05.04.1996

EXERCISE
For Vector Calculus

1) Which are the followings are scalars and which are vectors?

a) Pressure   b) Volume   c) Weight   d) Specific Heat   e) Shearing Stress   f) Kinetic Energy.

2) Given the vectors 

, 

, and 

, and the scalars m=5 and -2, show that



 b) 

    c) 

   d) 


3) Show that the following set of three vectors are linearly independent: 

, 

, 

.

4) Show that the vectors 

, 

 and 

 form a linearly independent set. Express 

 as a linear combination of the three vectors 

.

5) Consider a two dimensional space spanned by the vectors 

, and 

, and follow the procedure of the previous example to show that the set of vectors 

 and 

 is a linearly dependent set.

6) Show that the representation of any vector 

 in terms of a given basis is unique.

7) If 

 and 

are the orthogonal unit base vectors of space 

 , prove that 

.

8) Given the set of vectors 

 and 

, check the given set for linear independence, and construct from it an orthonormal set.

9) Prove the inequality  

 which is known as the triangle inequality.

10)  Find the equation of the line passing through the points 

, 

.(*)

11)  Find the equation of the plane P passing through the points 

, 

 and 

.(*)

12)  Find the equation of the plane 

 parallel to the plane P in question 11 and passing through the origin.

13)  Find the shortest distance from the origin O to the plane P in question 11.(*)

14)  Find the equation of the line which passes through the point 

and is parallel to the two planes 4x+y=3 and 2x+2y+3z=0.

15)  The position of a particle at time t is given by 

, a) find the velocity and acceleration at time t   b) find the magnitudes and its velocity and acceleration at t=0.

16)  Given a vector 

, 

find 

.

17)  Find a unit tangent vector to any point on the curve 

 whose parametric equations are x=2sin3t, y=3cos3t and z=8t at any time t.

18)  If 

, find 

.

19)  Find the unit normals to the surface yz+zx+xy=-1 at the points (-1,1,1) and (2,1,-1).

20)  Find the angle between the surfaces 

 at the point (2,-1,2).

21)  Show that 

, where 

 is called the laplacian operator. If 

, find 

.

22)  If 

, show that 

 and find 

 such that 

.

23)  If 

 and 

, find 

 and 

 at point (1,1,1).

24)  Find the equation of the osculating plane at t=1 for the curve 

.

25)  If 

,  evaluate   a)

(*)    b) 

 c)

, where s is the surface of the cube bounded by x=y=z=0, x=y=z=1.

26)  Evaluate 

 between the points (-1,0) and (1,0) along a) the x-axis  b) the path y=1-x2.

27)  Evaluate 

, where 

is the circular helix given by 

 joining the points (b,0,0) and (b,0,2

c). (Ans:0).

28)  Evaluate 

, where v is the region under the surface x2+y2+z2=a2 and above the xy-plane.
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