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Practical Methods for Wireless Network Coding

with Multiple Unicast Transmissions

Tuğcan Aktaş, A. Özgür Yılmaz, Emre Aktaş

Abstract—We propose a simple yet effective wireless

network coding and decoding technique for a multi-

ple unicast network. It utilizes spatial diversity through

cooperation between nodes which carry out distributed

encoding operations dictated by generator matrices of

linear block codes. In order to exemplify the technique, we

make use of greedy codes over the binary field and show

that the arbitrary diversity orders can be flexibly assigned

to nodes. Furthermore, we present the optimal detection

rule for the given model that accounts for intermediate

node errors and suggest a low-complexity network decoder

using the sum-product (SP) algorithm. The proposed

SP detector exhibits near optimal performance. We also

show asymptotic superiority of network coding over a

method that utilizes the wireless channel in a repetitive

manner without network coding (NC) and give related

rate-diversity trade-off curves. Finally, we extend the given

encoding method through selective encoding in order to

obtain extra coding gains.

Index Terms—Wireless network coding, cooperative

communication, linear block code, sum-product decoding,

unequal error protection

I. INTRODUCTION

In order to counteract the effects of fading in

wireless communication networks, many ways of

creating diversity for transmitted data have been

proposed. Utilizing the spatial diversity inherent in

wireless channels, cooperative communication [1]

has been of great interest in recent years. In [2],

[3] three methods to be used by relay nodes are
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described: amplify-forward (AF), decode-forward

(DF) and detect-forward (DetF). The AF method

attains full diversity, whereas other two cannot,

unless the propagation of errors resulting from the

decoding/detection operation is avoided, for exam-

ple by using a selective transmission strategy that

advocates the forwarding of only reliable enough

packets. One of the various ways to handle this

problem is using CRC-based methods, which results

in loss of spectral efficiency due to drop of a packet

with only a few bit errors. An on/off weighting

based on relay signal-to-noise power ratio (SNR)

is given in [4]. Weighting of the signals either at

the relay or at the receiver using the relay error

probability is proposed in [5], [6]. Yet another idea

is transmitting the log-likelihood ratios (LLR) of

bits [7]. However, the soft information relaying

methods in [5]–[7] suffer from quantization errors

and high peak to average ratio problems. In addition,

the AF method requires hardware modifications on

modern-day communications systems and the DF

method leads to high complexity decoding opera-

tions especially for the relays. As an alternative,

relays may use the simple DetF method, which

is shown to avoid error propagation in [3], if the

error probabilities at relays are known and the

maximum a posteriori probability (MAP) detection

is employed at the receiver.

NC was initially proposed to enhance network

throughput in wired systems with error-free links of

unit capacity [8]. Later studies exhibited the good

performance of random linear NC [9]. In wireless

networks with nodes naturally overhearing transmis-

sions, NC can be utilized to create diversity, reduce

routing overhead, and introduce MAC layer gains

as discussed for practical systems in [10]. Although

most of the work in the literature concentrate on

multicast transmission [11]; we deal with a network

involving multiple unicast transmissions, which is

inherent in real-life scenarios. Hence we formulate
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a multiple unicast transmission problem such that

each unicast transmission observe a distinct diver-

sity that is to be improved via spatial opportunities.

We consider a simple NC scheme based on DetF.

Given a relay combining strategy, which we repre-

sent by a generator matrix and a vector of transmit

schedule, we investigate the diversity order of each

source, which can be unequal. We propose a novel

method for designing the generator matrix based

on linear block codes over the binary field. The

proposed method is very flexible in that any set

of desired diversity levels for the sources can be

achieved with the highest NC rate possible. The

diversity analysis relies on an optimal MAP decoder

at the destination which employs the reliability in-

formation of the intermediate nodes and avoids loss

of diversity due to error propagation [3], [12]. The

numerical complexity of the given optimal decoder

can be impractical. Thus we propose a practical

approximation: the SP network decoder.

A study based on flexible network codes in a two-

source two-relay system with emphasis on unequal

error protection is [13], where authors propose a

suboptimal detection rule (distributed minimum dis-

tance detector) that is known to result in diversity

order loss. Our scheme captures full diversity due

to the use of the SP detector with intermediate node

reliability information. In [14], a multicast scenario

is investigated (again under additive white Gaussian

noise (AWGN) assumption) for obtaining an opti-

mal energy allocation scheme in order to minimize

bit error rate at the sink nodes. In [15], performance

of a multiple hop network with no fading assump-

tion is analyzed in terms of effects of the bit errors at

the relays utilizing a technique known as error event

enumeration. Similarly in [16], optimal detection

rule to be used at the destination node is presented

for AWGN channels in addition to the description of

a genie-aided decoder which yields a lower bound

on the performance of the optimal detector. Differ-

ent than [15] and [16], we consider faded wireless

links and give optimal detection rule corresponding

to this realistic scenario. Futhermore, the operation

at the intermediate nodes in our scheme is DetF

as opposed to the more complex DF in [15], [16].

