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Abstract 
 

An analytical study is carried out to develop a three dimensional mixed formulation frame finite element. The 

aim of this study is to form three dimensional mixed formulation frame finite element by using Hu-Washizu 

variational that takes into account one or more combination of the interaction of the axial load, shear, moment 

and especially torsion by utilizing three-field of displacement, strain and stress. The displacement field used for 

derivation of strains is adapted from extension of Timoshenko beam theory to three dimensions. Integration of 

stress-strain relations along limited number of predetermined control sections is the key to carry out nonlinear 

analysis. Shape functions that satisfy the equilibrium and discontinuous strains are used for stress resultants in 

the finite element approximation. This nature of the element eliminates necessity of displacement components 

along the control sections of the beam element except at the nodes. In this study, three dimensional mixed 

element that is developed is used in nonlinear analysis of a cantilever steel member with circular cross section 

and the effect of interaction of axial force, shear, bending moment and torsion is demonstrated. 

 

Keywords:Finite element, mixed formulation, Hu-Washizu variational, frame element. 

 

 

1 Introduction 
 

Finite element method (FEM) offers an approximate solution for real physical problems even for differential 

equations of which are so difficult or impossible to solve. The basic theory of FEM originates from virtual 

displacements and/or minimum potential energy of finite elements that are formed by discretizing the actual 

domain of the real case with an assumed and idealized counterpart.  

 

Finite elements can be divided into two groups called “displacement based” and “mixed” finite element 

depending on the type of the fields that are utilized in determination of the shape functions necessary for 

analysis.   

 

Displacement based frame finite elements use assumed shape functions for the interpolation of the displacement 

field along an element length. Element equilibrium is always satisfied at the nodes in the analysis of systems 

utilizing displacement based elements; however differential equilibrium cannot be satisfied at all times because 

of neglecting the continuity condition in differential equations. Therefore, section forces cannot be determined 

with acceptable accuracy unless increasing the number of nodes or the order of shape functions. Because of this 

fact, displacement based elements may be insufficient for cases like diaphragm or shear locking or in analysis of 

incompressible media. In order to overcome this deficiency recent studies have focused on mixed finite 

elements. 

 

Mixed finite elements use integration of stress-strain relations of control sections that extend along member. The 

difference between displacement based and mixed finite elements is that the latter utilize additional independent 

fields in the variational formulation of the element. For a frame finite element under small deformations, the 

solution of the differential equilibrium equations provide the exact shape functions for the interpolation of the 

force field along the element length, thus obviating the need for displacement interpolation along an element.  
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Mixed elements are superior to the displacement based elements in cases like shear and membrane locking and 

also in capturing the nonlinear response. Despite their complex formulation that requires the storage of 

additional fields in an element, mixed elements can ensure the same level of robustness as observed in 

displacement based elements by employing lesser number of elements and reaching the solution more quickly in 

the analysis (Saritas and Soydas 2012).  

 

There are numerous studies regarding mixed frame element formulations and its applications. Spacone et al. 

(1996) developed mixed formulation beam-column element that ensures moment and axial force equilibrium for 

nonlinear static and dynamic analysis of RC frame systems by neglecting shear and bond slip. Neuenhofer and 

Filippou (1997) offered a more efficient state determination algorithm by comparing displacement based and 

mixed formulation elements with inelastic material model in frame systems. De Souza (2000), in his PhD study, 

enhanced Neuenhofer and Filippou’s elastic mixed finite element by considering inelastic large displacements in 

the analysis of frame systems. Hjelmstad and Taciroğlu (2005) studied the variational principles regarding mixed 

elements for nonlinear analysis of frame systems. Saritas (2006), in his PhD study, presented a 2 dimensional 

mixed element formulation that incorporates the interaction of axial force, shear force and moment for shear 

critical steel and RC elements. Papachristidis et al. (2010) investigated the capacity of frame systems under high 

shear force by using mixed elements utilizing Timoshenko beam theory and three dimensional material model 

that considers the interaction of axial force, shear force, bending moment and torsion, but numerical examples do 

not include three dimensional behavior of the elements. In a recent study (Wackerfuss and Gruttmann, 2011), a 

three dimensional frame element is developed by using Hu-Washizu variational and nonlinear behavior is 

modeled by defining additional degrees of freedoms to three transitional and rotational degrees of freedom at 

each nodes of the element. 

