PLEASE WRITE YOUR NAME CLEARLY USING CAPITAL LETTERS		
FULL NAME	STUDENT ID	DURATION
		80 MINUTES
2 QUESTIONS ON 2 PAGES	TOTAL 100 POINTS	

By signing below, I pledge that I will write this examination as my own work and without the assistance of others or the usage of unauthorized material or information. I understand that possession of any kind of electronic device during the exam is prohibited. I also understand that not obeying the rules of the examination will result in immediate cancellation and disciplinary procedures.

Signature

(20+20 pts) 1. Consider the first quadrant $V = \{(x, y) \in \mathbb{R}^2 : x, y > 0\}$ in the plane together with the operations $\oplus : V \times V \to V$ and $\otimes : \mathbb{R} \times V \to V$ given by

$$(x_1, y_1) \oplus (x_2, y_2) = (x_1 x_2, y_1 y_2)$$
 and $\alpha \otimes (x, y) = (x^{\alpha}, y^{\alpha})$

(a) You are given that (V, \oplus) is an abelian group with the identity element $\mathbf{1}_V = (1, 1)$. Show that (V, \oplus, \otimes) is a vector space over \mathbb{R} .

We shall check the remaining four vector space properties. For all $(x_1, y_1), (x_2, y_2) \in V$ and for all $\alpha, \beta \in \mathbb{R}$, we have

- $1 \otimes (x_1, y_1) = (x_1^1, y_1^1) = (x_1, y_1),$
- $\alpha \otimes (\beta \otimes (x_1, y_1)) = \alpha \otimes (x_1^{\beta}, y_1^{\beta}) = ((x_1^{\beta})^{\alpha}, (y_1^{\beta})^{\alpha}) = (x_1^{\beta\alpha}, y_1^{\beta\alpha}) = (x_1^{\alpha\beta}, y_1^{\alpha\beta}) = (\alpha\beta) \otimes (x_1, y_1),$
- $(\alpha + \beta) \otimes (x_1, y_1) = \left(x_1^{\alpha+\beta}, y_1^{\alpha+\beta}\right) = \left(x_1^{\alpha}x_1^{\beta}, y_1^{\alpha}y_1^{\beta}\right) = (x_1^{\alpha}, y_1^{\alpha}) \oplus \left(x_1^{\beta}, y_1^{\beta}\right) = (\alpha \otimes (x_1, y_1)) \oplus (\beta \otimes (x_1, y_1)),$
- $\alpha \otimes ((x_1, y_1) \oplus (x_2, y_2)) = \alpha \otimes (x_1 x_2, y_1 y_2) = ((x_1 x_2)^{\alpha}, (y_1 y_2)^{\alpha}) = (x_1^{\alpha} x_2^{\alpha}, y_1^{\alpha} y_2^{\alpha}) = (x_1^{\alpha}, y_1^{\alpha}) \oplus (x_2^{\alpha}, y_2^{\alpha}) = (\alpha \otimes (x_1, y_1)) \oplus (\alpha \otimes (x_2, y_2))$

It follows that (V, \oplus, \otimes) is a vector space over \mathbb{R} .

(b) Determine whether or not the set $W = \{(x, y) \in V : xy = 1\}$ is a subspace of V.

First, observe that $\mathbf{1}_V = (1,1) \in W$ as $1 \cdot 1 = 1$ and so $W \neq \emptyset$. Let $\alpha \in \mathbb{R}$ and $(x_1, y_1), (x_2, y_2) \in W$. Consider

$$\alpha \otimes (x_1, y_1) \oplus (x_2, y_2) = (x_1^{\alpha}, y_1^{\alpha}) \oplus (x_2, y_2) = (x_1^{\alpha} x_2, y_1^{\alpha} y_2)$$

Since $(x_1, y_1), (x_2, y_2) \in W$, we have $x_1y_1 = 1$ and $x_2y_2 = 1$ and consequently $(x_1^{\alpha}x_2)(y_1^{\alpha}y_2) = x_1^{\alpha}y_1^{\alpha}x_2y_2 = 1$. Hence $\alpha \otimes (x_1, y_1) \oplus (x_2, y_2) \in W$ and thus, W is a subspace of V.

<u>(20+20+20 pts)</u> 2. Let $m, n \in \mathbb{Z}^+$. In this question, consider $V = M_{1 \times n}(\mathbb{R})$ as a vector space over \mathbb{R} . For each $A \in M_{m \times n}(\mathbb{R})$, define the row space S_A to be the subspace of V generated by the rows of A, that is, $S_A = \langle A_1, \ldots, A_m \rangle$ where $A_1, \ldots, A_m \in V$ are the rows of A.

