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Representation of Numbers on a Computer

Decimal and Binary Representation

• Numbers can be represented in various forms. The familiar decimal system (base 10) uses ten digits 0, 1, ..., 9. 

• A number is written by a sequence of digits that correspond to multiples of powers of 10. 

Decimal

Binary



Representation of Numbers on a Computer

• A 64-bit (binary digit) representation is used for a real number. 

• The first bit is a sign indicator, denoted s. 

• This is followed by an 11-bit exponent, c, called the characteristic, and a 52-bit binary fraction, f, called the mantissa. 

• The base for the exponent is 2.

• Since 52 binary digits correspond to between 16 and 17 decimal digits, we can assume that a number represented in 

this system has at least 16 decimal digits of precision. 

• The exponent of 11 binary digits gives a range of 0 to 2^11 − 1 = 2047. 

• For a 32-bit representation, s=1, c=8, and f=23.



Approximations and Errors

• To save storage and provide a unique

representation for each floating-point

number, a normalization is imposed.

• IEEE Binary Floating Point Arithmetic

Standard 754-2008.

• Using this system gives a floating-point

number of the form



Decimal Machine Numbers
• The machine numbers are represented in the normalized decimal floating-point form

for each i = 2, . . . , k. Numbers of this form are called k-digit decimal machine numbers.

• Any positive real number within the numerical range of the machine can be normalized to the form

• The floating-point form of y, denoted fl(y), is obtained by terminating the mantissa of y at k decimal
digits. There are two common ways of performing this termination.

Chopping
It is to simply chop off the digits d(k+1)d(k+2) . . . . This produces the floating-point form

Rounding
It is added 5 × 10^[n−(k+1)] to y and then chops the result to obtain a number of the form



Floating-Point Form of a Number



Significant Figures (Digits)

• Significant digits of a number are those that can be used with confidence and designate the reliability

of numerical value.

• All the following have 4 significant digits.

• 0.00001987
• 0.001987
• 1.987
• 1900

• Thus, zeros depending on their roles in the number may or may not be counted as significant digits.



Accuracy and Precision

• Accuracy refers to how closely a computed or

measured value agrees with the true value.

• Inaccuracy (also called bias) is defined as systematic 

deviation from the truth. 

• Precision refers to how closely individual computed 

or measured values agree with each other.

• Imprecision (also called uncertainty), on the other 

hand, refers to the magnitude of the scatter. 



Sources of Errors

• Numerical solutions can be very accurate but in general are not exact.

• There are mainly two kinds of errors due to numerical methods.

• Round-Off Errors

• Round-off error is due to the fact that computers can represent only quantities with a finite number of digits.

• Truncation Errors

• Truncation error is the discrepancy introduced by the fact that numerical methods may employ 

approximations to represent exact mathematical operations and quantities.

• We briefly discuss errors not directly connected with the numerical methods themselves. 

• The other sources of errors may be:

• Mathematical modeling of a physical promlem

• Uncertainity in physical data (measurement errors)

• Programming errors (blunders)
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Truncation Errors

• The error of our derivative approximation should be proportional to the step size. 

• If we halve the step size, we would expect to halve the error of the derivative.



Approximations and Errors



True Error

• Numerical errors arise from the use of approximations to represent exact mathematical operations and

quantities.

• These include truncation errors, which result when approximations are used to represent exact

mathematical procedures, and round-off errors, which result when numbers having limited significant

figures are used to represent exact numbers.

• For both types, the relationship between the exact, or true, result and the approximation can be

formulated as



Approximate Error

• In actual situations such information is rarely available. 

• For numerical methods, the true value will be known only when we deal with functions that can be

solved analytically. 

• In real-world applications, we will obviously not know the true answer a priori. For these situations, an 

alternative is to normalize the error using the best available estimate of the true value, that is, to the

approximation itself, as in

• One of the challenges of numerical methods is to determine error estimates in the absence of

knowledge regarding the true value.

• For example, certain numerical methods use an iterative approach to compute answers.

• In such an approach, a present approximation is made on the basis of a previous approximation.
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Bisection Method

• The bisection method is a bracketing method of finding a numerical solution of an equation of the

form f(x) =0 when it is known that within a given interval [a, b].

• f(x) is continuous and the equation has a solution.



Bisection Method

Algorithm for the Bisection Method



Bisection Method

Additional Notes on the Biseciton Method

• The method always converges to an answer, provided a root was trapped in the interval [a,b] to

begin with.

• The method may fail when the function is tangent to the axis and does not cross the x-axis at f(x)=0.

• The method converges slowly relative to other methods.
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