

CVE 471 CVE 471WATER RESOURCES ENGINEERING WATER RESOURCES ENGINEERING

HYDROELECTRIC POWER HYDROELECTRIC POWER

Assist. Prof. Dr. Bertuğ Akıntuğ

Civil Engineering Program Middle East Technical University Northern Cyprus Campus

Overview

- F. Characteristics of Electrical Power Plants
- \mathbb{R}^3 **Terminology**
- $\mathcal{L}_{\mathcal{A}}$ Hydroelectric Power Plants
	- **Run-of-River Plants**
	- Storage Plants
	- **Pumped-Storage Plants**
- \mathbb{R}^3 Components of Hydroelectric Power Plants
- $\| \cdot \|$ Availability of Hydroelectric Power and Energy
	- **Flow Duration Method**
	- Sequential Streamflow Routing Method

Characteristics of Electric Power Plants

- $\overline{}$ Electricity is commonly generated in
	- **Hydropower Plants,**
	- П Thermal Plants, and
	- **Nuclear Plants.**
- F. *Hydropower plants* generate electricity by water turbines which operates by means of falling water.
- \mathbb{R}^3 *Thermal plants* generate electricity by steam turbines, which require fossil fuel (coal, oil, or natural gas).
- $\mathcal{L}_{\mathcal{A}}$ *Nuclear power plants* use an atomic fuel like uranium, thorium, and plutonium.
- F. Alternative sources:
	- **Nind energy,**
	- \blacksquare Solar energy, and
	- П Wave energy.

Characteristics of Electric Power Plants

- $\overline{\mathcal{A}}$ The process of use of fuel converts 30 to 40% of energy content of the fuel to electrical energy.
- $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ Operational scheme of thermal power plant:

Figure 12.1 Operational scheme of a thermal power plant.

- F. Initial cost of a hydroelectric plant is normally higher than that of a thermal plant producing almost the same amount of power.
- $\mathcal{L}_{\mathcal{A}}$ The maintenance and repair costs of a thermal plant are much higher than for a hydroelectric plant.
- $\mathcal{L}_{\mathcal{A}}$ Thermal plant needs one month of maintenance each year.
- F. Operation costs of thermal plant is also high because of high cost of fuel.
- $\overline{}$ The cost of hydro energy is approximately
	- \blacksquare one-fifth of the cost of energy generated by fossil, and
	- П one-tenth of the cost of energy generated by nuclear plants.

Characteristics of Electric Power Plants

$\overline{\mathcal{A}}$ *Hydroelectric plants*

- **put in operation in only a few minutes.**
- П relatively high efficiency (80 to 90%).
- П lifetime is about 75 years.
- \blacksquare non-pollutant.

$\overline{}$ *Thermal plants*

- \blacksquare needs a few hours for their startup.
- \blacksquare lifetime is about 25 years.
- П may lead to environmental pollution if any air-pollution-control systems and cooling towers are not implemented.

$\overline{\mathcal{A}}$ *Nuclear power plants*

- \blacksquare low efficiency (i.e. about 25%)
- П annual maintenance and refueling period: two months
- П excessive safety precautions should be taken against nuclear pollution
- Optimum use of combined system:
	- П The generation of base load by thermal or nuclear plants
	- П The generation of peak loads by hydroelectric plants.
- Worldwide:
	- П Thermal plants: ~75%
	- П Hydroelectric plants: ~23%
	- \blacksquare Others: $~2\%$

Characteristics of Electric Power Plants

- F. As of 2004, the annual energy generation in Turkey:
	- \blacksquare Hydraulic: 21%
	- П Natural gas: 43%
	- Fuel oil: 9%
	- \blacksquare Lignite: 27%
	- П Geothermal and wind: <1%
- \mathbb{R}^3 The present total installed capacity of all power plants in Turkey : ~29000 MW

Table 12.1 Development of Electricity Generation in Turkey (DSI, 2002).

* Figures include geothermal and wind power.

Table 12.2 World's and Turkey's hydropower potential (DSI, 2002).

Characteristics of Electric Power Plants

Figure 12.4 Sequential dams and hydropower plants on the Euphrates River.

Figure 12.3 Hydropower plants in Turkey with installed capacities> 500 MW.

