STRUCTURAL DESIGN IN ARCHITECTURE II

TERM PROJECT : DREAM HOUSE INSTRUCTORS: B.OZER AY ,M. HALIS GUNEL ,MELTEM ERDIL , GOKCE NIHAN TASKIN 2017-2018 , SPRING

GROUP 20: ABDULLAH EREN DEMIREL GIGDEM CALIK HASAN BERKCAN AYDIN house for a painter :

Ground Floor Plan

First Floor Plan

AXONOMETRIC VIEWS

Section BB'

South Elevation

West Elevation

North-East

North-West

South-East

DREAM HOUSE

MASS CENTER & STIFFNESS CENTER

Mass / Geometric Center

 $A_{1} = 15 \times 10.2 = 153 \ m^{2}$ $A_{2} = 6 \times 13 = 78 \ m^{2}$ $A = A_{1} + A_{2} = 153 + 78 = 231 \ m^{2}$ $C_{GX} = \frac{153 \times 5.2 + 78 \times 13.2}{231} = 7.83 \ cm$ $C_{GY} = \frac{153 \times 7.5 + 78 \times 12.5}{231} = 9.18 \ cm$

Rigidity / Stiffness Center

Shear Wall Percentage

Area of the footprint of Shear Walls on Axis Floor Area

Total Floor Area : 231 m^2

Area of Shear Walls in X direction:

0.25 × 3 + 0.25 × 3 + 0.25 × 4.4 = 1.13 > 1 ✓

Area of Shear Walls in Y direction:

Eccentricity

$$e_X = \frac{|XM - XS|}{L_X} \times 100 = \frac{|7.83 - 10.27|}{16.2} \times 100 = \%15.1 > \%5$$
$$e_Y = \frac{|YM - YS|}{L_Y} \times 100 = \frac{|9.18 - 7.06|}{19} \times 100 = \%11.1 > \%5$$

We shoud make additions and/or alterations on shear walls to superpose mass center and rigidity center

Shear Wall Operations

Adding shear wall on Axis 1

$$X_{S} = \frac{4.6 \times 0.56 + 10.2 \times 1.77 + 16.2 \times 0.56 + 0 \times I_{SWVII}}{0.56 + 1.77 + 0.56 + I_{SWVII}} = 7.83$$

$$I_{SWVII} = 0.9 = \frac{1}{12} \times 0.25 \times h^3$$
 $h = 3.51 m$

Shortening SWI

$$Y_S = \frac{0 \times \text{ISWI} + 6 \times 0.56 + 15 \times 1.65}{\text{I}_{\text{SWI}} + 0.56 + 1.65} = 9.18$$

$$I_{SWI} = 0.86 = \frac{1}{12} \times 0.25 \times h^3$$
 $h = 3.45 m$

SLAB ANALYSIS AND DESIGN

Slab Thickness

Two Way Solid Slab (S101, S102, S103, S104)

$$t \ge 8 \ cm$$
 $t \ge \frac{l_{sn}}{15 + \left(\frac{20}{m}\right)} \left[1 - \frac{\alpha_s}{4}\right]$

$$\alpha_{\rm s} = \frac{\Sigma \ \text{length of cont.edges}}{\Sigma \ \text{lenth of all edges}}$$

For S103
$$\rightarrow \alpha_{s203} = \frac{5.6+9+9}{5.6+9+9+5.6} = 0.81$$

$$t \ge \frac{560}{15 + \left(\frac{20}{\left(\frac{9}{5.6}\right)}\right)} \left[1 - \frac{0.81}{4}\right]$$

t ≥16.32 *cm*

For S104
$$\rightarrow \alpha_{s204} = \frac{4.6+9}{4.6+9+9+4.6} = 0.5$$

S103 and S104 are the critical slab types, so we calculated them and we decided to take minimum slab thickness as 17 *cm* according to TSC(2018) and TS - 500 regulations.

