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Mathematical Preliminaries

Limit
f(x) is a function of x and it is defined on the set R of real numbers. If

lim f(x)=L (1)

X=X

then f(x) is said to have limit L at x = X, . If x = X + h, the equation (1) can be written as

limf(x, +h)=L

h—0
where h is an increment and xy € R.

Continuity
Assume that f(x) is defined on R of real numbers. If

lim f(x)=f(x,) then f(x) is continuous at x=x,, where xo€R.

X—Xq

If(x) is continuous at all points x, € S, then f(x) is continuous on the set S of real numbers.
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Series

o0 n
Definition : Let{a |~ be a sequence. Then Y a, is an infinite series and S_ = Zak 18
k=1

n=1

called nth partial sum. If LimS_ = LimZ:ak =L, then the infinite series is convergent

n—oo n—oo
k=1

and the squence {S_}”  converges to limit L, or series is said to be convergent series if the

nth partial sum has a limit L. If a series dosen't converge, it is said to be divergent series.

Example

=
—_
=
+
[a—
S——

L=LimS, = Lim(l——1 ):

n—oo n—w
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Convergent sequence
90 . . . . . .
{Xn }n:1 is an infinite sequence and X , is a general term of the sequence. If x , has a limit

L, such that lim X, = L then sequence is a convergent sequence.

n—ow

Example

_ 6n” +ncos(n)
" 20’ +2n+3
JimXx. =3 = L =3, therefore squence has a limit L=3 and it is convergent.

n—oo

Error sequence is defined as &, =3 —x_ . Limit of error sequence is lime, =3—-x, =0.

n—om

is a squence.
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Mathematical Preliminaries

Differentiable functions

Assume that f(x) is defined on an interval containing xo. If

Lim fl)-flx,) f'(x,)

X=X, X — XO

then f(x) is differentiable at xo and f (xo) is called the derivative of f(x) at xo .

In incremental form for x = x¢ + h

f h|]-f
lim {XO ' ) (X0)= f'(xo)
h—0 h

If function f(x) is differentiable at every point in R (R represents the set of real numbers)
then f(x) is differentiable on R.

Example
Assume that f(x) = x” and xo = 1.0 , h=0.01

f(x)=2x and f( x0) =f(1.0)=2.0

o f)=flg) o fleg+n)=flxg) pon-r(0) 102011 _
lim = lim = = ~2.01
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Integrable functions

C[a,b] denotes the set of all continuous functions on the closed interval [a,b].

Assume that f(x)EC[a b If jf (x dx = F(x)

=F(b)—F(a) then it is said that f(x) is
integrable and F(x) is integral of f(x) on the closed interval [a,b].

Summation Definition of Integral :

Assume that f(x)e C[a,b] and the interval [a,b] is subdivided into n intervals which are

[x0,x1] ,[x1.X2],[X2.X3], ....[Xn-1,Xn], Where x¢=a and x,=b. Select an arbitrary point ty in the
interval [xy.1,xi], k=0,1,2,...,n and by introducing the difference Ax, =x, —x,_,. Then

jf(x)jx = |lim Z f( )A K is called summation definition of integral and
n—>wk=1

Zf (t, JAx, is called Riemann sum of f(x) on the interval [a,b]. Note that
k=1

f(tk)ﬁxk = if(x}ix

N MMe

k

YA

>xY
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Example
f(x)=x" is given on the interval [1,2]

2 312

f = [x2dx =2
(x )dx J.x X 3

_8 17 5333333
33 3

.—-'!—-.r_}

. : .. : . X, , +X
Assume that the interval [1,2] is subdivided into 5 parts and t, is taken as t, = %

and Ax, =0.2, then

Ixzdx—f[“—m)*o.uf(xl ”2}*0.2”(—*2 ”3)*0.2#(*3 ”‘4}#0.2
1 2 2 2 2

N f(hzij £0.2

=1.210%0.2+1.690*%0.2+2.25%0.2+2.890*%0.2+3.610*0.2 =2.333 = 2.333333...
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Mean Value Theorem

Assume that C[a,b] is the set of all functions continuous on the interval [a,b] and

f(b)-f(a)

differentiable , then there is a number c € [a,b]such that , f'(c)= D
.

from figure

below. Mean Value Theorem for Integrals

£(c) f(x)e C[a,b] for a < x <b, then there exists a number ¢ : a<c<b such that

F

fla) | -4

tx)

f(b)-f(a)

¥

v




Mathematical Preliminaries

(Taylor's Theorem)