One of the studies closest to ours is [17], where

the NC operation is fixed in construction yielding

very large Galois field (GF) sizes for increasing

network size and relay nodes carry out complicated

DF operation for each transmission they overhear.

Similarly in [18], DF is used in a fixed single-

relay two-user scenario in order to provide diversity-

multiplexing trade-off for NC. However, our results

indicate that any diversity order can be achieved

for any unicast transmission even with the GF of

size 2 by using linear block codes as the network

codes and simple DetF. Also independent from our

work, in [12], [19], results concerning diversity

analysis for a system model resembling ours have

been obtained. Similarly in a recent work [20],

additional coding gain analysis is given for a multi-

source multi-relay network with relays having no

data to be transmitted. Our model is generalized in

the sense that each node both acts as a source node

with its own data to be conveyed over the network

and as an intermediate node serving as a means for

combining and relaying others’ data. Moreover, the

proposed detection rules of [12], [19], [20] result

in exponential decoding complexity in the number

of transmissions, since they are based on maximum

likelihood sequence estimation. Recently in [21], a

wireless broadcast network with block erasures is

considered and a network coding scheme is pro-

posed for retransmissions. The improvement in the

number of retransmissions for the downlink channel

with respect to the conventional automatic-repeat-

request mechanism is clearly shown. Another recent

work [22] identifies the diversity-multiplexing trade-

off for a NC system, in which multiple access to

the channel is allowed to be non-orthogonal. On

the other hand, our model with orthogonal access of

the nodes to the channel does not require a complex

successive interference cancellation technique to be

implemented at the destination node.

The major goal in this paper is to introduce

practical NC/decoding methods for improving the

diversity order of a network through cooperation

with the overall rate of transmission in mind. The

contributions of the current paper can be listed as

follows. (1) A generalized wireless NC scenario

with nodes possessing both relay and source roles

and its diversity analysis. (2) Design of novel net-

work codes based on close-to-optimal linear block

codes. (3) Investigation of greedy codes and maxi-

mum code rates for desired diversity levels. (4) Ap-

plication of the SP algorithm for decoding network

codes with relay reliability information. The rest

of the paper is organized as follows. In Section II,

we present the wireless network model, the corre-

sponding detection rule that is individually optimal
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for each user, and a practical enhancement on the

proposed network encoding method. We investigate

the details of network codes based on linear block

codes with emphasis on greedy NC through some

sample networks in Section III. We also give some

asymptotic results based on the rate-diversity order

trade-off curves for the proposed NC method and

a repetitive method that represents the no NC case.

In Section IV, we introduce the SP network decoder

that has linear complexity order and yields perfor-

mance figures very close to the optimal decoder.

Section V includes the numerical results for the

mentioned network encoding/decoding methods and

Section VI concludes the paper.

II. WIRELESS NETWORK MODEL

A. The Network-Coded System and The Corre-

sponding Separation Vector

In this work, we analyze a wireless network in

which unicast transmission of data symbols, each

belonging to a different source, is to be carried out

utilizing NC at the intermediate nodes. Under the

general operation scheme, every node may act both

as a member (source or destination) of a unicast

communication pair and as an intermediator (relay)

node for other unicast pairs.

In order to ease the explanation of system model

and the roles of nodes in the network, here we start

a with a simple network-coded operation depicted

in Fig. 1, which makes use of binary NC through

usual binary addition operator ⊕. The network of

interest consists of k = 3 source nodes and a

dummy node 0 that represents a hypothetical de-

tector of source packets u1, u2, and u3 at the

corresponding destination nodes. The transmission

of the these 3 data packets is allowed to be com-

pleted within n = 4 orthogonal time slots, which

form a round of NC communication with a data

rate of r = k
n

= 3

4
packets/transmission slot.

The channel is assumed to be shared by a time

division multiple access technique for the sake of

simplicity in model description and due to causality

requirements forcing the intermediate nodes to listen

to a symbol before combining it through NC.

As seen in Fig. 1, the first time slot is reserved

for node 1 to transmit its own data packet u1 and

this transmission is overheard by source nodes 2 and
3 in addition to the destination node 0. We assume

that the links between different pairs of nodes are

2

1

0

3

1st time slot

2nd time slot

3rd time slot

4th time slot

u1

u2

û1

⊕
u3

û1

⊕
u2

Fig. 1. Sample network coded transmission scenario

independently Rayleigh faded. The channel cor-

responding to a link is quasi-static, i.e., constant

over a packet and independently faded for different

packets. We further assume that there is no feedback

of channel state information (CSI) within the system

in order to simplify the implementation and that

each receiving node, including node 0, has the per-

fect knowledge of only the incoming links through

measurements of the respective channels. Hence

following the transmission of the packet u1, both

node 2 and node 3 use respective CSI to obtain their

own detection results on the symbols transmitted.

