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6 QUESTIONS ON 4 PAGES DURATION: 90 MINUTES

Q1.(20 points) Find all integer solutions of the following system of congruences.

3x ≡ 9 (mod 39)

8x ≡ 1 (mod 15)

x ≡ 1 (mod 8)

Observe that

� Since gcd(3, 39) = 3, by a theorem proven in class, we have that 3x ≡ 9 (mod 39) iff

x ≡ 3 (mod 13).

� Since the multiplicative inverse of 8 modulo 15 is 2, we have that 8x ≡ 1 (mod 15)

iff x ≡ 2 (mod 15).

Consequently, solving the given system of congruences is equivalent to solving the follow-

ing system of congruences.

x ≡ 3 (mod 13)

x ≡ 2 (mod 15)

x ≡ 1 (mod 8)

The integers 8, 13 and 15 are pairwise relatively prime and hence, by the Chinese Re-

mainder Theorem, this system of congruences has a solution that is unique modulo

8 · 13 · 15 = 1560. We can find this unique solution following the proof of the Chinese

Remainder Theorem. In order to do this, we first need to solve the linear congruences

120x ≡ 1 (mod 13) and 104x ≡ 1 (mod 15) and 195x ≡ 1 (mod 8).

For the first congruence, we have 120x ≡ 3x ≡ 1 (mod 13) and hence x1 = 9 is a solution.

For the second congruence, we have 104x ≡ −x ≡ 1(mod 15) and hence x2 = −1 is a

solution. For the third congruence, we have 195x ≡ 3x ≡ 1 (mod 8) and hence x3 = 3 is

a solution. Therefore, by the proof of the Chinese Remainder Theorem,

x = 3 · 120 · 9 + 2 · 104 · −1 + 1 · 195 · 3 = 3617

is a solution to this system of congruences. Moreover, any other solution to this system

is congruent to 3617 modulo 1560. For example, 497 ≡ 3617 (mod 1560) is a solution.



Q2.(15 points) If they exist, find all integer solutions of the linear congruence

102x ≡ 30 (mod 141)

that are incongruent modulo 141.

Since gcd(102, 141) = 3 | 30, by a theorem proven in class, we know that the linear

congruence 102x ≡ 30 (mod 141) has 3 mutually incongruent solutions modulo 141.

Indeed, given a particular solution x0, we know that these 3 mutually incongruent solutions

are x0, x0 +
141
3

and x0 +
2·141
3

. So we need to find a particular solution.

Recall that any solution of the linear Diophantine equation 102x + 141y = 30 induces

a solution of the linear congruence 102x ≡ 30 (mod 141) and vice versa. We now solve

102x+ 141y = 30 using the Euclidean algorithm.

141 = 102 · 1 + 39

102 = 39 · 2 + 24

39 = 24 · 1 + 15

24 = 15 · 1 + 9

15 = 9 · 1 + 6

9 = 6 · 1 + 3

6 = 3 · 2 + 0

Starting from the last equation and writing the remainders of previous equations in the

reverse order, we get that 3 = 102 ·18+141 ·(−13) and hence 30 = 102 ·180+141 ·(−130).

Consequently, by taking the modulus of both sides with respect to 141, we obtain that

102 · 39 ≡ 102 · 180 ≡ 30 (mod 141)

Hence 39 is a particular solution of 102x ≡ 30 (mod 141). Therefore, 39, 86 and 133 are

the 3 solutions that are incongruent modulo 141.

Q3.(15 points) Let p be an odd prime number. Show that

2 · 4 · · · (2p− 2) ≡ −1 (mod p)

Since p is an odd prime, p ∤ 2 and hence, by Fermat’s little theorem, we have that

2p−1 ≡ 1 (mod p). Moreover, by Wilson’s theorem, we have (p − 1)! ≡ −1 (mod p).

Combining these two congruences together with an algebraic manipulation of the given

congruence, we get that

2 · 4 · · · (2p− 2) ≡ (2 · 1) · (2 · 2) · · · (2 · (p− 1)) ≡ 2p−1 · (p− 1)! ≡ 1 · (−1) ≡ −1 (mod p)
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Q4.(20 points) Let n be a positive integer. Show that σ(n) is odd if and only if n is a

perfect square or twice a perfect square.

In the case that n = 1, the statement trivially holds as σ(1) = 1 and 1 is a perfect square.

Thus, in the rest of the proof, we may assume that n > 1. By the Fundamental Theorem of

Arithmetic, we can write n =
∏r

i=1 p
ki
i where pi’s are prime numbers and ki’s are positive

integers. Moreover, we have proven in class that σ(n) =
∏r

i=1(1 + pi + p2i + · · · + pkii ).