 

In this study, a three dimensional (3d) mixed finite element is developed by using Hu-Washizu variational, as 

well. The effect of interaction between axial force, shear, bending moment and torsion is demonstrated by 

carrying out nonlinear analysis of a cantilever steel member having circular cross section. 

 

 

2 Three Dimensional Mixed Formulation Beam Element 
 

 

2.1 Hu-Washizu Functional 
 

Hu-Washizu functional is written in terms of three independent fields: stress field 𝛔, strain field 𝛆, and 

displacement field, 𝐮 as follows: 

 

ΠHW(𝛔, 𝛆, 𝐮) = ∫ 𝑊(𝛆)𝑑Ω + ∫ 𝛔T

ΩΩ

[𝛆𝐮 − 𝛆]𝑑Ω + Πext (1) 

 

𝑊(𝛆) is the strain energy function from which stresses are derived as; 

 

𝛔̂(𝛆) =
∂𝑊(𝛆)

∂𝛆
 

(2) 

 

 

𝛆𝐮 is the strain vector that is compatible with the displacements 𝐮. Πext denotes the potential energy of the 

external loading due to body forces and displacement and traction boundary conditions such that; 

 

Πext = − ∫ 𝐮T𝐛𝑑Ω

Ω

− ∫ 𝐮T𝐭∗𝑑Γ

Γt

− ∫ 𝐭T[𝐮 − 𝐮∗]

Γu

𝑑Γ (3) 

 

where 𝐛 denotes stresses caused by body forces and 𝐭 = 𝛔. 𝐧 is the dot product of the stress vector with the 

outward normal 𝐧 to the boundary. The imposed values are indicated by superscript asterisks. It is assumed that 

the external loading is conservative so that the work depends only on the final displacement values 𝐮. Domain of 

the body and traction and displacement boundaries are Ω , Γt and Γu , respectively. 

 

2.2 Kinematic Relations for the 3d Timoshenko Beam Element 
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Three field variational principle that is used in Equation (1) and (3) enables specification of 𝛆 and 𝐮 

independently, thus this allows section kinematic relations to be defined independent of the assumed 

displacement field for the beam. Timoshenko beam theory can be adapted for a three dimensional geometry as 

follows; 

 

𝐮 = {

𝑢𝑥(𝑥, 𝑦, 𝑧)
𝑢𝑦(𝑥, 𝑦, 𝑧)

𝑢𝑧(𝑥, 𝑦, 𝑧)

} = {

𝑢(𝑥) − 𝑦𝜃𝑧(𝑥) + 𝑧𝜃𝑦(𝑥)

𝑣(𝑥) − 𝑧𝜃𝑥(𝑥)

𝑤(𝑥) + 𝑦𝜃𝑥(𝑥)

} (4) 

 

In a right-handed local coordinate system, 𝑢(𝑥) is the displacement of the point (𝑥, 0,0) along x-axis and 𝑣(𝑥) 

and 𝑤(𝑥) are the transverse deflections of the point (𝑥, 0,0) from x-axis in y and z directions, respectively. 

𝜃𝑥(𝑥), 𝜃𝑦(𝑥) and 𝜃𝑧(𝑥) are the rotations of the beam cross section around three orthogonal axes x, y and z, 

respectively, where 𝜃𝑥(𝑥) is the twisting angle. Therefore the vector of displacements at a section of the beam 

can be given as; 

 

𝐮s = [𝑢(𝑥) 𝑣(𝑥) 𝑤(𝑥) 𝜃𝑥(𝑥) 𝜃𝑦(𝑥) 𝜃𝑧(𝑥)]T (5) 

 

Strains that are compatible with the displacement field 𝐮 can be derived from Equation (4) for small strains as 

follows; 

 

𝜀𝑥𝑥
𝑢 =

𝑑𝑢𝑥(𝑥, 𝑦, 𝑧)

𝑑𝑥
= 𝑢′(𝑥) − 𝑦𝜃𝑧

′(𝑥) + 𝑧𝜃𝑦
′(𝑥)

𝛾𝑥𝑦
𝑢 =

𝑑𝑢𝑥(𝑥, 𝑦, 𝑧)