Suppose f € C"[a, b], that f"*V exists on [a,b]., and x; € [a, b]. For every x € [a.b].
there exists a number £(x) between x; and x with

f':—x} - Pn{-‘:} + R"{.IL

/ \

where nth Taylor Polynomial Reminder term (truncation error)
P,(x) = f(xg) + f'(xp)(x — xg) + f";fn] (x —xp)* +---+ f{:‘;'m] (x — xp)"
and
R, (x) — frE) — ),

(n+ 1)!
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Example

f(x)=cos(x), x;=0. Write f(x) as a Taylor's series expansion for first 11 terms or first non-
zero 6 terms (n=10)

f(0)=1.0,

f(x)=-sin(x), £(0)=0.0

f (x)=-cos(x), f(0)=-1.0
f'(x)=sin(x), f (0)=0.0
f™V(x)=cos(x), {V(0)=1.0
fV)(x)=-sin(x), {¥(0)=0.0
fVD(x)=-cos(x), fV(0)=-1.0
VD (x)=sin(x), {¥"(0)=0.0
f“"“”(x)=cos(x3 f”"”(ﬂ)%.ﬁ
F]X}(x)=-sin(x),:F]X’(0)={].{]
f(x)=-cos(x), fV"(0)=-1.0

Po(x)=1-"—4"—-" 4+ —
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If =1f(x,y) (f has 2 independent variables)

Expansion of f(x,y) about Py(x¢,¥0)

f(x,y)=f(XU,yU)JFlM(K_XU)J,lM( _
I ox I ay

1 0% (x,,y,) s 1 (x4, y,)
5 Eﬁxuz 0 (x xu) +E E}yu‘j' - (Y Yu)
2
+i&:l ! Ku,}’{])(y_y”)(x xu)"'
2 oyo

11



Representation of Numbers on a Computer

Decimal and Binary Representation

Numbers can be represented in various forms. The familiar decimal system (base 10) uses ten digits O, 1, ..., 9.

A number is written by a sequence of digits that correspond to multiples of powers of 10.

10* 10> 102 10! 10° 10! 102 103 10*

T

Decimal 6 0 7 2 4.3 1 2 5
6 X10%+ 0X 103+ 7 X10%+ 2 X 10"+ 4 X 10% 3 X 10714 1 X 1072+ 2 X 1073+ 5 X 10*= 60,724.3125
215 214 213 212 211 210 29 28 27 26 25 24 23 22 21 20 21 0 2 o) 3 2-4
Binary 1 1 1 o0 1 1 o0 1 0 o0 I 1 O 1 0 0 0 1 0 1

1x2P+1x2"+ 13280 +0x22 +1x 2" +1x 2"+ 0x 27+ 1x 2 + 0x 27 + 0% 2° + 1x 2°

4 3 2 1 0 1 2 3 -4

+1X27+0X27+1x2°+0%x2 +0X2"+0X2 +1x2°+0x2" +1x2 "= 60,724.3125

12



Representation of Numbers on a Computer

« A b64-bit (binary digit) representation is used for a real number.
» The first bit is a sign indicator, denoted s.

« Thisis followed by an 11-bit exponent, ¢, called the characteristic, and a 52-bit binary fraction, f, called the mantissa.

* The base for the exponent is 2.

210 29 28 2| 20 2-] 2-2 2-3 2-50 2-5| 2-52
197 b7 |17 |7 1// l// 1// 1/11/ l// 1/ l//
//O //0 //0 //0 = s s /0170170 //0 //0 ------ 70 //0 70
A b 1 }
Sign Exponent + bias Mant.1ssa
1 blt 11 bltS 52 bltS

» Since 52 binary digits correspond to between 16 and 17 decimal digits, we can assume that a number represented in
this system has at least 16 decimal digits of precision.
» The exponent of 11 binary digits gives a range of 0 to 2211 — 1 = 2047.

» For a 32-bit representation, s=1, c=8, and f=23.



Approximations and Errors

To save storage and provide a unique
representation for each floating-point

number, a normalization is imposed.

IEEE Binary Floating Point Arithmetic
Standard 754-2008.

Using this system gives a floating-point

number of the form

(— ]}524:'—1[]23(1

1)

lllustration

Consider the machine number
0 10000000011 1011100100010000000000000000000000000000000000000000.

The leftmost bit is s = 0, which indicates that the number is positive. The next 11 bits,
10000000011, give the characteristic and are equivalent to the decimal number

c=1-2220.224...40-2241-2'+1-2°=1024+2+1 = 1027,

The exponential part of the number is, therefore, 21927=1923 — 24 The final 52 bits specify
that the mantissa is

o ) e () o () () () e )

As a consequence, this machine number precisely represents the decimal number

I 1 1 1 1 1
_1)57¢-1023 4 Y — (—1)0 . 21027-1023 (4 B R R
(=1 1+7)=Ch * 2+8+16+32+256+4096

= 27.56640625.