Observe that σ(n) is odd if and only if each factor in this product is odd. We now show

both directions of the given equivalence.

(⇒) : Suppose that σ(n) is odd. Then each factor (1+ pi+ p2i + · · ·+ pkii ) is odd. Observe

that if pi is odd, then, in order for (1 + pi + p2i + · · ·+ pkii ) to be odd, we have to have an

odd number of terms in this sum. Hence, if pi is odd, then ki is even. We split into two

cases.

� Case I (n is even): Then 2 is a prime factor of n. Without loss of generality, suppose

that p1 = 2. We know that, ki is even for each 2 ≤ i ≤ r, say, ki = 2ℓi. We have the

following two subcases:

– If k1 is even, say k1 = 2ℓ1, then we have n =
∏r

i=1 p
ki
i =

∏r
i=1 p

2ℓi
i =

(∏r
i=1 p

ℓi
i

)2
and so n is a perfect square.

– If k1 is odd, say, k1 = 2ℓ1 + 1, then we have n =
∏r

i=1 p
ki
i = 2

∏r
i=1 p

2ℓi
i =

2
(∏r

i=1 p
ℓi
i

)2
and so n is twice a perfect square.

� Case II (n is odd): Then all prime factors of n are odd and hence each ki is even, say,

ki = 2ℓi. Consequently, we have n =
∏r

i=1 p
ki
i =

∏r
i=1 p

2ℓi
i =

(∏r
i=1 p

ℓi
i

)2
and hence n

is a perfect square.

(⇐) : Suppose that n is a perfect square or twice a perfect square. We now split into

these two cases:

� Case I (n is a perfect square): In this case, n has a prime factorization of the form∏r
i=1 p

2ℓi
i . But then, each term of the form (1+ pi + p2i + · · ·+ p2ℓii ) is odd and hence

σ(n) is odd.

� Case II (n is twice a perfect square): In this case, n has a prime factorization of the

form 2
∏r

i=1 p
2ℓi
i where we may assume p1 = 2. Since (1+2+22+ · · ·+22ℓ1+1) is odd

and (1 + pi + p2i + · · ·+ p2ℓii ) is odd for each 2 ≤ i ≤ 2, σ(n) is odd.

Q5.(10 points) Show that the Diophantine equation x2+1 = 43y has no integer solutions.

Assume towards a contradiction that x2 + 1 = 43y has integer solutions, say, x0, y0 ∈ Z.
Then x2

0 + 1 = 43y0 and hence x2
0 + 1 ≡ 0 (mod 43). Consequently, the quadratic

congruence x2 + 1 ≡ 0 (mod 43) has a solution in integers. Observe that 43 is prime.

We know that the quadratic congruence x2 + 1 ≡ 0 (mod p) a solution in an odd prime

modulus p if and only if p is of the form 4k+1. Thus 43 is of the form 4k+1, which is a

contradiction.
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Q6.(7+7+6 points) Consider the number-theoretic function f defined on the set of

positive integers given by

f(n) =
∑
d|n

τ(d)

a) Show that f is a multiplicative function.

We know from a theorem proven in class that G(n) =
∑

d|n g(d) is multiplicative when-

ever g is multiplicative. By another theorem proven in class, we already have that τ is

multiplicative. Hence f must be multiplicative.

b) Let p be prime and k be a positive integer. Show that f
(
pk
)
=

(k + 1)(k + 2)

2
.

The positive divisors of pk are precisely the integers of the form pi where 0 ≤ i ≤ k.

Moreover, we have shown in class that τ(pi) = i+ 1. Therefore

f(pk) =
∑
d|n

τ(d) =
k∑

i=0

τ(pi) =
k∑

i=0

(i+ 1) =
k+1∑
i=1

i =
(k + 1)(k + 2)

2

c) Let n ≥ 2 be a positive integer with prime factorization n = pk11 · · · pkrr . Find an explicit

formula for f(n) that does not use the sigma notation.

Observe that pkii ’s are pairwise relatively prime integers. By Part (a), f is multiplicative

and hence

f(n) = f

(
r∏

i=1

pkii

)
=

r∏
i=1

f
(
pkii
)

But now, by Part (b), we see that

f(n) =
r∏

i=1

f
(
pkii
)
=

r∏
i=1

(ki + 1)(ki + 2)

2
=

(k1 + 1)(k1 + 2) · · · (kr + 1)(kr + 2)

2r
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