Above power plants generates almost 70% of hydroelectric energy in Turkey.

Overview

F. Characteristics of Electrical Power Plants

\mathbb{R}^3 **Terminology**

- $\mathcal{L}_{\mathcal{A}}$ Hydroelectric Power Plants
	- **Run-of-River Plants**
	- Storage Plants
	- **Pumped-Storage Plants**
- \mathbb{R}^3 Components of Hydroelectric Power Plants
- $\| \cdot \|$ Availability of Hydroelectric Power and Energy
	- **Flow Duration Method**
	- Sequential Streamflow Routing Method

Terminology

- P. **The gross head, H_g: The vertical** difference between the water surface elevations at the upstream and downstream.
- $\mathcal{L}_{\mathcal{A}}$ **The net effective head, H_n: The head** available for energy production.

 $H_n = H_q$ - (head loss)

- E **Hydraulic efficiency, e_h: The ratio of** net head to gross head.
- $\mathcal{L}_{\mathcal{A}}$ **__Overall efficiency, e**: e_h x e_t x e_g e_t : efficiency of turbines $e_{\rm g}$: efficiency of generators e is around 60-70%

Figure 12.5 Definition of head terms for a hydropower station.

NORTHERN CYPRUS

Terminology

- P. **The capacity (installed capacity)**: The maximum power which can be developed by the generators.
- $\mathcal{L}_{\mathcal{A}}$ **Firm (primary) power (base load)**: The power, which can be produced by a plant with no risk.
	- For a single hydroelectric plant, it corresponds to the min. availability of storage.
	- П Firm energy is marketed with high price.
- $\mathcal{L}_{\mathcal{A}}$ **Surplus (secondary) power**: All the power available in excess of firm power.
	- П Secondary power cannot be relied upon.
	- П Its rate is usually less than that of firm power.
	- It can be generated ~9 to 14 hours/day.
- $\mathcal{L}_{\mathcal{A}}$ **Peaking load**: The power required to meet peak demands.
	- П It can be generated for less than \sim 8 hours/day.

Terminology

- P. **Dump energy**: The energy generated that cannot be stored and is beyond instantaneous needs.
	- П Usually sold at low price.
- $\mathcal{L}_{\mathcal{A}}$ **The load curve**: The variation of power requirement against time.
	- П Evening hours \rightarrow High demands
	- П Midnight \rightarrow Low demands
	- П **Weekend** \rightarrow **Low demands**
	- \blacksquare **N** Winter \rightarrow High demands
- $\overline{}$ **The load duration curve**: It gives the relation between the power generated and the corresponding time interval that can guarantee the generation of that power.

NORTHERN CYPRUS

Figure 12.7 A typical load duration curve.

Terminology

- P. Generally hydro and thermal plants operate together in an interconnected power distribution system.
- $\overline{}$ Hydroelectric power plants and thermal plants are utilized in a rotational manner by considering
	- П The quantity of water stored behind the reservoir,
	- П The future hydrometeorological conditions expected, and
	- П The availability of the fuel.
- P. In periods with plenty of water:
	- П Hydroelectric power plants are mainly used to generate base load in order to save fuel.
- \mathcal{C} In periods with low flow season:
	- П Thermal plants are used to produce the firm or base load.
- P. Combined system allows max. efficiency for optimum economic utilization.

b) Low flow

Load distribution

NORTHERN CYPRUS

Overview

- F. Characteristics of Electrical Power Plants
- \mathbb{R}^3 **Terminology**

$\mathcal{L}_{\mathcal{A}}$ **Hydroelectric Power Plants**

- П Run-of-River Plants
- Storage Plants
- **Pumped-Storage Plants**
- \mathbb{R}^3 Components of Hydroelectric Power Plants
- $\| \cdot \|$ Availability of Hydroelectric Power and Energy
	- **Flow Duration Method**
	- Sequential Streamflow Routing Method

Hydroelectric Power Plants

- F. Hydroelectric power plants are generally classified according to their operative mode, such as
	- \blacksquare Run-of-river plant,
	- П Storage plant, and
	- П Pumped-storage plant.