Due to the block fading assumption, we consider

a single data symbol u1 and its detection/decoding

event representing all symbols in the packet. There-

fore, corresponding to the detections of u1, each

node has also a reliability information based on the

probability of error in the detection, which is in fact

only a function of its own channel measurement

result. In order to counteract the effects of error

propagation, this reliability information is passed to

the destination node by an intermediate node (node

2 or 3), whenever it combines the detected symbol

shown by û1 with its own and other nodes’ symbols.

In the second time slot, node 2 transmits its own

symbol and this transmission is observed by all

other nodes as well. In the following slot, a NC

operation is carried out by node 3, which simply

combines its own symbol and its detection result

for the first time slot û1. In order to inform the

destination node 0, node 3 has to append the error

probability for the network coded symbol û1 ⊕ u3

to the packet it formed. In the last slot, once again
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node 2 uses the channel to transmit the network

encoded data û1⊕u2 with its own estimate of u1 and

appends the corresponding reliability information to

the transmitted packet. Hence the destination node

knows only the reliability information for the last

two transmissions which incorporate NC, but not

the CSI between all intermediate nodes within the

system. For the proposed scenario, the overhead of

appending reliability information to the network-

coded packets on the spectral efficiency is small for

large packet lengths. Therefore, the effect of sharing

the the reliability information on spectral efficiency

is expected to be small.

Up to this point, the sample NC system is detailed

in words. From the perspective of destination node

0, the same system can be described formally using

a generator matrix G (called the transfer matrix in

[17]) and a scheduling vector v. The columns of

G, g′
js, represent the combining operations at the

intermediate nodes and the entries of v give the

scheduling of the nodes accessing the channel:

G =





1 0 1 1
0 1 0 1
0 0 1 0



 ,v = [1 2 3 2] . (1)

The combined data vector u = [u1 u2 u3] can

then be used to form the distributed codeword:

c = [c1 c2 c3 c4] = uG. The choices u, G, k, and n
for the parameters defining the operation of network

are not arbitrary. They are used intentionally to

point out the analogy to regular linear block codes.

However, reliable detection of all data symbols, i.e.,

whole block u, originating from a single error-

free source is of interest for a regular decoder;

whereas node 0 may desire to reliably detect, as

an example, only u1 under cooperative encoding.

Hence we need to identify a parameter that describes

the performance for detection of a single symbol u1

as opposed to the codeword u for our model.

One can show that the minimum distance for

G is 1. However, we will see that an error event

requires at least 2 bit errors for decoding of u1 at

node 0. Let all the data bits be equal to 0 without

loss of generality, i.e., u = [0 0 0]. Hence the

transmitted codeword is expected to be c = [0 0 0 0]
for the case of no intermediate node errors. The

error event for u1 corresponds to its decoding as

1. This erroneous decoding can occur for sequence

decoding ˆ̂u ∈ {[100], [101], [110], [111]}, where ˆ̂u

denotes the decoding result at node 0. The incorrect
codewords ˆ̂c corresponding to these decoded vectors
are [1011], [1001], [1110], [1100], respectively. When

these codewords are compared to the codeword

[0000], it is clear that at least 2 bit errors are

needed to cause an error event. Hence the minimum

distance for u1 in this setting is said to be 2. The
erroneous decoding for other bits can be investigated

in a similar fashion. Focusing on u3 and hypothe-

sizing u = [0 0 0], u3 is incorrectly decoded when
ˆ̂u ∈ {[001], [011], [101], [111]}. The corresponding

codewords are [0010], [0111], [1001], [1100]. There-
fore, a single bit error can cause erroneous decoding

of u3 yielding a minimum distance of 1. As seen

in the example, the error performance varies from

symbol to symbol. Next we generalize this claim

to cover arbitrary generator matrices and verify it

through simulations in Section V.

Now we consider a subset of nodes in which there

are k nodes transmitting data to a single destination

node 0. Let the symbol transmitted by node i be

denoted by ui, for i ∈ {1, . . . , k}, and ui be an

element from the Galois field of size q, GF(q). We

assume ui to be statistically independent and define

u = [u1 u2 . . . uk] as the combined data vector.

In time slot j ∈ {1, . . . , n}, a transmitting node

vj ∈ {1, . . . , k} forms a linear combination of its

own and other nodes’ data. If vj detects all data

to be encoded correctly, it simply forms cj = ugj ,

where gj is a k×1 network encoding vector whose

entries are elements of GF(q). Let ûi denote the

estimate of the symbol of node i at node vj . Using
these estimates, node vj forms the noisy network

coded symbol ĉj = ûgj that is also an element of

GF(q). Then vj modulates and transmits this symbol

to receiver node 0 as:

sj = µ(ĉj), (2)

where µ(.) shows the mapping of a symbol to a

constellation point. Although symbols may come

from any alphabet and non-binary constellations

may be used, we will focus hereafter on GF(2) and
binary phase-shift keying (BPSK) with sj = 1−2cj .
Our assumption is that vector gj, source address

vj and probability of error pej for the transmitted

symbol are appended to the corresponding packet.