𝑑𝑦
+

𝑑𝑢𝑦(𝑥, 𝑦, 𝑧)

𝑑𝑥
= −𝜃𝑧(𝑥) + 𝑣′(𝑥) − 𝑧𝜃𝑥

′(𝑥)

𝛾𝑥𝑧
𝑢 =

𝑑𝑢𝑥(𝑥, 𝑦, 𝑧)

𝑑𝑧
+

𝑑𝑢𝑧(𝑥, 𝑦, 𝑧)

𝑑𝑥
= 𝜃𝑦(𝑥) + 𝑤′(𝑥) + 𝑦𝜃𝑥

′(𝑥)

 (6)  

 

It should be noted that 𝜀𝑦𝑦
𝑢  , 𝜀𝑧𝑧

𝑢   and  𝛾𝑦𝑧
𝑢  are equal to zero as a result of the derivation. 

 

The strain fields for the beam are selected independently from those in Equation (6) as follows; 

 

𝛆 = {

𝜀𝑥𝑥

𝛾𝑥𝑦

𝛾𝑥𝑧

} = {

𝜀𝑎(𝑥) − 𝑦𝜅𝑧(𝑥) + 𝑧𝜅𝑦(𝑥)

𝛾𝑦(𝑥) − 𝑧𝜑(𝑥)

𝛾𝑧(𝑥) + 𝑦𝜑(𝑥)

} (7) 

 

𝜀𝑎(𝑥) , 𝜅𝑦(𝑥) and 𝜅𝑧(𝑥) are the axial strain and curvature around y and z axes, respectively. 𝛾𝑦(𝑥)and𝛾𝑧(𝑥) are 

the shear distortions of the section in y and z directions, respectively. 𝜑(𝑥)is the angle of twist of the cross 

section. Hence section deformations, 𝒆(𝑥) are given as; 

 

𝒆(𝑥) = [𝜀𝑎(𝑥) 𝜅𝑦(𝑥) 𝜅𝑧(𝑥) 𝛾𝑦(𝑥) 𝛾𝑧(𝑥) 𝜑(𝑥)]T (8)  

 

 

2.3 Variation of Hu-Washizu Functional 
 

The variation of the Equation (1) gives; 

 

δΠHW = ∫ 𝛔̂(𝛆)𝛅𝛆𝑑Ω + ∫ δ𝛔T

ΩΩ

[𝛆𝐮 − 𝛆]𝑑Ω + ∫ 𝛔T

Ω

[δ𝛆𝐮 − 𝛿𝛆]𝑑Ω + δΠext (9) 

 

The functional in Equation (9) can be generalized for an inelastic material by assuming that  𝛔̂(𝛆) describes an 

inelastic material although the variation in Equation (2) is based on a strain-energy function that is in accordance 

with Cauchy elastic material model. Equations (6) and (7) can be substituted into Equation (9) by noting that for 

3d beam element 𝜎𝑦𝑦 = 𝜎𝑧𝑧 = 𝜎̂𝑦𝑦 = 𝜎̂𝑧𝑧 = 𝜎̂𝑦𝑧 = 𝛾𝑦𝑧 = 0. Furthermore, section stress resultants for a 3d beam 

element can be defined as in Equation (10) and section stress resultants can be computed by taking integration 

over the section area 𝐴 as presented in the next equations.  
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𝒔(x) = [𝑁(𝑥) 𝑀𝑧(𝑥) 𝑀𝑦(𝑥) 𝑉𝑦(𝑥) 𝑉𝑧(𝑥) 𝑇(𝑥)]T (10) 

 

𝑁 = ∫ 𝜎𝑥𝑥𝑑𝐴

A

 𝑀𝑦 = ∫ 𝑧𝜎𝑥𝑥𝑑𝐴

A

 𝑀𝑧 = ∫ −𝑦𝜎𝑥𝑥𝑑𝐴

A

 

(11)  

 

 (Axial force) (Moment about y-axis) (Moment about z-axis) 

𝑉𝑦 = ∫ 𝜎𝑥𝑦𝑑𝐴

A

 𝑉𝑧 = ∫ 𝜎𝑥𝑧𝑑𝐴

A

 𝑇 = ∫(−𝑧𝜎𝑥𝑦 + 𝑦𝜎𝑥𝑧)𝑑𝐴

A

 

