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Problem 1. [Ch. 4 Problem 5] Let X and Y be independent random variables, uniformly distributed in the interval [0, 1]. Find
the CDF and the PDF of |X− Y|.

Problem 2. Let Y be Y =
∑n
t=1 Xt, where X1, . . . ,Xn are independent identically distributed continuous random variables

with PDF fX, i.e.,

fX1,...,Xn (x1, . . . , xn) =
∏n

t=1
fX(xt) .

What is E[X1|Y]? (Hint: Can you answer the question for n = 2 case?)

Problem 3. Let Z be Z = XT where X1, . . . ,Xn and T be independent random random variables and T be an integer valued
positive random variable satisfying P(T ≤ n) = 1. Show that

MZ(s) =
∑n

t=1
pT(t)MXt

(s) (1)

Problem 4. Let the random variable X be X = Y/Z, where Y and Z are independent, Y is an exponentially distributed random
variable with parameter λ and Z be a random variable uniformly distributed on [a, b] for b > a > 0, i.e.,

fY(y) =

{
λe−λy , if y ≥ 0,

0, if y < 0,
and fZ(z ) =

{
1
b−a , if z ∈ [a, b],

0, if z /∈ [a, b],
.

What is the moment generating function MX of the random variable X?

Problem 5. For each t ∈ {1, . . . , n} let Yt be an exponentially distributed random variable with parameter λ that is independent
of Xt−1 and the conditional PMF of Xt given Xt−1 and Yt be

pXt|Xt−1,Yt
(xt|xt−1, yt) =

{
1/2, if xt =

xt−1

2 + yt,
1/2, if xt =

xt−1

2 ,
.

Determine the moment generating function MXn of the random variable Xn in terms of the moment generating function MX0

of the random variable X0.

Problem 6. Let W be

W = X+YZ√
1+Z2

, (2)

where X, Y, and Z independent identically distributed zero mean Gaussian random variables with variance σ2. What is fS?
(Hint: You need not to do tedious calculations to solve this problem.)

Problem 7. Let Z be

Z = X+ Y, (3)

where X is exponentially distributed with parameter λ and Y is a mean β random variable independent of X. If Z is exponentially
distributed, then what is FY? (Hint: You might want to invoke (1) at some point.)
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Solution of Problem 1 [Ch. 4 Problem 5].
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Figure 1. y = x + z and y = x − z lines
and the region on which |x − y| ≤ z and
fX,Y(x , y) > 0 for a z ∈ [0, 1].

Let the random variable Z be

Z = |X− Y|. (4)

Recall that FZ(z ) = P(Z ≤ z ) by definition. Thus using (4), we get

FZ(z ) = P(|X− Y| ≤ z ) . (5)

Since the absolute value is always non-negative, P(|X− Y| ≤ z ) = 0 for all z < 0. In
order to determine P(|X− Y| ≤ z ) for z ≥ 0 case, we can use fX,Y

P(|X− Y| ≤ z )

∫ ∞
−∞

∫ x+z

x−z
fX,Y(x , y) dydx (6)

Thus we determine fX,Y, first. To that end note that the independence of X and Y imply

fX,Y(x , y) = fX(x ) fY(y) .

On the other hand both X and Y are both uniformly distributed in the interval [0, 1], i.e.,

fX(x ) =

{
1 x ∈ [0, 1]

0 otherwise
and fY(y) =

{
1 y ∈ [0, 1]

0 otherwise
.

Thus

fX,Y(x , y) =

{
1 x ∈ [0, 1] and y ∈ [0, 1]

0 otherwise
(7)

Then fX,Y(x , y) is positive only for x and y values satisfying |x − y | ≤ 1 by (6). Thus P(|X− Y| ≤ z ) = 1 for all z ≥ 1. In
order to calculate P(|X− Y| ≤ z ) for z ∈ [0, 1) we can use (6) and (7) with the help of Figure 1. Note that in integral given
(6) is the area between the two blue lines in Figure 1. In that are the fX,Y(x , y) is positive only for the shaded region and its
value is one in the shaded region. Thus P(|X− Y| ≤ z ) is equal to the area of the shaded region. We can calculate that area
by subtracting the areas of the triangle to the lower-right and upper-left of the shaded region from the area of the unit square.
The area of each triangle is 1

2 (1− z )2. Thus P(|X− Y| ≤ z ) = 1− (1− z )2 for z ∈ [0, 1). Thus

FZ(z ) =


0, z < 0,

1− (1− z )2, z ∈ [0, 1],

1 z > 1,

.

