorname{span}(\mathcal{B}_1) \supseteq V$ and hence $\operatorname{span}(\mathcal{B}_1) = V$.

(c) You are given that $\mathcal{B}_2 = \{(2,1), (1,2)\}$ is also a basis for V. Consider \mathcal{B}_1 and \mathcal{B}_2 as ordered bases. Find the change of base matrix $P \in M_{2\times 2}(\mathbb{R})$ such that $[v]_{\mathcal{B}_1} = P[v]_{\mathcal{B}_2}$ for all $v \in V$.

To find the desired change of base matrix, we need to find $[(2,1)]_{\mathcal{B}_1}$ and $[(1,2)]_{\mathcal{B}_1}$. In Part (b), we have already found how to write an arbitrary element (x, y) as a linear combination of elements of \mathcal{B}_1 . Using that argument, we obtain that

$$[(2,1)]_{\mathcal{B}_1} = \begin{bmatrix} \log_2(1) - 2\log_3(2) \\ \log_3(2) \end{bmatrix} = \begin{bmatrix} -2\log_3(2) \\ \log_3(2) \end{bmatrix} \text{ and } [(1,2)]_{\mathcal{B}_1} = \begin{bmatrix} \log_2(2) - 2\log_3(1) \\ \log_3(1) \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

Therefore, by a theorem proven in class, the matrix

$$P = \begin{bmatrix} -2\log_3(2) & 1\\ \log_3(2) & 0 \end{bmatrix}$$

is the desired change of base matrix.

(10 pts) 2. Let V be a vector space over \mathbb{R} with a basis \mathcal{B} . Suppose that the set $\mathcal{B} + \mathcal{B} = \{b_1 + b_2 : b_1, b_2 \in \mathcal{B}\}$ is also a basis for V. Prove that $\dim_{\mathbb{R}}(V)$ is equal to either 0 or 1.

Assume towards a contradiction that $|\mathcal{B}| = \dim_{\mathbb{R}}(V) \geq 2$. Then there exist distinct elements $a, b \in \mathcal{B}$. Set u = a + a, v = a + b and w = b + b. Then u, v, w are distinct elements of V and moreover, by the definition of $\mathcal{B} + \mathcal{B}$, we have $u, v, w \in \mathcal{B} + \mathcal{B}$. But then, we obtain

$$\frac{1}{2}u + (-1)v + \frac{1}{2}w = \frac{1}{2}(2a) + (-1)(a+b) + \frac{1}{2}(2b) = 0$$

This implies that $\mathcal{B} + \mathcal{B}$ is linearly dependent, which is a contradiction. Therefore $\dim_{\mathbb{R}}(V) < 2$.

(20 pts) 3. Find the row rank, i.e. the dimension of the row space, of the matrix

$$A = \begin{bmatrix} 1 & 2 & 0 & 3 \\ 1 & 2 & -1 & -1 \\ 0 & 0 & 1 & 2 \\ 2 & 4 & 2 & 6 \end{bmatrix}$$

by exhibiting a basis for the row space of A. It suffices to find the row reduced echelon form of A. Applying Gaussian elimination, we get

$$A = \begin{bmatrix} 1 & 2 & 0 & 3 \\ 1 & 2 & -1 & -1 \\ 0 & 0 & 1 & 2 \\ 2 & 4 & 2 & 6 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 0 & 3 \\ 0 & 0 & -1 & -4 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 2 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 0 & 3 \\ 0 & 0 & 0 & -4 \\ 0 & 0 & 0 & 2 \\ 0 & 0 & 1 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} = R$$

By a theorem proven in class, the set $\{[1\ 2\ 0\ 0], [0\ 0\ 1\ 0], [0\ 0\ 0\ 1]\}$ of non-zero rows of R is a basis for the row space of A. Hence rowrank(A) = 3.