We consider transmissions with no channel coding

and deal with single network coded data symbol cj
which represents all symbols within a packet trans-
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mitted by vj . At the end of a round of transmissions,

if no errors occur at the intermediate nodes, the

overall vector of n symbols coded cooperatively in

the network is

c = [c1 c2 . . . cn] = u [g1 g2 . . . gn] = uG. (3)

The generator matrix characterizes the network code

together with the vector of transmitting nodes

v = [v1 v2 . . . vn] . (4)

Equations (3) and (4) generalize the definition

of the example NC in (1). Next, we present Al-

gorithm 1, which generalizes the method for find-

ing the minimum distance for ui. In Algorithm 1,

Algorithm 1 Algorithm for finding the minimum

distance corresponding to symbol ui for a (n, k, d)
code with given generator matrix G

mindistance← n

indexvector ← [1 2 · · · k] \ i
for j = 1 to 2k−1 do

errorpattern ← dec2GF2(j − 1)
errdatavector[i]← 1
errdatavector[indexvector] ← errorpattern

errcodevector ← errdatavector ∗G
errdistance← numberofnonzero(errcodevector)
mindistance← min(mindistance, errdistance)

end for

the function dec2GF2(.) returns a binary pattern

corresponding to the input decimal number and the

function numberofnonzero(.) returns the number

of non-zero entries in the input vector. It is assumed

that the data vector u consists of all 0s, relying on

the linearity of the network code. The algorithm

first creates all possible erroneous data vectors ˆ̂u

that have 1 in the ith position so that all codewords

leading to erroneous decoding of ui are generated by
ˆ̂c = ˆ̂uG. Afterwards, we search within these code-

words to find the one with the minimum distance to

the transmitted codeword of all 0s. This minimum

value gives us the minimum distance for ui. The

set of minimum distances corresponding to all ui’s

(separation vector [23]) is utilized in identifying the

performance metrics for NC in Section III-A.

B. Optimal Network Decoding Using Intermediate

Node Reliability Information

The intermediate nodes are assumed to use the

DetF technique (hard decision with no decoding op-

eration) due to its simplicity. In a wireless network,

an intermediate node vj has a noisy detection result

û of u. Let us express the resulting noisy network

coded symbol as

ĉj = cj ⊕ ej , (5)

where ej denotes this propagated error. We observe

that a possible error in û propagates to ĉj after

the NC operation dictated by gj is realized. We

assume that node vj knows the probability mass

function (PMF) of ej , p(ej), which we name as

the intermediate node reliability information. This

assumption is not unrealistic as it can be deter-

mined by the estimation of the channel gains of

the links connected to vj , along with the reliability

information forwarded to vj . The received signal

by node 0 at time slot j is then yj = hjsj + wj ,

where hj is the channel gain coefficient resulting

from fading during the jth slot and wj is the noise

term for the link between vj and node 0. The gain

coefficient is circularly symmetric complex Gaus-

sian (CSCG), zero-mean with variance Es, i.e., it

has distribution CN(0, Es). The noise term is CSCG

with CN(0, N0). The usual independence relations

between related variables representing fading and

noise terms exist. The overall observation vector of

length n at node 0 is

y = Hs+w, (6)

where y = [y1 . . . yn]
T , s = [s1 . . . sn]

T =
µ(ĉT ),w = [w1 . . . wn]

T and H is a diagonal

matrix whose elements are independent channel

gains h1, h2, . . . , hn for the links connected to node

0. It is assumed that H is perfectly known at node

0. Combining the coded symbols in a network code

vector, we obtain

ĉ = c⊕ e = uG⊕ e, (7)

where e = [e1 . . . en] is the error vector denoting

the first hop errors. We assume that e is independent

of c although dependence can be incorporated in the

SP decoder developed in Section IV. This indepen-

dence assumption is valid directly for BPSK modu-

lation, whereas in a general modulation scheme the

Euclidean distances between various constellation

point pairs differ and an error term ej depends on

the symbol being transmitted. As a result, using (5),

(6), and (7), the observation vector at node 0 is

y = H µ(uG⊕ e)T +w. (8)
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Thus node 0 has access to the likelihood p(y|u, e)
and p(e) =

∏n

j=1
p(ej), assuming the errors are

independent. As shown in [3], in order to avoid

the propagation of errors occurring at intermediate

nodes, node 0 has to utilize the reliability informa-

tion p(e). Then, the a posteriori probability of the

source bit of interest, say u1, can be calculated by

using the Bayes’ rule:

p(u1|y) = α
∑

u2,...,uk

∑

e1,...,en

p(y|u, e)
n
∏

j=1

p(ej), (9)

where α is a normalizing constant that does not
depend on u1. The MAP estimate of u1 at node

0 is denoted by ˆ̂u1 and obtained as

ˆ̂u1 =argmax
u1

p(u1|y)

= argmax
u1

∑

u2,...,uk

∑

e1,...,en

p(y|u, e)
n
∏

j=1

p(ej), (10)

which is the individually optimum detector for

u1. As a result, for the optimal detection of u1,

node 0 requires the intermediate node reliability

information vector: pe = [pe1 . . . pen ], where

pej = P (ej = 1) depends on the PMF of ej . We

observe the performance of this detection rule in

Section V-A.