Then using fZ(z ) = d
dz FZ(z ), we get

fZ(z ) =

{
2(1− z ), z ∈ [0, 1],

0 otherwise,
.

Solution of Problem 2. Note that as a result of the symmetry of the problem we have

E[X1|Y] = E[Xt|Y] ∀t ∈ {2, . . . , n}. (8)

In fact a stronger result holds for conditional PDFs: fX1|Y(x |y) = fXt|Y(x |y) for all x , y , and t ∈ {2, . . . , n}.
On the other hand, E[Y|Y] = Y and Y =

∑n
t=1 Xt imply

Y =
∑n

t=1
E[Xt|Y] . (9)

Using (8) and (9) we get E[X1|Y] = Y
n .

Remark 1. Note that our reasoning has nothing to do with the existence of the probability density functions, fXt ’s. Hence
E[X1|Y] = Y

n for any independent identically distributed X1, . . . ,Xn, not just the continuous ones.
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Solution of Problem 3.

MZ(s) = E
[
esXT

]
by the defintion of moment generating function and the random variable Z,

= E
[
E
[
esXT

∣∣T]] by the law of iterated expectations,
= E[MXT

(s)] by the defintion of moment generating function and independence,

=
∑n

t=1
pT(t)MXt

(s)

Solution of Problem 4. One can first calculate the PDF fX the random variable X and then determine the moment generating
function MX. However, the use of conditional expectations provides us a less tedious way to solve this problem.

MX(s) = E
[
esX
]

by the defintion of moment generating function,

= E
[
E
[
esX
∣∣Z]] by the law of iterated expectations,

= E
[
E
[
es

Y
Z

∣∣∣Z]] because X = Y/Z,

= E
[
MY

(
s
Z

)]
because E

[
e

s
ZY
∣∣Z] =MY

(
s
Z

)
by the defintion of moment generating function,

= E
[
1+ s

Zλ−s

]
because MY(s) =

λ
λ−s , see page 239 of the textbook,

= 1 + s
λ

∫ b

a

1
b−a

1
z− s

λ
dz because Z is uniformly distributed on [a, b],

= 1 + s
λ

1
b−a ln

(
z − s

λ

)∣∣∣b
a

= 1 + s
λ(b−a) ln

(
λb−s
λa−s

)

Solution of Problem 5. One can in principle use the inversion property to determine the CDF of the random variable X0 and
then determine first the CDF of the random variable Xn and then the moment generating function MXn . However, as was the
case in the previous example the conditional expectations provides us a much simpler way to solve this problem.

MX(s) = E
[
esXn

]
by the defintion of moment generating function,

= E
[
E
[
esXn

∣∣Xn−1,Yn

]]
by the law of iterated expectations,

= E
[
1
2e

s(
Xn−1

2 +Yn) + 1
2e

s
Xn−1

2

]
by invoking the expression for pXn|Xn−1,Yn

to calculate E
[
esXn

∣∣Xn−1,Yn

]
,

= E
[
1
2

(
1+ esYn

)
es

Xn−1
2

]
= E

[
1
2

(
1+ esYn

)]
E
[
es

Xn−1
2

]
beause Yn and Xn−1 are independent,

= 1
2 [1 +MYn (s)]MXn−1

(
s
2

)
by the defintion of moment generating function,

= λ−s/2
λ−s MXn−1

(
s
2

)
because MYn (s) =

λ
λ−s , see page 239 of the textbook,

= λ−s/22
λ−s MXn−2

(
s
22

)
because MXn−1 (s) =

λ−s/2
λ−s MXn−2

(
s
2

)
as a result of analgous arguments,

= λ−s/2n
λ−s MX0

(
s
2n

)
Solution of Problem 6. The critical step in solving this problem is considering the behavior of W conditioned on Z. Note that
as a result of independence of X, Y, and Z we have

fX,Y|Z(x , y |z ) = fX(x ) fY(y) , (10)