(Shear force in y direction) (Shear force in z direction) (Torsion around x-axis) 

 

Equation (11) is substituted into Equation (9) and the integration is carried out along the length, L of the beam, 

we get the following form for the variational functional; 

 

where 𝑁̂, 𝑀̂𝑦 , 𝑀̂𝑧 ,𝑇̂ , 𝑉̂𝑦 and 𝑉̂𝑧 are similar to the expressions in Equation (11) and they are the section stress 

resultants such that the stress terms are interchanged with the stresses, 𝜎̂𝑥𝑥 , 𝜎̂𝑥𝑦 and 𝜎̂𝑥𝑧 that are satisfying the 

material constitutive relations. The formulation enables the utilization of constitutive relation 𝛔̂ ≡ 𝛔̂(𝛆) in 

Equation (9) for any type of material. Πext can be defined as the variation of the work-conjugate of the 

displacement and stress resultant fields since it is the variation of external potential energy. In real structural 

engineering problems moment tractions around y and z axes are negligible, therefore 𝑚̅𝑦(𝑥) = 𝑚̅𝑧(𝑥) = 0. If it 

is assumed that the body forces are zero so that they are eliminated from the variation of external potential, then; 

 

δΠext = − ∫{𝑛̅(𝑥)𝛿𝑢(𝑥) + 𝑞̅𝑦(𝑥)𝛿𝑣(𝑥) + 𝑞̅𝑧(𝑥)𝛿𝑤(𝑥) + 𝑚̅𝑥(𝑥)𝛿𝜃𝑥(𝑥)}𝑑x

𝐿

0

− δΠbc (13)  

 

𝑛̅(𝑥) and 𝑞̅𝑦(𝑥), 𝑞̅𝑧(𝑥), are distributions of longitudinal tractions and transverse tractions along x, y and z axes, 

respectively. δΠbc is the variation of the energy due to boundary conditions. 

 

 

2.4 Finite Element Approximation 

 

If Equation (13) is substituted into Equation (12) and approximation of the section forces and their variation 

satisfy the following conditions; then some terms in Equation (12) vanish and this obviates the necessity to 

approximate the displacements 𝑢, 𝑣, 𝑤, 𝜃𝑥 , 𝜃𝑦 and 𝜃𝑧 along the beam. Displacement values at the nodes are 

enough for the formulation. 

 

δΠHW = ∫{𝛿𝜀𝑎(𝑥)(𝑁̂ − 𝑁) + 𝛿𝜅𝑧(𝑥)(𝑀̂𝑧 − 𝑀𝑧) + 𝛿𝜅𝑦(𝑥)(𝑀̂𝑦 − 𝑀𝑦)}𝑑x

𝐿

0

 

(12) 

 

+∫{𝛿𝛾𝑦(𝑥)(𝑉̂𝑦 − 𝑉𝑦) + 𝛿𝛾𝑧(𝑥)(𝑉̂𝑧 − 𝑉𝑧) + 𝛿𝜑(𝑥)(𝑇̂ − 𝑇)}𝑑x

𝐿

0

 

 

+∫{𝛿𝑁(𝑢′(𝑥) − 𝜀𝑎(𝑥)) + 𝛿𝑀𝑧(𝜃𝑧
′(𝑥) − 𝜅𝑧(𝑥)) + 𝛿𝑀𝑦(𝜃𝑦

′(𝑥) − 𝜅𝑦(𝑥))}𝑑x

𝐿

0

 

 

+∫{𝛿𝑉𝑦 (𝑣′(𝑥) − 𝜃𝑧(𝑥) − 𝛾𝑦(𝑥)) + 𝛿𝑉𝑧 (𝑤′(𝑥) + 𝜃𝑦(𝑥) − 𝛾𝑧(𝑥))

𝐿

0

+ 𝛿𝑇(𝜃𝑥
′(𝑥) − 𝜑(𝑥))} 𝑑x 

 

+∫{𝛿𝑢′(𝑥)𝑁 + 𝛿𝜃𝑧
′(𝑥)𝑀𝑧 + 𝛿𝜃𝑦

′(𝑥)𝑀𝑦}𝑑x

𝐿

0

 

 