The problem related to the MAP-based detection

rule of (10) is the number of required operations,

which grows exponentially both in the number of

nodes k and the number of possible error events n.
This is addressed in Section IV, where we suggest

a practical network decoding technique.

C. Selective Network Coding

The NC described in Section II-A is a static

method in the sense that the generator matrix G

is fixed. In static NC, node vj always combines

(network encodes) the symbols of a pre-determined

set of users, even when it knows that the reliability

for one of those users is low. When a symbol esti-

mate with low reliability is combined with a symbol

with high reliability, the reliability of the resulting

network coded symbol is low. Thus, it is intuitive

to expect some gains in performance by forcing the

intermediate nodes not to combine the symbols that

have very low instantaneous reliability. In [24] and

[4], various forms of channel state information are

used to determine thresholds for relaying decisions.

In [17] and [25], for relays assuming DF operation,

successful decoding of channel code for a source

is the required condition for combining its data in

NC. Here, we propose a method called Selective

Network Coding (SNC) that imposes a threshold

on the reliability of the candidate symbols to be

encoded at intermediate nodes that adapt DetF. In

this way, any symbol that is sufficiently reliable

is included in network encoding and the resulting

encoding vector gj is appended to the transmitted

packet so that node 0 still has the instantaneous

generator matrix G at the end of n transmissions.

Let us demonstrate the operation under SNC on

the sample network given in Fig. 1. For the first two

time slots SNC is equivalent to NC since no com-

bining of other nodes’ symbols is the case. However,

in the third slot, node 3 checks the reliability of the

detection for u1 carried out following the first slot.

Let us say it has observed an instantaneous SNR

value of γ1→3, which yields a probability of error

equal to pe3 = Q(
√
2γ1→3) in detection of u1 for

BPSK modulation. Here, the Q-function is defined

as Q(x) = 1√
2π

∫∞
x

exp(−z2

2
)dz and the random

variable γ1→3 is exponentially distributed with mean

value equal to average SNR γ̄ for a Rayleigh fading

channel. The instantaneous error probability pe3 is a
measure of reliability for û1. This instantaneous pe3
value is averaged over γ1→3 to set the threshold:

pth3
=

∫ ∞

0

Q(
√

2γ1→3)
1

γ̄
exp

(

−γ1→3

γ̄

)

dγ1→3

=
1

2

(

1−
√

γ̄

1 + γ̄

)

, (11)

which is the expectation operation over γ1→3. There-

fore, node 3 uses the threshold value pth3
to check

whether the detection at that instant is reliable. If

pe3 < pth3
, the detection is decided to be reliable

enough and the combination û1⊕ u3 is formed just

in the way declared by the generator matrix G.

Otherwise, node 3 modulates and transmits only

its own symbol u3 and appends this information to

the corresponding packet. Similarly, in the last slot,

node 2 checks the reliability of its own detection

of u1 and forms either û1 ⊕ u2 or simply transmits

u2. Here, the reliability of û1 ⊕ u2 is equal to the

reliability of û1. In general, there may be more

than one symbol that an intermediate node should

detect and combine according to G. In such cases

the combined instantaneous reliability of an network

encoded symbol at the time slot j can be easily
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obtained by

pej =
1−

∏

i∈Aj
(1− 2Pj(ûi 6= ui))

2
, (12)

where Aj denotes the set of sources for which vj
should carry out the network coding, i.e., Aj is

the set of indices corresponding to the non-zero

elements of the jth column of G, gj . The term

Pj(ûi 6= ui) in (12) is used to show the probability

of error for detection of ui by node vj .
Clearly, SNC inherently includes usage of adap-

tive generator matrices. The utilized generator ma-

trix may assume in average a form dictated by some

predetermined (and optimal if possible) linear block

code structure like the ones that are to be discussed

in Section III-B. Note that we do not claim the

optimality of the proposed threshold. However, the

bit error rate (BER) performance improvements are

observed in Section V-D.

III. LINEAR BLOCK CODES UTILIZED AS

NETWORK CODES

A. Separation Vector as a Performance Metric

Our goal is now to explore the error performance

metrics for network coding/decoding described in

Section II. Our basic figure of merit will be the

diversity order corresponding to the source bit ui,

which is an asymptotic term defined for SNR tend-

ing to infinity:

di = − lim
SNR→∞

logPˆ̂ui 6=ui
(SNR)

logSNR
(13)