Hence for all z , the random variables X and Y are independent zero mean Gaussian random variables conditioned on the event
Z = z , as well. We can use this observation either via the moment generating function or by using PDFs to obtain the result.
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• Let us first use the Moment generating function

MW(s) = E
[
esW
]

by the defintion of moment generating function,

= E
[
E
[
esW
∣∣Z]] by the law of iterated expectations.

= E

[
E

[
e
s X+YZ√

1+Z2

∣∣∣∣Z]] by (2)

= E

[
E

[
e
s X√

1+Z2

∣∣∣∣Z]E[es YZ√
1+Z2

∣∣∣∣Z]] by (10)

= E

[
e

s2

2
σ2

1+Z2 e
s2

2
Z2

1+Z2

]
because

{
A ∼ N (0, σ2)⇔MA(s) = e

s2

2 σ
2

, see page 239 of the textbook,
E[Ag(Z)|Z] = g(Z)E[A|Z] for any function g and rand. var. A.

= E
[
e

s2

2 σ
2
]

= e
s2

2 σ
2

Then W ∼ N (0, σ2) by the inversion property, see page 234 of the textbook. Thus fW(w) = 1√
2πσ

e−
w2

2σ2 .
• Note that aX + bY ∼ N (aµX + bµY, a

2σ2
X + b2σ2

Y) for any two constants a, b ∈ R for any two independent random
variables X ∼ N (µX, σ

2
X) and Y ∼ N (µY, σ

2
Y). Note that this is exactly the situation we have for W conditioned on the

event Z = z , for a = 1√
1+z2

, b = 1√
1+z2

, µX = 0, µY = 0, σX = σ, and σY = σ as a result of (10). Thus,

fW|Z(w |z ) = 1√
2πσ

e
w2

2σ2 dτ

Then fW(w) = 1√
2πσ

e−
w2

2σ2 because fW(w) = E
[
fW|Z(w |Z)

]
.

Remark 2. Note that the distribution of the random variable Z played no role in our calculations. Thus fW(w) = 1√
2πσ

e−
w2

2σ2

holds as long as (2) holds for independent random variables X, Y, and Z, where X and Y are identically distributed zero mean
Gaussian random variables with variance σ2.

Solution of Problem 7. E[X] = 1
λ , see page 182 of the textbook. On the other hand E[Z] = E[X]+E[Y] thus E[Z] = 1

λ +β.
On the other hand Z is exponentially distributed, thus the parameter of its exponential distribution is 1

E[Z] = λ
1+λβ . Hence,

we can determine the moment generating function of Z using the fact that it is exponentially distributed, see page 239 of the
textbook,

MZ(s) =
λ

λ−s(1+λβ) (11)

Similarly, the moment generating function of Xis

MX(s) =
λ
λ−s (12)

On the other hand, since X and Y are independent moment generating function of their sum is equal to product of moment
generating functions of each:

MZ(s) =MX(s)MY(s) (13)

Using (11), (12), and (13), we can determine the moment generating function of Y:

MY(s) =
λ−s

λ−s(1+λβ)

= 1
1+λβ + λβ

1+λβ
λ

λ−s(1+λβ)

Note that λ
λ−s(1+λβ) is the moment generating function of an exponentially distributed random variable with parameter λ

1+λβ
and 1 is the moment generating function of the random variable which is equal to 0 with probability 1. Thus using (1) and the
inversion property we can conclude that

FY(y) =

0 if y < 0

1− λβ
1+λβ e

− λ
1+λβ y if y ≥ 0

(14)
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