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8 QUESTIONS ON 4 PAGES DURATION: 90 MINUTES

Q1.(15 points) Prove that

1 · 2 + 2 · 3 + · · ·+ n · (n+ 1) =
n(n+ 1)(n+ 2)

3

for all integers n ≥ 1.

We shall prove that the statement (∗) : 1 · 2 + 2 · 3 + · · ·+ n · (n+ 1) =
n(n+ 1)(n+ 2)

3
holds for all n ∈ N, by induction on n.

� Base step. We have that 1 · 2 = 1·2·3
3

and hence (∗) holds for n = 1.

� Inductive step. Let n ≥ 1 be an integer. Assume as inductive hypothesis that (∗)
holds for n, that is,

1 · 2 + 2 · 3 + · · ·+ n · (n+ 1) =
n(n+ 1)(n+ 2)

3

It now follows from the inductive assumption that

1 · 2 + 2 · 3 + · · ·+ n · (n+ 1) + (n+ 1) · (n+ 2) =
n(n+ 1)(n+ 2)

3
+ (n+ 1)(n+ 2)

On the other hand, the term on the right hand side equals

n(n+ 1)(n+ 2)

3
+(n+1)(n+2) =

n(n+ 1)(n+ 2) + 3(n+ 1)(n+ 2)

3
=

(n+ 1)(n+ 2)(n+ 3)

3

So we have

1 · 2 + 2 · 3 + · · ·+ n · (n+ 1) + (n+ 1) · (n+ 2) =
(n+ 1)(n+ 2)(n+ 3)

3

Thus (∗) holds for n + 1. Hence, by the principle of mathematical induction, (∗)
holds for all n ∈ N.

Q2.(10 points) State the definition of the least common multiple of two non-zero

integers a and b: A positive integer k is said to be the least common multiple of a and b

if . . . . . . . . .

� a | k and b | k; and

� For all positive integers c, if a | c and b | c, then k ≤ c.



Q3.(15 points) Using the Euclidean algorithm, obtain integers x and y that satisfy the

following equality: gcd(430, 185) = 430x+ 185y.

Applying the Euclidean algorithm, we obtain that

430 = 185 · 2 + 60

185 = 60 · 3 + 5

60 = 5 · 12 + 0

Since the last non-zero remainder is 5, we know that gcd(430, 185) = 5. Starting from

the last equation and writing the remainders of previous equations in the reverse order,

we get that

5 = 185 + 60 · (−3)

5 = 185 + (430 + 185 · (−2)) · (−3) = 185 · 7 + 430 · (−3)

Thus, choosing x = −3 and y = 7, the equation gcd(430, 185) = 430x+185y is satisfied.

Q4.(10 points) If exists, find all the integer solutions of the linear Diophantine equation

15x+ 35y = 140. If such a solution does not exist, explain why this is the case.

Observe that gcd(15, 35) = 5 | 140. Thus, by a theorem proven in class, the linear

Diophantine equation 15x+35y = 140 has a solution. In order to obtain all solutions, we

first need to find a particular solution. By trial-and-error, we see that x0 = 0 and y0 = 4

is a particular solution of this equation. Therefore, by the same theorem referred above,

we obtain that

x = x0 +
35

gcd(15, 35)
t = 7t and y = y0 −

15

gcd(15, 35)
= 4− 3t where t ranges over Z

gives all solutions to this linear Diophantine equation
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Q5.(15 points) Without using Dirichlet’s theorem, prove that there are infinitely many

prime numbers of the form 4n+ 3.

Assume towards a contradiction that there are finitely many primes of the form 4n + 3,

say, q1, q2, . . . , qk is the list of all primes of the form 4n+ 3. Consider the number

N = 4 · q1 · q2 · · · · · qk − 1 = 4 · (q1 · q2 · · · · · qk − 1) + 3

By the Fundamental Theorem of Arithmetic, we can write N as N = r1 · r2 · . . . rm where

ri’s are prime numbers. Observe that N is odd since N is of the form 4n+ 3. Therefore,

ri is an odd prime and so is of the form 4n + 1 or 4n + 3 for every 1 ≤ i ≤ m. We next

argue that not all of ri’s can be of the form 4n+ 1.