Run-of-River Plants

- E Uses river flow with no storage
- P. Productivity depends on the river regime.
- P. Considered as base load plants

Run-of-River Plants (con't)

- L. The flow is diverted from the river to the lined canal (min. slope for max. head).
- $\mathcal{L}_{\mathcal{A}}$ Settling basin is used to minimize the sediment entrainment into the canal.
- E Some of the plants have regulating head water pond called forebay.
- $\overline{}$ Forebay facilitates daily or weekly storage to meet intermediate or peaking loads.
- $\mathcal{C}^{\mathcal{A}}$ Forebay also facilitates
	- П gentle approach flow conditions to intake,
	- П surge reduction, and
	- П sediment removal.
- $\mathcal{L}_{\mathcal{A}}$ A penstock transmits the flow to the power house.

Figure 12.11 Interbasin transfer of river flow.

NORTHERN CYPRUS

Hydroelectric Power Plants

Storage Plants

JORTHERN CYPRUS

- L. It has a reservoir of sufficient size to develop a firm flow substantially.
- $\mathcal{L}_{\mathcal{A}}$ Depending on the size of the storage, it can meet intermediate and peaking loads.
- P. Water is withdrawn from the reservoir by means of penstocks to the turbines for electricity generation.
- $\mathcal{L}_{\mathcal{A}}$ To obtain high head sometimes a power house is to be constructed at a sufficiently lower elevation on the other side of a hill.
- \sim In this case water is diverted to the penstocks by pressure tunnels.

Figure 12.12 Layout and profile of a tunnel application.

Hydroelectric Power Plants

Pumped-Storage Plants

VORTHERN CYPRUS

- L. A pumped-storage plant incorporates a headwater and a tailwater pond jointly by a penstock and a reversible pump-turbine.
- \blacksquare During low demand hours:
	- П The hydraulic machine pumps water from the tailwater pond to the headwater pond using surplus power generated by a fuel-fired plant in the power system with relatively low cost.
- $\mathcal{L}_{\mathcal{A}}$ During peak hours:
	- **Netamark 19 Islons** Water falls from the headwater pond by means of a penstock and passes through the turbine to generate electricity.
- $\mathcal{L}_{\mathcal{A}}$ Overall efficiency is ~70%.
- $\overline{}$ A reversible pump-turbine may operate up to ~300 m of heads with high efficiency.

Figure 12.13 A typical pumped-storage plant.

Overview

- F. Characteristics of Electrical Power Plants
- \mathbb{R}^3 **Terminology**
- $\mathcal{L}_{\mathcal{A}}$ Hydroelectric Power Plants
	- **Run-of-River Plants**
	- Storage Plants
	- **Pumped-Storage Plants**

$\mathcal{L}_{\mathcal{A}}$ **Components of Hydroelectric Power Plants**

- $\mathcal{L}_{\mathcal{A}}$ Availability of Hydroelectric Power and Energy
	- **Flow Duration Method**
	- Sequential Streamflow Routing Method

Components of Hydroelectric Power Plants

- F. Dam: to create head.
- $\mathcal{L}_{\mathcal{A}}$ Water intake: to take water and convert it to the penstock.
- \mathbb{R}^3 Penstock: to take water with a high velocity to rotate turbines.
	- **Nater-hummer problem in the penstock.**
- Surge tank: to absorb water-hummer pressure.
- $\mathcal{L}_{\mathcal{A}}$ Powerhouse
	- **Substructure: electrical and mechanical instruments.**
	- П Superstructure: the structural elements to protect and house the operating equipment.
- $\mathcal{L}^{\mathcal{A}}$ Tailrace: the channel at the downstream of the powerhouse, which receives water from the turbines.
- $\mathcal{L}_{\mathcal{A}}$ Transformers and transmission lines: to transmit electricity to consumers.

