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Problem 1. Let Dn be the Euclidean distance between two points, chosen uniformly at random from an n-dimensional unit
hypercube, independently of each other.

(a) Determine the value of α satisfying lim
n→∞

P
(∣∣∣ Dn√n − α∣∣∣ > ε

)
= 0 for all ε > 0.

(b) Determine the value of β satisfying lim
n→∞

P(Dn − α
√
n ≤ γ) = Φ(βγ) for all γ ∈ R where Φ(·) is standard normal CDF.

(Hint: You can invoke the approximation a
√
n+ b ≈ a

√
n for large n in the argument of any CDF your calculations.)

Problem 2. Let X1,X2, . . . be independent identically distributed discrete random variables with the PMF pX. For any n ∈ Z+

and ε > 0, let the typical set A
(n)
ε be

A(n)
ε :=

{
xn1 |e−n(H+ε) ≤ pXn

1
(xn

1 ) ≤ e−n(H−ε)
}
,

where xn1 and Xn1 are shorthand representations for real numbers x1, . . . , xn and random variables X1, . . . ,Xn, receptively, and
H = −

∑
x pX(x ) ln pX(x ). Show that for any ε > 0,

lim
n→∞

P
(
Xn1 /∈ A(n)

ε

)
= 0

(Hint: Can you express pXn
1
(Xn

1) in terms of the sum of independent identically distributed random variables?)

Remark. Let Sn be Sn =
∑n
t=1 Xt for each positive integer n, where Xt are independent identically distributed random

variables . One can use the central limit theorem to approximate probabilities of the form P(Sn ≤ γ). Questions about such
probabilities are sometimes posed via random variables indexed in a different way. To familiarize yourself with such questions I
recommend you read Example 5.10 and solve Problem 10 at the end of Chapter 5. The solution of Problem 10 is also presented
here: https://bit.ly/2ANPxnm
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Solution of Problem 1. The form of the identities used in the statement of the question suggests that the weak law of large
numbers and the central limit theorem will be used in some way. In the following, we will first show that the random variables
Dn can be written as a function of the sum of independent identically distributed random variables.

Let us denote the coordinates of the first point by X1, . . . ,Xn and the coordinates of the second point by Y1, . . . ,Yn. Note
that since points are chosen independently and each according to the uniform distribution on the n-dimensional unit hypercube,
X1, . . . ,Xn,Y1, . . . ,Yn are independent and identically distributed with a PDF that is uniform on the interval [0, 1].

The Euclidean distance between the points can be written in terms of the coordinates as

Dn =

√∑n

t=1
(Yt − Xt)2

=

√∑n

t=1
Zt (1)

where Zt = (Yt−Xt)
2. Note that Z1, . . . ,Zn’s are independent and identically distributed because X1, . . . ,Xn,Y1, . . . ,Yn are

independent and identically distributed. Furthermore,

E[Zt] = E
[
(Yt − Xt)

2
]

by defintion

= E
[
(Yt)

2
]
− 2E[Yt]E[Xt] + E

[
(Xt)

2
]

because E[YtXt] = E[Yt]E[Xt] by the independence.
= 1

3 − 2 1
2
1
2 + 1

3 because Yt and Xt both unifomly distributed on [0, 1].
= 1/6 (2)

Thus Dn is a function of the sum of independent random variables.
(a) As a result of the weak law of large numbers and (2)

limn→∞P
(
1/6− ε ≤

∑n
t=1 Zt
n ≤ 1/6 + ε

)
= 1 ∀ε > 0

Using (1) we get

limn→∞P
(√

1/6− ε ≤ Dn√
n
≤
√

1/6 + ε
)

= 1 ∀ε ∈ (0, 16 )

Hence,

limn→∞P
(√

1/6− ε̃ ≤ Dn√
n
≤
√

1/6 + ε̃
)

= 1 ∀ε̃ > 0

Thus α = 1√
6

(b) In order to apply the central limit theorem to Z1, . . . ,Zn’s are independent, we need to know the variance of Zt’s. In order
to calculate that let us first calculate the second moment of Zt’s.

E
[
Z2
t

]
= E

[
(Yt − Xt)

4
]

by defintion

=
∑4

k=0

(
4

k

)
E
[
(Yt)

k
]
E
[
(Xt)

4−k] because of the independence.