Recall that a product of numbers of the form 4n+1 is of the form 4n+1. Therefore, if it

were that ri of the form 4n+1 for every 1 ≤ i ≤ m, then N would be of the form 4n+1,

which is not the case. It follows that rj is of the form 4k + 3 for some 1 ≤ j ≤ m.

Since rj is a prime number of the form 4k+3, it appears in the list q1, q2, . . . , qk and hence

rj | 4 · q1 · q2 · · · · · qk. But then, since rj | N as well, we obtain that

rj | N − (4 · q1 · q2 · · · · · qk) = −1

This leads to a contradiction as the only divisors of −1 are 1 and −1.

Q6.(10 points) Verify that 283 is a prime number.

Observe that 16 <
√
283 < 17. Therefore, to check that 283 is a prime number, it suffices

to divide 283 by all prime numbers less than 17 and see whether 283 is divisible by any

of these. The prime numbers less than 17 are 2, 3, 5, 7, 11, 13. Dividing 283 by these

numbers, we obtain that

283 = 2 · 141 + 1

283 = 3 · 94 + 1

283 = 5 · 56 + 3

283 = 7 · 40 + 3

283 = 11 · 25 + 8

283 = 13 · 21 + 10

If 283 were not prime, then it would have a factor that is less than or equal to
√
283 other

than 1; but this factor itself would have a prime factor. Thus, if 283 were not prime, then

it would have a prime factor that is less than or equal to
√
283. We have already checked

that 283 does not have a prime factor that is less than or equal to
√
283, so it must be a

prime number itself.
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Q7.(10 points) Show that 123123 + 33 is divisible by 60.

By computing the first few powers of 123 modulo 60, we obtain that

1231 ≡ 31 ≡ 3 (mod 60)

1232 ≡ 32 ≡ 9 (mod 60)

1233 ≡ 33 ≡ 27 (mod 60)

1234 ≡ 34 ≡ 21 (mod 60)

1235 ≡ 35 ≡ 3 (mod 60)

It follows that

123123 ≡ 3123 ≡ (35)24·33 ≡ 324·33 ≡ 327 ≡ (35)5·32 ≡ 35·32 ≡ 37 ≡ 35·32 ≡ 3·32 ≡ 27 (mod 60)

Consequently, we have

123123 + 33 ≡ 27 + 33 ≡ 60 ≡ 0 (mod 60)

This means that the remainder of 123123 + 33 when it is divided by 60 is 0, that is,

123123 + 33 is divisible by 60.

Q8.(15 points) Let a, b be integers and n ≥ 2 be an integer such that gcd(a+ b, n) = 1.

Prove that if a2 ≡ b2 (mod n), then a ≡ b (mod n).

Assume that a2 ≡ b2 (mod n). Then, by the properties of congruence, by subtracting b2

from both sides, we obtain that a2 − b2 ≡ 0 (mod n) and so (a− b)(a+ b) ≡ 0 (mod n).

Since we have gcd(a+b, n) = 1, by a theorem proven in class, we can cancel the factor a+b

from both sides of a congruence relation modulo n and consequently, we have a − b ≡ 0

(mod n). This implies that a ≡ b (mod n).

Alternative solution. Assume that a2 ≡ b2 (mod n). Then, by the properties of

congruence, by subtracting b2 from both sides, we obtain that a2 − b2 ≡ 0 (mod n) and

so (a− b)(a+ b) ≡ 0 (mod n). Thus n | (a− b)(a+ b). Since we have gcd(a+ b, n) = 1,

by a lemma proven in class, we have that n | (a− b) and hence a− b ≡ 0 (mod n). This

implies that a ≡ b (mod n).
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