14



Decimal Machine Numbers

« The machine numbers are represented in the normalized decimal floating-point form

+0.didy...dy x 10", 1<d; <9, and 0<d, <9,

foreachi=2,..., k. Numbers of this form are called k-digit decimal machine numbers.
» Any positive real number within the numerical range of the machine can be normalized to the form
¥ = ”.ff]dj “ e i'.f;d;...ﬂ&.,.j ..o x 107,

« The floating-point form of y, denoted fl(y), is obtained by terminating the mantissa of y at k decimal
digits. There are two common ways of performing this termination.

Choppin
It is to simply chop off the digits d(k+1)d(k+2) .. .. This produces the floating-point form

Fl(y) = 0.dyds . .. dy x 10"
Rounding

It is added 5 x 10~ [n—(k+1)] to y and then chops the result to obtain a number of the form

Fl(y) = 0.8,8,...8 x 10"



Floating-Point Form of a Number

Floating-point form of a number:

As it 1s known that scientific notation is the standard way of writing numbers and it has

only one digit before the decimal point followed by rest of the digits with the appropriate
power of ten.

Example
General form Scientific notation
0.0000865 8.65%107

562,000 5.62%10°

16



Significant Figures (Digits)

Significant digits of a number are those that can be used with confidence and designate the reliability
of numerical value.

All the following have 4 significant digits.
- 0.00001987
- 0.001987
- 1.987
« 1900

Thus, zeros depending on their roles in the number may or may not be counted as significant digits.

Consider a computer with n=6 digits and

compute 7 — 2%

True representation of numbers 6 digit representation of numbers

n=3.141592654... n=3.14159
%:3.142857143... %:3.14286

11:—2% =-0.001264489... n—Z% =-0.00127

17



Accuracy and Precision

 Accuracy refers to how closely a computed or

Increasing accuracy

measured value agrees with the true value.
» Inaccuracy (also called bias) is defined as systematic

deviation from the truth.

Increasing precision

 Precision refers to how closely individual computed

or measured values agree with each other.

* Imprecision (also called uncertainty), on the other

hand, refers to the magnitude of the scatter.

(c)

(d)

18



Sources of Errors

* Numerical solutions can be very accurate but in general are not exact.

« There are mainly two kinds of errors due to numerical methods.

* Round-Off Errors
* Round-off error is due to the fact that computers can represent only quantities with a finite number of digits.
* Truncation Errors

» Truncation error is the discrepancy introduced by the fact that numerical methods may employ

approximations to represent exact mathematical operations and quantities.

» We briefly discuss errors not directly connected with the numerical methods themselves.

» The other sources of errors may be:
* Mathematical modeling of a physical promlem
* Uncertainity in physical data (measurement errors)

* Programming errors (blunders)



Round-Off Errors

Consider the two nearly equal numbers p = 9890.9 and ¢ = 9887.1 . Use decimal floating point rep-
resentation (scientific notation) with three significant digits in the mantissa to calculate the differ-
ence between the two numbers, (p —¢g) . Do the calculation first by using chopping and then by using
rounding.

SOLUTION

In decimal floating point representation, the two numbers are:

p = 9.8909 x 10’ and ¢ = 9.8871 x 10°

If only three significant digits are allowed in the mantissa, the numbers have to be shortened. If
chopping is used, the numbers become:

» = 9.890x10° and ¢ = 9.887 x 10°
Using these values in the subtraction gives:

g = 9.890 x 10° —9.887 x 10° = 0.003 x 10> = 3
If rounding is used, the numbers become:

p = 9.891 x 10° and g = 9.887 x 10° (g 1s the same as before)
Using these values in the subtraction gives:

g = 9.891 x 10° —9.887 x 10> = 0.004 x 10° = 4

The true (exact) difference between the numbers is 3.8. These results show that, in the present prob-
lem, rounding gives a value closer to the true answer.

20



Truncation Errors

|Taylor's Theorem)

Suppose f € C"[a, b], that "+ exists on [a,b], and x; € [a. b]. For every x € [a, b],

there exists a number £(x) between x; and x with

f':—x} — Pn{-l:) + R"{IL

— e

where nth Taylor Polynomial Reminder term (truncation error)

f"(x0) f{”’{ Xo)

P,(x) = f(xg) + f'(xp)(x — xp) + TR x)” +- o (x—x0)’
and
R.(x) = f"'“"fnf[ﬂ}u — x)™,

(n+ 1)!