= 1
5 − 4 1

4
1
2 + 6 1

3
1
3 − 4 1

2
1
4 + 1

5 because Yt and Xt both unifomly distributed on [0, 1].
= 1/15

var(Zt) = E
[
Z2
t

]
−E[Zt]

2

= 1/15− (1/6)2 by (2)
= 7/180 (3)

Using α = 1/
√
6 and (1) we get

P
(
Dn − α

√
n ≤ γ

)
= P

(∑n

t=1
Zt ≤ n

6 +
√
n
3 γ + γ2

)
∀γ ≥ −

√
n/6 (4)

On the other hand, as a result of the central limit theorem

lim
n→∞

P
(∑n

t=1
Zt ≤ n

6 +
√
n
3 γ
)

= Φ(γ3
1√

180/7
)

= Φ(
√
5

18
√
7
γ) (5)

Note that
√
n
3 γ+γ2 ≈

√
n
3 γ for large n because lim

n→∞
γ2/

√
n
3 γ = 0. Thus using (4) and (5) we can conclude that β =

√
5

18
√
7

.

Remark 1. Our use of the approximation a
√
n + b ≈ a

√
n overlooks certain subtleties, which is excusable for EE230.

However, we can also rigorously prove the identity

limn→∞P
(∑n

t=1
Zt ≤ n

6 +
√
n
3 γ + γ2

)
= Φ(

√
5

18
√
7
γ). (6)

bnakib@metu.edu.tr 2 of 3

mailto:bnakib@metu.edu.tr


METU EE230 Supplementary Note for Week #15 May 23, 2020

First, note that P
(∑n

t=1 Zt ≤
n
6 +

√
n
3 γ + γ2

)
≥ P

(∑n
t=1 Zt ≤

n
6 +

√
n
3 γ
)

and (5) imply

limn→∞P
(∑n

t=1
Zt ≤ n

6 +
√
n
3 γ + γ2

)
≥ Φ(

√
5

18
√
7
γ) (7)

if the limit exists.
Since P

(∑n
t=1 Zt ≤

n
6 +

√
n
3 γ + γ2

)
≤ P

(∑n
t=1 Zt ≤

n
6 +

√
n
3 (γ + ε)

)
for all n ≥ 9γ2

ε , equation (5) implies

limn→∞P
(∑n

t=1
Zt ≤ n

6 +
√
n
3 γ + γ2

)
≤ Φ(

√
5

18
√
7
(γ + ε))

if the limit exists. On the other limε→0 Φ(
√
5

18
√
7
(γ+ ε)) = Φ(

√
5

18
√
7
γ) because the standard normal CDF Φ is a continuous

function. Thus

limn→∞P
(∑n

t=1
Zt ≤ n

6 +
√
n
3 γ + γ2

)
≤ Φ(

√
5

18
√
7
γ) (8)

if the limit exists. Equations (7) and (8) imply that the limit exists and (6) holds.

Solution of Problem 2. Note that the independence of X1,X2, . . . implies

pXn
1
(xn

1 ) = pX1
(x1) · pX2

(x2) · · · pXn
(xn)

=
∏n

t=1
pXt (xt) ∀xn1 .

On the other hand pXt
(x ) = pX(x ) for all x because X1,X2, . . . are identically distributed discrete random variables with the

PMF pX. Thus

pXn
1
(xn

1 ) =
∏n

t=1
pX(xt) ∀xn1 .

If take the logarithm of both sides of the equation we can express pXn
1
(xn

1 ) in terms of a sum

ln pXn
1
(xn

1 ) = ln
∏n

t=1
pX(xt)

=
∑n

t=1
ln pX(xt) ∀xn1 .

Since above relation holds for all realizations xn1 of random variables Xn1 , we can express ln pXn
1
(Xn

1) as follows

ln pXn
1
(Xn

1) =
∑n

t=1
ln pX(Xt)

Note that ln pX(Xt) is a random variable for each t ∈ Z+ , because ln pX(Xt) is just a function of the random variable Xt. Thus

ln pXn
1
(Xn

1) =
∑n

t=1
Yt (9)

where Yt = ln pX(Xt). Note that Y1,Y2, . . . are independent and identically distributed because X1,X2, . . . are independent
and identically distributed. Furthermore,

E[Yt] =
∑

x
pXt

(x ) ln pX(x )

=
∑

x
pX(x ) ln pX(x ) because pXt

= pX

= −H by the value H given in the question. (10)

The weak law of large numbers and equations (9) and (10) imply

lim
n→∞

P
(∣∣∣ ln pXn1(Xn

1)−nH
n

∣∣∣ > ε
)

= 0.

Then limn→∞P
(
Xn1 /∈ A

(n)
ε

)
= 0 holds because∣∣∣ ln pXn1(Xn

1)−nH
n

∣∣∣ ≤ ε ⇔ e−n(H+ε) ≤ pXn
1
(Xn

1) ≤ e−n(H−ε) ⇔ Xn1 ∈ A(n)
ε

Remark 2. The quantity H is called the Entropy of the random variable X. Note that each element of the the set A
(n)
ε have

roughly equal probability. One can also show using the definition of the set A
(n)
ε together with bounds on its probability that

lim
n→∞

ln |A(n)
ε |
n = H.

These observation constitute a special case of a more general principle: the Asymptotic equipartition property.
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