+∫{(𝛿𝑣′(𝑥) − 𝛿𝜃𝑧(𝑥))𝑉𝑦 + (𝛿𝑤′(𝑥) + 𝛿𝜃𝑦(𝑥))𝑉𝑧 + 𝛿𝜃𝑥
′(𝑥)𝑇} 𝑑x

𝐿

0

 

 +δΠext 
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𝑁′(𝑥) + 𝑛̅(𝑥) = 0 𝑉𝑦
′(𝑥) + 𝑞̅𝑦(𝑥) = 0 𝑀𝑧

′(𝑥) + 𝑉𝑦(𝑥) = 0 
(14) 

𝑇′(𝑥) + 𝑚̅𝑥(𝑥) = 0 𝑉𝑧
′(𝑥) + 𝑞̅𝑧(𝑥) = 0 𝑀𝑦

′ (𝑥) − 𝑉𝑧(𝑥) = 0 

 

𝛿𝑁′(𝑥) = 0 𝛿𝑉𝑦
′(𝑥) = 0 𝛿𝑀𝑧

′(𝑥) + 𝛿𝑉𝑦(𝑥) = 0 
(15) 

𝛿𝑇′(𝑥) = 0 𝛿𝑉𝑧
′(𝑥) = 0 𝛿𝑀𝑦

′ (𝑥) − 𝛿𝑉𝑧(𝑥) = 0 

 

Equation (12) can be rearranged by assuming constant axial and transverse tractions along the element and 

ignoring δΠbc until the assembly of the elements as follows; 

 

δΠHW = ∫𝛿𝒆(𝑥)T(𝒔̂(𝑥) − 𝒃(𝑥)𝒒 − 𝒔𝑝(𝑥))𝑑𝑥 −

𝐿

0

𝛿𝒒𝑇 ∫𝒃(𝑥)T𝒆(𝑥)

𝐿

0

𝑑𝑥 +  𝛿𝒒T𝒂g𝒖el (16)  

 +𝛿𝒖el
T𝒂g

T𝒒 − 𝛿𝒖el
T𝒂r

T𝒑𝑤 

 

where section force vector 𝒔(𝑥), matrix of interpolation functions 𝒃(𝑥), basic element force vector  𝒒, section 

stress resultants due to element loading 𝒘, and rigid mode of applied tractions at the nodes 𝒑𝑤 are defined as 

follows; 

 

𝒔(𝑥) = 𝒃(𝑥)𝒒 + 𝒔𝑝(𝑥) (17) 

 

𝒒 = [𝑞1 𝑞2 𝑞3 𝑞4 𝑞5 𝑞6]T (18)  

 

𝒃(𝑥) =

[
 
 
 
 
 
 
 
1 0 0 0 0 0

0
𝑥

𝐿
− 1 𝑥/𝐿 0 0 0

0 0 0
𝑥

𝐿
− 1 𝑥/𝐿 0

0 −1/𝐿 −1/𝐿 0 0 0
0 0 0 1/𝐿 1/𝐿 0
0 0 0 0 0 1]

 
 
 
 
 
 
 

 (19) 

 

𝒔𝑝(𝑥) =

[
 
 
 
 
 
 
 
 
 
 
 
 𝐿 (1 −

𝑥

𝐿
) 0 0 0

0
𝐿2

2
((

𝑥

𝐿
)

2

−
𝑥

𝐿
) 0 0

0 0
𝐿2

2
((−

𝑥

𝐿
)

2

+
𝑥

𝐿
) 0

0
𝐿

2
(1 −

2𝑥

𝐿
) 0 0

0 0 𝐿 (1 −
2𝑥

𝐿
) 0

0 0 0 𝐿 (1 −
𝑥

𝐿
)]
 
 
 
 
 
 
 
 
 
 
 
 

{

𝑤𝑥

𝑤𝑦

𝑤𝑧

𝑚𝑥

} (20) 

 

𝒑𝑤 = (𝑤𝑥𝐿 𝑤𝑦

𝐿

2
𝑤𝑧

𝐿

2
𝑚𝑥𝐿 0 0 0 𝑤𝑦

𝐿

2
𝑤𝑧

𝐿

2
0 0 0) (21) 

 

 

Transformation of element displacements to deformations is demonstrated in Figure 1. 𝒂 is transformation 

matrix, 𝒂r is rotation matrix from global to local reference system, 𝒖̅ and 𝒖el are displacement degrees of 

freedom in local system and 𝐯 is basic element deformation vector such that 12 element end displacement 

degrees of freedom are reduced to 6 by separating 6 rigid body modes and 6 deformation modes of displacement 

similar to the case for basic element force vector  𝒒.  
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Figure 1. Transformation of element displacements to deformations. 