Overview

- F. Characteristics of Electrical Power Plants
- \mathbb{R}^3 **Terminology**
- $\mathcal{L}_{\mathcal{A}}$ Hydroelectric Power Plants
	- **Run-of-River Plants**
	- Storage Plants
	- **Pumped-Storage Plants**
- \mathbb{R}^3 Components of Hydroelectric Power Plants
- $\mathcal{L}^{\text{max}}_{\text{max}}$ **Availability of Hydroelectric Power and Energy**
	- **Flow Duration Method**
	- Sequential Streamflow Routing Method

Availability of Hydroelectric Power and Energy

- F. Streamflow data are required to estimate the availability of water for power generation.
- $\mathcal{L}_{\mathcal{A}}$ Flow-Duration curves may be generated to study the variation of flow in the river but they cannot provide info about chronological sequence of flow.
- $\mathcal{L}_{\mathcal{A}}$ Sequential streamflow routing method is used.
- $\mathcal{L}_{\mathcal{A}}$ To estimate the power potential of the river or reservoir, Sequential streamflow routing method considers:
	- \blacksquare tailwater rating curve,
	- П reservoir operation studies, and
	- \blacksquare downstream flow information

Availability of Hydroelectric Power and Energy

F. Hydroelectric Power:

$$
\left| P = \gamma Q H_g e \right|
$$

 $\mathcal{L}_{\mathcal{A}}$ Generated Energy:

$$
\mathsf{E} = \gamma \mathbf{Q} \mathbf{H}_{\mathrm{g}} \mathbf{e} \Delta \mathbf{t}
$$

where P: power (kW)

- γ : specific weight of water (kN/m³)
- $Q:$ discharge (m^3/s)
- H_n : the net head (m)
- e : overall efficiency, e = e_h e_g e_t (%)
- E : hydroelectric energy (kWh)
- ∆t: time interval for power generation (hours).
- E Electric energy is generally expressed in terms of its annual value (∆t=8760 hr).

Availability of Hydroelectric Power and Energy

- P. The mean annual energy productions of some of the large Turkish dams are:
	- Ataturk Dam: 8.9 x 10⁹ kWh
	- Karakaya Dam: 7.354 x 10⁹ kWh
	- Keban Dam: 6.0 x 10⁹ kWh
- \blacksquare For small hydropower porjects (run-of-river projects), flow-duration curves can be converted to power-duration curves $(Ex. 12.5)$.
- $\mathcal{C}^{\mathcal{A}}$ This curve then be used to estimate the energy potential of the river (Ex. 12.4)
- $\mathcal{L}_{\mathcal{A}}$ The installed capacity, P_{ins} . The maximum power that a generator can develop.
- $\overline{}$ The load factor = (Average Power) / (Max. Power)
- E Average annual plant factor (L) = $E/(8760 P_{ins})$

Availability of Hydroelectric Power and Energy

Flow Duration Method

- a. Used particularly for run-of-river projects.
- $\mathcal{L}_{\mathcal{A}}$ Not applicable for more than one project.
- $\overline{}$ Procedure for determining the power-duration curve and average annual energy production: Example 12.5

Sequential Streamflow Routing Method

- ▉ Computes the energy output for each time interval in the period of analysis
- $\mathcal{L}_{\mathcal{A}}$ The method considers the effect of reservoir operation based on the continuity equation.
- a. This method is repeated for various installed capacities to determine an optimum size (installed capacity) that maximizes the annual energy production.
- a. Procedure best suits to computer application.

Examples

Example 12.2: The mean monthly releases from a storage reservoir for electricity generation are given below in 10^6 m³. There exists a hydropower station with a net head of 29.1 m. Taking $e_h = 0.95$, $e_f = 0.90$, and $e_g = 0.95$, determine the annual load factor.

Example 12.3: A hydroelectric power plant is planned for construction. The total annual flow, which can be released from the reservoir for electricity generation, is $880*10^6$ m³ and is assumed to be time-invarient. Determine the arnual energy production. There is only one penstock having a length and diameter of 500 m and 5 m, respectively. The Hazen-Williams coefficient is C=95. Take $e_g=0.90$, $e_i = 0.85$, and $H_g = 50$ m.

Examples

Example 12.4: Determine the total energy production of a run-of-river plant having an efficiency of $e_g e_t = 85\%$. It receives flow by means of a penstock 400 m long with D=1.2 m and f=0.015. The available head is 200 m and seasonal fluctuations of upstream and downstream water levels are ignored. The flow duration data are tabulated below.

Solution

CVE 471 Water Resources Engineering 28/28

NORTHERN CYPRUS CAMPLIS