(a) Let $A, B \in M_{m \times n}(\mathbb{R})$. Prove that if B is obtained from A via a single application of an elementary row operation, then $S_B \subseteq S_A$.

Suppose that B is obtained from A via a single application of an elementary row operation. We shall show that the rows of B are contained in S_A . We know split into three cases:

- If the row operation interchanges the *i*-th row and the *j*-th row of A, then the set of rows of B are $\{A_1, \ldots, A_m\}$,
- If the operation multiplies the *i*-th row of A by a non-zero $\alpha \in \mathbb{R}$, then the set of rows of B are $\{A_1, \ldots, A_{i-1}, \alpha A_i, A_{i+1}, \ldots, A_m\}$,
- If the operation multiplies the *i*-th row of A by $\alpha \in \mathbb{R}$ and adds it to the *j*-th row then the rows of B are $\{A_1, \ldots, A_{j-1}, \alpha A_i + A_j, A_{j+1}, \ldots, A_m\}$

Since $\{A_1, \ldots, A_m\} \subseteq S_A$ and S_A being a subspace implies that $\alpha X + Y \in S_A$ for any $X, Y \in S_A$, we obtain that, in all cases, the rows of B are contained S_B . Therefore, $S_B \subseteq S_A$ by definition, as S_B is the smallest subspace of V containing the rows of B. (b) Let $A \in M_{n \times n}(\mathbb{R})$. Prove that if A is invertible, then $S_A = V$.

Suppose that A is invertible. Then the row reduced echelon form of A is $I_{n\times n}$ and so there exists a sequence of matrices $A = A_0 \to A_1 \to \cdots \to A_k = I_{n\times n}$ each of which is obtained from the previous one via a single elementary row operation. By Part (a), we know that $S_A = S_{A_0} \supseteq S_{A_1} \supseteq \cdots \supseteq S_{A_k} = S_{I_{n\times n}}$. We claim that $S_{I_{n\times n}} = V$. Trivially, we have $S_{I_{n\times n}} \subseteq V$. For the other inclusion, for each $1 \leq i \leq n$, let R_i denote the *i*-th row of $I_{n\times n}$. Then, for any $X = \begin{bmatrix} x_{11} & \ldots & x_{1n} \end{bmatrix} \in V$, we have $X = \sum_{i=1}^n x_{1i}R_i$ and hence $X \in \langle R_1, \ldots, R_n \rangle = S_{I_{n\times n}}$. It follows that $S_{I_{n\times n}} = V$ and so $S_A \supseteq V$. Since we also have $S_A \subseteq V$, we obtain that $S_A = V$.

(c) You are given that the matrix $A = \begin{bmatrix} 1 & 2 & 4 \\ 2 & 6 & 1 \\ 2 & 6 & 2 \end{bmatrix}$ is invertible. Therefore, by Part (b),

 $S_A = M_{1 \times 3}(\mathbb{R})$. Express $\begin{bmatrix} 4 & 13 & -1 \end{bmatrix} \in V$ as a linear combination of the rows of A.

We wish to find $\alpha, \beta, \gamma \in \mathbb{R}$ such that $\alpha \cdot \begin{bmatrix} 1 & 2 & 4 \end{bmatrix} + \beta \cdot \begin{bmatrix} 2 & 6 & 1 \end{bmatrix} + \gamma \cdot \begin{bmatrix} 2 & 6 & 2 \end{bmatrix} = \begin{bmatrix} 4 & 13 & -1 \end{bmatrix}$. Writing the relevant non-homogeneous system of equations and applying Gaussian elimination, we get

$$\begin{pmatrix} 1 & 2 & 2 & | & 4 \\ 2 & 6 & 6 & | & 13 \\ 4 & 1 & 2 & | & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 2 & | & 4 \\ 0 & 2 & 2 & | & 5 \\ 0 & -7 & -6 & | & -17 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & | & -1 \\ 0 & 2 & 2 & | & 5 \\ 0 & 0 & 1 & | & 1/2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & | & -1 \\ 0 & 2 & 0 & | & 4 \\ 0 & 0 & 1 & | & 1/2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & | & -1 \\ 0 & 1 & 0 & | & 2 \\ 0 & 0 & 1 & | & 1/2 \end{pmatrix}$$

Hence, choosing $\alpha = -1$, $\beta = 2$, $\gamma = 1/2$, the initial equation is satisfied.