giving information on the slope of decrease in

logarithm of BER for ui, i.e., Pˆ̂ui 6=ui
for high

SNR values. For conventional block coding, the

average error performance over all data symbols is

of interest. Therefore, for a linear block code whose

coded symbols are transmitted over independent

channels, the metric utilized for comparison is the

minimum distance, which is equal to the diversity

order [26]. On the other hand, there is a vector of

distinct minimum distances, i.e, separation vector,

for data symbols, whenever we are interested in

performance of individual symbols that originate

from different source nodes. According to the results

presented for suboptimal decoders in [19], [20], the

diversity orders for symbols in some sample NC

systems are still equal to the minimum distances

in the corresponding separation vector in spite of

the inherent error propagation problem. Using the

soft decoding that we propose in (10) and also

authors analyze in [12], one should expect better

performance and consequently diversity orders be-

ing equal to the minimum distances. A similar result

is also shown for a simpler cooperative network

with possible relay errors and the use of equivalent

channel defined as the combination of the source-

to-relay and the relay-to-destination channels [5]. In

[5], even a suboptimal detection rule utilizing this

equivalent channel approach is shown to attain the

achievable diversity order. As a result, supported

with intermediate node reliability information, the

optimal rule of (10) given in Section II-B also

satisfies the diversity orders dictated by the sepa-

ration vector whose entries are obtained according

to Algorithm 1. It should be also noted that since

diversity order is an asymptotic quantity, the exact

form of v is irrelevant to the procedure used for

obtaining a diversity order value. On the other hand,

it is wiser that each column gj of G is used as the

encoding function for a vj such that the jth entry is

non-zero, gj(vj) 6= 0. Otherwise possibly an extra

relaying error is also included in the encoded data

symbol. Therefore, v clearly affects the coding gain

corresponding to the BER versus SNR curve of ui.

B. An Example of Close-to-Optimal Linear Block

Codes: Greedy Codes

In this study, we make use of some well-known

linear block codes while constructing network codes

that are to be used for the analysis of data rate and

diversity orders for distinct symbols in Section III-C

and simulation of BER in Section V. However, the

cooperative network coding described in this work

and the resulting performance figures for a unicast

pair are more general and applicable to any linear

block code like the maximum distance separable

(MDS) codes detailed in the context of NC in [17].

In comparison with the network coded operation,

we consider a case with no distributed coding (no

network coding) among the nodes. For this no

network coding scenario, we should also consider

that our system model does not allow feedback of

CSI within the network and that the average SNR

values between all nodes are equal. If one intends

to achieve higher diversity orders, two resources

are available in such a scenario: (i) the temporal

diversity resources over the faded blocks, (ii) the
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spatial diversity resources over the intermediate

nodes. Here, it is seen that the source nodes must

simply repeat their data instead of choosing a relay

to convey their data which may possibly inject errors

leading to worse performance than repetition. In

conclusion, we call this method as the repetition

coding scheme which is in fact a degenerate NC

scheme with no cooperation hence with reduced

spatial diversity resources. Following n transmis-

sions, node 0 combines the data received for each

source symbol to optimally detect them.

On the other hand, with NC, we take the family of

block codes known as greedy codes as an example.

These (n, k, d) codes are selected with the following

parameters: blocklength (number of transmission

slots) n, dimension (number of unicast pairs) k,
and minimum distance (minimum diversity order)

d. Greedy codes are known to satisfy or be very

close to the optimal dimensions for all blocklength-

minimum distance pairs [27] and can be general-

ized to non-binary fields [28] for achieving higher

diversity orders with NC as discussed in [17]. More-

over, they are readily available for all dimensions

and minimum distances unlike some other optimal

codes. Hence, even in an ad hoc wireless network

with time-varying size, any desired diversity order

can be flexibly satisfied by simply broadcasting the

new greedy code generator matrix G to be utilized

in subsequent rounds of communication.

As an example, consider a network that consists
of k = 3 nodes transmitting their symbols over
GF(2). If a round of communication is composed
of n = 6 transmissions, we deal with codes of type
(6, 3, d), which have a code rate of 1

2
. Starting

with the generator matrix and scheduling vector
corresponding to the repetition coding, we have

G =





1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1



 ,v = [1 2 3 1 2 3] . (14)

It is easily observed that, since each data bit is
transmitted twice over independent channels, this
method satisfies only a diversity order of 2 for all
bits u1, u2, and u3. In contrast, a diversity order of
3 for all sources can be achieved using NC, with the
same code rate. As an example, the NC that achieves
this performance can be obtained using the (6, 3, 3)
greedy code, as follows:

G1 =





1 0 0 1 1 0
0 1 0 0 1 1
0 0 1 1 0 1



 ,v1 = [1 2 3 1 2 3] . (15)

Clearly, without NC, the diversity order of 3 for
all sources can only be achieved with rate 1

3
. It

should also be noted that greedy codes accom-
modate each unicast pair with equal diversity or-
der due to the greedy algorithm utilized in their
construction. Moreover, contrary to the findings in
[17], it is easy to obtain any required diversity
order for any data bit even by using GF(2). The
limitation is not due to the number of unicast
pairs but due to the number of transmission slots
in general. By increasing n, one can arrange and
improve the diversity orders, if the transmissions to
each node are realized over independent channels,
which is a natural assumption for many wireless
communication scenarios. If we need an increase
in data rate, through a trade-off mechanism, we
can assign decreased diversity orders to the lower-
priority unicast pairs. This may be accomplished by
omitting some columns of a greedy code generator
matrix in order to decrease number of transmissions.
The columns to be excluded can be decided by
running Algorithm 1 in Section II-A on candidate
punctured generator matrices. As an example, the
following punctured (5, 3, 2) code is obtained by
omitting the last column of G1 and has a data rate
3