 

 

Equation (16) is minimized by equating the expression to zero. Resulting expression will be generally nonlinear 

and solution of it is carried out by linearly approximating the equation by using first order Taylor series 

expansion. 

 

 

3 Numerical Example 
 

Nonlinear analysis of a cantilever steel member with circular cross-section is carried out by using a single 3d 

mixed finite element per span. Orientations of local and global coordinates of the member are demonstrated in 

Figure 2.a. Units of the parameters are left intentionally as numerical to investigate the variation of the effect of 

the applied loading rather than the parameters itself. The length of the member, 𝐿 is assumed to be 120 units, 

diameter, 𝑑 of the section is taken to be 18 units. The modulus of elasticity, 𝐸 for the steel is 29,000 units, the 

yield strength of it, 𝑓𝑦 is 36 units. Three dimensional J2 plasticity material model is used for the description of 

steel material response. The cross-section is divided into pieces in both radial and circumferential directions as in 

Figure 2.b and numerical integration is performed accordingly. The response of the beam element is modeled 

through aggregation of the response of various sections over the element length. Gauss quadrature is used in the 

determination of the location of these sections, and five sections are used in each case. 

 

 

 

𝒖̅ = 𝒂r𝒖el 

Global to Local 

Local to Basic 

𝐯 = 𝒂𝒂r𝒖el=𝒂g𝒖el 
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a. Orientation of axes 

 

b. Discretization of circular section (local coordinates) 

 

Figure 2. Orientation of axes and radial and circumferential discretization of circular section. 

 

 

Two different pseudo-load cases are applied to the member. In the first case, the member is loaded axially in the 

negative global Y-direction (Force History) and member is displaced 6 units in global X-direction (Disp. History 

1) and 6 units in global Z-direction (Disp. History 2) as shown in Figure 3. In that case axial force at yield, Ny is 

assumed to be area of the section times yield strength of the member. Four different sub-cases are investigated 

such that applied axial forces are 0, 0.25, 0.50 and 0.75Ny, respectively and base shear vs. top displacements in 

X and Z directions for each sub-cases are plotted in Figures 4 and 5, respectively. 

 

 
 

Figure 3. Force and displacement pseudo-time histories for fist and second cases 

 

 

 
Figure 4. Base shear vs. top displacement in global X-direction for first loading case. 
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Figure 5. Base shear vs. top displacement in global Z-direction for first loading case. 

 

 

In the second case, torsion is applied around global Y-direction and member is displaced 6 units in global X-

direction and 6 units in global Z-direction similar to the previous case. In that case torsion at yield, Ty is (2𝜋/
3)(𝑑/2)3(0.577𝑓𝑦) which is obtained by assuming a constant shear force that is a multiple of yield strength 

(𝜏𝑦 = 0.577𝑓𝑦) in the section at yield and taking integral of it over the area. Four different sub-cases are 

investigated such that applied axial forces are 0, 0.25, 0.50 and 0.75Ty, respectively and base shear vs. top 

displacements in X and Z directions for each sub-cases are plotted in Figures 6 and 7, respectively. 

 

According to the Figures 4 to 7, effect of axial load on nonlinear behavior is more pronounced compared to the 

effect of torsion for the 3d element. 3d element is also capable of reflecting the dependency of nonlinear 

behavior on direction of loading.  

 

 

 
Figure 6. Base shear vs. top displacement in global X-direction for second loading case. 
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Figure 7. Base shear vs. top displacement in global Z-direction for second loading case. 

 

 

4 Conclusions 
 

In this study, a 3d mixed formulation frame finite element that is based on Hu-Washizu functional is developed, 

and nonlinear analysis of a cantilever steel member with circular cross section is performed. It is shown that the 

element is able to model the effect of interaction of axial force, shear, bending moment and torsion. 3d element 

can be used in cases where the complex interaction of the 3d nature of section forces becomes important in frame 

type elements; such as the exterior columns in buildings that are exposed to an earthquake. 
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