One Way Solid Slab (S105)

$$t \ge 8 \ cm$$
 $t \ge \frac{l_s}{25}$ since $\frac{l_l}{l_s} = \frac{13}{6} > 2$

For S105
$$\rightarrow$$
 t $\geq \frac{600}{25} = 24 \ cm$

t ≥15.96 *cm*

Tributary Area

Design Loads

Dead Load on Solid Slab

Own weight: $0.17 \times 2.4 = 0.408 \ t/m^2$ Total Dead LoadLeveling: $0.04 \times 2.4 = 0.09 \ t/m^2$: $0.025 \times 2.0 = 0.05 \ t/m^2$ Covering: $0.025 \times 2.0 = 0.05 \ t/m^2$: $0.588 \ t/m^2$ Plastering: $0.020 \times 2.0 = 0.04 \ t/m^2$

Live Load on Solid Slab

0.2 t/m² for residential buildings

Total Load = $1.4 \times \text{Dead Load} + 1.6 \times \text{Live Load}$ = $1.4 \times 0.588 + 1.6 \times 0.2$ = $1.14 \ t/m^2$

 $\frac{\text{Slab Load on Column}}{1.14 \times 40.75 = 46.45 t}$

Wall Loads

Wall Load = 0.15 t/m^2 Tributary Area = 5.5 × 5.1 = 28.05 m^2 Wall Load on Column = 28.05 × 0.15 × 1.4 = 5.89 t (Beam own weight is not included)

 $\frac{\text{Total Load on Column}}{N_{d} = 46.45 \ t + 5.89 \ t = 52.64 \ t}$ $A_{C} \ge \frac{N_{d}}{0.40 f c k} \quad A_{C} \ge \frac{52640}{0.40 \times 200} \quad A_{C} \ge 658 \ cm^{2}$

However, according to TC-500 minimum column dimension can be 30×30 *cm*, so we take column dimensions as 30×30 *cm*

BEAM ANALYSIS AND DESIGN

$$P_{1} = P_{3} = 1.14 \times \frac{4.6}{3} = 1.75 \ t/m \qquad P_{1} + P_{3} = 3.5 \ t/m$$
$$P_{2} = P_{4} = 1.14 \times \frac{5.6}{3} = 2.13 \ t/m \qquad P_{2} + P_{4} = 4.26 \ t/m$$

$$I_{\text{column}}$$
30 $\frac{1}{12} \times 0.3 \times (0.3)^2 = 0.00068 \ m^2$
30

 \rightarrow Since the beam depth should be at least 3 times the slab thickness, assumed beam depth is taken as 51 cm

I_{beam} 51 $\frac{1}{12} \times 0.3 \times (0.51)^2 = 0.0033 \, m^4$ 30 $r_{12} = \frac{\frac{0.0033}{4.6}}{\frac{0.0033}{4.6} + 2 \times \frac{0.00068}{3}} = 0.61$ $r_{21} = \frac{\frac{0.0033}{4.6}}{\frac{0.0033}{4.6} + 2 \times \frac{0.00068}{3} \times \frac{0.0033}{5.6}} = 0.41$ $r_{23} = \frac{\frac{0.0033}{5.6}}{\frac{0.0033}{4.6} + 2 \times \frac{0.00068}{3} \times \frac{0.0033}{5.6}} = 0.33$ $r_{32} = 0$

TWO CYCLE METHOD I

BEAM ANALYSIS AND DESIGN

Beam on Axis 2

$$P_{d} = 1.14 t$$
 $P = Pd \times \frac{l_{s}}{3} \times \left[1.5 - \frac{0.5}{\left(\frac{l_{1}}{l_{s}}\right)^{2}}\right]$

$$P_1 = 1.14 \times \frac{4.6}{3} \times \left[1.5 - \frac{0.5}{\left(\frac{9}{4.6}\right)^2} \right] = 2.39 t$$

$$P_2 = 1.14 \times \frac{5.6}{3} \times \left[1.5 - \frac{0.5}{\left(\frac{9}{5.6}\right)^2} \right] = 2.78 t$$

$$P_3 = 1.14 \times \frac{4.6}{3} \times \left[1.5 - \frac{0.5}{\left(\frac{6}{4.6}\right)^2} \right] = 2.11 t$$

$$P_4 = 1.14 \times \frac{5.6}{3} \times \left[1.5 - \frac{0.5}{\left(\frac{6}{5.6}\right)^2} \right] = 2.27 t$$

 $P_1 + P_2 = 5.17 \ t/m$ $P_3 + P_4 = 4.38 \ t/m$

$$I_{column} = 0.00068$$
 $I_{beam} = 0.0033$

 $r_{12} = 0$

TWO CYCLE METHOD II