5
that is higher than those of above two codes:

G2 =





1 0 0 1 1
0 1 0 0 1
0 0 1 1 0



 , v2 = [1 2 3 1 2] . (16)

This punctured network code satisfies a diversity
order of 3 for u1 and an order of 2 for both u2

and u3. If u1 is of higher priority, this unequal error
protection would be preferable especially when the
higher rate of the code is considered. In case of
larger diversity order requirement, d = 4 as an
example, we may simply utilize the (7, 3, 4) greedy
code with rate 3

7
.

G3 =





1 0 0 1 1 0 1
0 1 0 0 1 1 1
0 0 1 1 0 1 1





,v3 = [1 2 3 1 2 3 1] . (17)

A final problem is the selection of vector v. Our

basic assumption is that v satisfies causality so that

no intermediate node vj tries to transmit another

node’s symbol before hearing at least one copy of

it. This causality problem can be solved trivially

by using only systematic generator matrices. For

the transmitting nodes corresponding to the non-

systematic part of G, as described in Section III-A,

one can select each entry vj such that gj(vj) 6= 0
for each column gj. For the columns that have

more than one non-zero entry, a random selection

between candidate vj’s will merely affect the coding

gains assigned to these nodes. As a result, one
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can force the number of transmissions of each

node within a round to be equalized as much as

possible for similar coding gain improvements of

nodes. In the way exemplified in this section, one

can choose a network code satisfying desired error

protection properties for a determined network size

with adequate data rate quite flexibly.

C. Theoretical Gains in Rate and Diversity for NC

In this section, we investigate the rate and di-

versity (asymptotic) gains of NC through use of

the family of greedy network codes detailed in

Section III-B, although the results are still valid

for any other family of optimal or close-to-optimal

codes. The availability of a greedy code for a given

(k, d) pair is checked using [29]. Fig. 2 shows the

diversity gains attainable using greedy NC (with

punctured codes in case no corresponding greedy

code exists) with respect to the repetition coding

scenario. The rate-diversity trade-off curves of both

cases are plotted for a network of k = 3 nodes

with increasing number of transmissions and hence

decreasing rate. We are interested in three types

of network diversity orders; average, minimum and

maximum, since the orders corresponding to each

one of the three nodes may be unequal in general.

The curves with no markers represent the (average)

network diversity orders for both scenarios, which

is defined as the arithmetic mean of orders for three

nodes. For a rate of 0.43 bits/transmission, with

greedy code (7, 3, 4), the network diversity order

for NC is 4. The minimum, maximum, and average

diversity orders are equal for this case. In contrast,

the repetition scheme results in an average order

of nearly 2.33 with the worst node observing a

minimum order of 2 and the best node a maximum

order of 3, which would mean a high SNR loss

asymptotically for all three nodes in the network.

In Fig. 3, we now fix the desired network diversity

order to d = 3 and observe the rate advantage of

the NC for increasing network size. Note that for

all cases diversity orders for k users are equal to 3.
For a network of k = 25 nodes, the rate with NC

is 25

30
(with greedy code (30, 25, 3)) and the rate of

the repetition scheme is 15

45
(always equal to 1

3
for a

diversity order of 3). The rate advantage ratio is then

2.5. In the asymptotic case, as k → ∞ and hence

as n→∞, NC using optimal codes in construction

will have a rate advantage converging to 3 since the
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Fig. 2. Network diversity orders: Greedy NC and repetition coding.

rate for network coded case can be shown to tend

to 1 using the Gilbert-Varshamov bound [30]. In

general, the rate advantage of NC over the repetition

scenario becomes simply d, the desired network

diversity order. As a result, increasing the network

size improves the network coded system’s efficiency

in comparison to the repetition coding.
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IV. SUM-PRODUCT NETWORK DECODER

The complexity of the optimal rule for decod-

ing of any unicast transmission symbol ui grows

exponentially, since the number of additions and

multiplications in (10) increase exponentially in the

number of users and transmissions. Therefore, this

rule becomes inapplicable even for moderate-size
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networks. Recently the SP iterative decoding, which

is often utilized for decoding of low-density parity-

check (LDPC) codes, is suggested for decoding

general linear block codes as well [31].

c3c2c1 c4u3u2u1

+ + ++

Fig. 4. Tanner graph for network coded system of (1)