21



Truncation Errors

flx)

Slo e=f1&)
pe = e

X; 3 Xie &
h R l

liv1 — I

= ﬂ':fj'.F] — .i'r}

« The error of our derivative approximation should be proportional to the step size.

 If we halve the step size, we would expect to halve the error of the derivative.

22



Approximations and Errors

Problem Statement. Use zero- through fourth-order Taylor series expansions to approxi-
mate the function

f(x) = —0.1x* — 0.152° — 0.5x> — 0.25x + 1.2

from x; = 0 with & = 1. That 1s, predict the function’s value at x;,; = 1.

flx)

)

Zero order

® flx; 1) = flx)

1.0 s ) = fle) + L

05 — f{.:(f+1} =f|:xf-} +f'{x,-}h + fé:!rf} FI2
f{x:'+1}
0 |
X = 0 Xis1 = X
h
FIGURE 4.1

The approximation of f{x} = —0.1x* — 0.15x*> — 0.5x* — 0.25x + 1.2 at x = 1 by zercorder,
firstorder, and second-order Taylor series expansions.

23



True Error

« Numerical errors arise from the use of approximations to represent exact mathematical operations and

quantities.

« These include truncation errors, which result when approximations are used to represent exact
mathematical procedures, and round-off errors, which result when numbers having limited significant

figures are used to represent exact numbers.

« For both types, the relationship between the exact, or true, result and the approximation can be

formulated as

lrue error

True value = approximation + error g = 100%
true value
E, = true value — approximation where &, designates the true percent relative error.

rae error
24



Approximate Error

In actual situations such information is rarely available.

For numerical methods, the true value will be known only when we deal with functions that can be
solved analytically.

In real-world applications, we will obviously not know the true answer a priori. For these situations, an
alternative is to normalize the error using the best available estimate of the true value, that is, to the

approximation itself, as in

approximarte error _
Eg = — 100 %
approximation

One of the challenges of numerical methods is to determine error estimates in the absence of
knowledge regarding the true value.
For example, certain numerical methods use an iterative approach to compute answers.

In such an approach, a present approximation is made on the basis of a previous approximation.

current approximation — previous approximation .
E, = — 100%
current approximanton
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Chapter 2

Solution of Nonlinear Equations of Single Variable



Bisection Method

The bisection method is a bracketing method of finding a numerical solution of an equation of the

form f(x) =0 when it is known that within a given interval [a, b].

3

f(x) is continuous and the equation has a solution. Jx)} Tr;.ut ,
souton |
|
¢ \ | X
y‘ T 'b >
rue
Solution f()>0
Fi{st : Tri.le'
estimate soiution
First \ / x
iteration[—* ¢ =
a Xysi b
True Ab)<0
Solution |
Troe | et
luti €
S nd | souton \ / 5
lteratxonl +
a I XNs2 b
I
| Third

True estimate
Third l solunon\l/
>

iteration
' a Xns3 b

217



Bisection Method

Algorithm for the Bisection Method S

True
1. Choose the first interval by finding points a and 5 such that a solu- a i \
tion exists between them. This means that f(a) and f(b) have dif-
ferent signs such that f(a)f(b) <0. The points can be determined |
by examining the plot of f(x) versus x. :
|

: . : First True
2. Calculate the first estimate of the numerical solution x,, by: esnmate\ | solution
First 0/ X
Xys1 = (atb) iteration[—* =
2 a Xsi| b
3. Determine whether the true solution is between @ and xg,, or :
. : ; : Second
between x,g, and b. This is done by checking the sign of the prod gglulﬁ o | / et at .
uct f(a) - f(xysy) 35?,?33,,' ; + &, X
If f(a)- f(xyg1) <0, the true solution is between a and x,y;. | a v X b
If f(a)- f(xyg,) >0, the true solution is between x,g, and b. I
4. Select the subinterval that contains the true solution (a to xq,, or T | Third
_ S(ﬁjlflion | / estimate
xys; to b) as the new interval [a, 5], and go back to step 2. Third . | . x
‘ _ iteration] 40— >
Steps 2 through 4 are repeated until a specified tolerance or error a Xys3

bound is attained.

28



Bisection Method

Additional Notes on the Biseciton Method

The method always converges to an answer, provided a root was trapped in the interval [a,b] to

begin with.

The method may fail when the function is tangent to the axis and does not cross the x-axis at f(x)=0.

The method converges slowly relative to other methods.

29



QUESTIONS!?

E-Mail: beratcan@metu.edu.tr

Room: MM Building, 9th Floor, No:206
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