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Q1.(20 points) Find all integer solutions of the following system of congruences.

3z =9 (mod 39)
8r =1 (mod 15)
z =1 (mod 8)
Observe that
e Since ged(3,39) = 3, by a theorem proven in class, we have that 3z = 9 (mod 39) iff
x =3 (mod 13).

e Since the multiplicative inverse of 8 modulo 15 is 2, we have that 82 = 1 (mod 15)
iff x =2 (mod 15).

Consequently, solving the given system of congruences is equivalent to solving the follow-

ing system of congruences.

r =3 (mod 13)
r =2 (mod 15)
z =1 (mod 8)

The integers 8, 13 and 15 are pairwise relatively prime and hence, by the Chinese Re-
mainder Theorem, this system of congruences has a solution that is unique modulo
813 -15 = 1560. We can find this unique solution following the proof of the Chinese
Remainder Theorem. In order to do this, we first need to solve the linear congruences
120z =1 (mod 13) and 104z = 1 (mod 15) and 195z = 1 (mod 8).

For the first congruence, we have 120z = 3z = 1 (mod 13) and hence z; = 9 is a solution.
For the second congruence, we have 104z = —z = 1(mod 15) and hence zo = —1 is a
solution. For the third congruence, we have 195z = 3z = 1 (mod 8) and hence x3 = 3 is

a solution. Therefore, by the proof of the Chinese Remainder Theorem,
r=3-120-9+2-104- -1+ 1-195-3 = 3617

is a solution to this system of congruences. Moreover, any other solution to this system
is congruent to 3617 modulo 1560. For example, 497 = 3617 (mod 1560) is a solution.



Q2.(15 points) If they exist, find all integer solutions of the linear congruence
102z = 30 (mod 141)

that are incongruent modulo 141.

Since ged(102,141) = 3 | 30, by a theorem proven in class, we know that the linear
congruence 102z = 30 (mod 141) has 3 mutually incongruent solutions modulo 141.
Indeed, given a particular solution xy, we know that these 3 mutually incongruent solutions

are xg, ro+ 1;;)1 and xqg + %. So we need to find a particular solution.

Recall that any solution of the linear Diophantine equation 102x + 141y = 30 induces
a solution of the linear congruence 102z = 30 (mod 141) and vice versa. We now solve
1022 + 141y = 30 using the Euclidean algorithm.

141 =102 -1+ 39
102=39-2+24

39=24-1415

24=15-14+9

15=9-14+6
9=6-1+3
6=3-24+0

Starting from the last equation and writing the remainders of previous equations in the
reverse order, we get that 3 = 102-18+141-(—13) and hence 30 = 102-180+141-(—130).
Consequently, by taking the modulus of both sides with respect to 141, we obtain that

102 -39 = 102 - 180 = 30 (mod 141)

Hence 39 is a particular solution of 102z = 30 (mod 141). Therefore, 39, 86 and 133 are

the 3 solutions that are incongruent modulo 141.

Q3.(15 points) Let p be an odd prime number. Show that

2:4---(2p—2) = —1 (mod p)

Since p is an odd prime, p 1 2 and hence, by Fermat’s little theorem, we have that
2r~1 = 1 (mod p). Moreover, by Wilson’s theorem, we have (p — 1)! = —1 (mod p).
Combining these two congruences together with an algebraic manipulation of the given
congruence, we get that

2:4---(2p—2)=(2-1)-(2:2)---2-(p—1)=2""- (p—1)!=1-(—1) = —1 (mod p)
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Q4.(20 points) Let n be a positive integer. Show that o(n) is odd if and only if n is a
perfect square or twice a perfect square.
In the case that n = 1, the statement trivially holds as o(1) = 1 and 1 is a perfect square.
Thus, in the rest of the proof, we may assume that n > 1. By the Fundamental Theorem of
Arithmetic, we can write n = [[;_, pf where p;’s are prime numbers and k;’s are positive
integers. Moreover, we have proven in class that o(n) = [1_,(1 +p; + pf + -+ + .
Observe that o(n) is odd if and only if each factor in this product is odd. We now show
both directions of the given equivalence.
(=) : Suppose that o(n) is odd. Then each factor (14 p; +p? +- -+ p) is odd. Observe
that if p; is odd, then, in order for (1 +p; +p7 + - - +pfi) to be odd, we have to have an
odd number of terms in this sum. Hence, if p; is odd, then k; is even. We split into two
cases.
e Case I (n is even): Then 2 is a prime factor of n. Without loss of generality, suppose
that p; = 2. We know that, k; is even for each 2 < i < r, say, k; = 2¢;. We have the
following two subcases:

— If ky is even, say ki = 2/;, then we have n = []/_, pfi = [[i-, pz‘% - (H::l pfi)z
and so n is a perfect square.
— If ky is odd, say, k; = 20, + 1, then we have n = [[_,pf" = 2[[_, p}" =
r £;)2 : :
2 (Hi:l p/) and so n is twice a perfect square.
e Case II (n is odd): Then all prime factors of n are odd and hence each k; is even, say,
k; = 2¢;. Consequently, we have n = [[I_, pi" = [[—, p}" = (IT—, pfi)2 and hence n
is a perfect square.

(<) : Suppose that n is a perfect square or twice a perfect square. We now split into
these two cases:
e Case I (n is a perfect square): In this case, n has a prime factorization of the form
[1i_, p}. But then, each term of the form (14 p; +p? +--- +p*) is odd and hence
o(n) is odd.

e Case Il (n is twice a perfect square): In this case, n has a prime factorization of the
form 2]I_, p;* where we may assume p; = 2. Since (1424224 +220+1) is odd

7

and (1+p; +p? 4 -+~ + p) is odd for each 2 < i < 2, o(n) is odd.

Q5.(10 points) Show that the Diophantine equation x?+1 = 43y has no integer solutions.

Assume towards a contradiction that x? + 1 = 43y has integer solutions, say, xo, vy € Z.
Then z2 + 1 = 43y, and hence z2 + 1 = 0 (mod 43). Consequently, the quadratic
congruence r° + 1 = 0 (mod 43) has a solution in integers. Observe that 43 is prime.
We know that the quadratic congruence 22 + 1 = 0 (mod p) a solution in an odd prime
modulus p if and only if p is of the form 4k + 1. Thus 43 is of the form 4k + 1, which is a

contradiction.



Q6.(74+7+6 points) Consider the number-theoretic function f defined on the set of
positive integers given by
fn) =) 7(d)
din

a) Show that f is a multiplicative function.

We know from a theorem proven in class that G(n) = _,, ¢(d) is multiplicative when-
ever ¢ is multiplicative. By another theorem proven in class, we already have that 7 is
multiplicative. Hence f must be multiplicative.

1 2
b) Let p be prime and k be a positive integer. Show that f (pk) = (k+ )2(k i )

The positive divisors of p* are precisely the integers of the form p’ where 0 < i < k.
Moreover, we have shown in class that 7(p') =i + 1. Therefore

k k k+1

F0) = Yor(d) = Yr) = Y+ = Y= EEUEE)

, : 2
d|n i=0 i=0 i=1

c¢) Let n > 2 be a positive integer with prime factorization n = p]fl ---pkr. Find an explicit
formula for f(n) that does not use the sigma notation.

Observe that pfi’s are pairwise relatively prime integers. By Part (a), f is multiplicative

s =5 (D) =TT 64

But now, by Part (b), we see that

o) =111 (i) =

and hence

ki Dk +2) (ki Dk +2) - (ke + 1) (ke +2)
H 2 or

i=1