For the model detailed in Section II-B, we make
use of SP decoding and compare its performance
with the optimal one. The aim of the decoding
operation is to produce a posteriori probabilities
(APPs) for source symbols u1, . . . , uk. To that end,
we form a combined codeword [u1 . . . uk c1 . . . cn]
and consider the parity check (PC) matrix for this
codeword, which describes the underlying linear
block code structure of the network code. On the
Tanner graph, we add a variable node for each
source symbol ui, i = 1, . . . , k and each coded
symbol cj , j = 1, . . . , n. Afterwards, we add check
nodes which reflect the connections between the
source and the coded symbols in the way described
by the PC matrix. For the NC system given in (1),
we refer to the graph in Fig. 4 for SP decoding at
node 0. The PC matrix for this system becomes:













u1 u2 u3 c1 c2 c3 c4

PC 1→ 1 0 0 1 0 0 0

PC 2→ 0 1 0 0 1 0 0

PC 3→ 1 0 1 0 0 1 0

PC 4→ 1 1 0 0 0 0 1













=

[

GT
... In

]

, (18)

where GT denotes the transpose of G and In is the
n×n identity matrix. For a regular LDPC decoder,
all of the variable nodes are observed through the
channel and corresponding to each channel ob-
servation an LLR is computed. For our case, the
variable nodes u1, u2, and u3 are not observed so
the corresponding LLRs are set to 0. The channel
LLRs for the remaining nodes (c1, c2, c3, and c4)
cannot be calculated as in a regular LDPC decoder
either, due to the intermediate node error events and
by using (5) and (8), the channel LLR of cj is:

LLR(cj) = ln
p(yj |cj = 0)

p(yj |cj = 1)

= ln
(1− pej )p(yj |ĉj = 0) + pejp(yj |ĉj = 1)

(1− pej )p(yj |ĉj = 1) + pejp(yj |ĉj = 0)

= ln
exp(LLR(ej)) exp(LLR(ĉj)) + 1

exp(LLR(ej)) + exp(LLR(ĉj))
, (19)

where LLR(ej) , ln
1−pej
pej

and

LLR(ĉj) , ln
p(yj|ĉj = 0)

p(yj|ĉj = 1)
=

4Re
{

h∗
jyj

}

N0

, (20)

where h∗
j is the conjugated gain of the channel

over which the modulated symbol sj = µ(ĉj) is

transmitted by node vj and we use the fact that

wj is Gaussian distributed (see Section II-B) in

obtaining LLR(ĉj). Given the channel LLRs, the

SP decoder carries on iterations over the Tanner

graph to generate the estimated LLRs for the source

bits. If the number of iterations is fixed, the SP

decoder utilized is known to have a complexity

order of O(n). In contrast, the optimal decoder has

a computational load in the order of O(2n), which
makes the SP network decoder a strong alternative

for increasing network size and number of transmis-

sions. One may also note that the proposed scheme

works directly with GF(q), q > 2, and constellations

other than BPSK. The use of higher order fields

and constellations would tremendously increase the

complexity of the optimal algorithm and make it

impractical, whereas the SP algorithm would still

operate with reasonable complexity. The number

of iterations and other operational parameters for

the SP decoder are given in Section V-C, where

we show that performance figures close to that of

the optimal one are possible for the network codes

investigated herein.

V. NUMERICAL RESULTS

A. Sample Network-I: Simulation Results

The results in this subsection are based on Sample

Network-I of (1), consisting of only 4 nodes in

order to observe the fundamental issues. For BER

results, at least 100 bit errors for each data bit u1,

u2, and u3 are collected through simulations for each

SNR value. In each run, data bits, intermediate node

errors and complex channel gains are randomly

generated with their corresponding probability dis-

tributions. The solid lines in Fig. 5 show the BER

values for the optimal detector operating under the

realistic scenario of intermediate errors, whereas the

dashed lines depict the performance of the genie-

aided no-intermediate-error network with the same

optimal detection. Finally, the dotted lines are for

the detector that totally neglects intermediate errors.
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Fig. 5. BER performance for different nodes and optimal detection.

It is observed in Fig. 5 that different diversity

orders for bits of different nodes are apparent for

optimal detection under intermediate errors. The

diversity order for u1 is observed to be 2 accord-

ing to the slope of the corresponding BER curve.

This is in agreement with the analytical results

in Section II-A where it was shown that an error

event corresponds to at least 2 bit errors for the

detection of u1 and u2. It is seen in Fig. 5 that the

intermediate node errors cause no loss of diversity

for u1 and u2, but an SNR loss of 1.5 dB. Hence

the optimal detection rule of (10) is said to avoid

the problem of error propagation in terms of the

diversity orders. The loss for u3, whose diversity

order is 1, with respect to the hypothetical no-

intermediate-error network is around 2.5 dB. The

performance deteriorates significantly for especially

u1 and u2 when intermediate errors are neglected

in detection (dotted lines), i.e., pe3 = pe4 = 0 is

assumed. Not only an SNR loss is endured but also

the diversity gains for them disappear.

B. Sample Network-II: Simulation Results

Next, we verify the analytical results concerning

the diversity orders for a set of three nodes operating

under three different network codes constructed in

Section III-B. Moreover, the unequal error protec-

tion performance of one of these codes is identified

together with the rate advantage it provides.

The repetition method is represented by G and v

in (14). To construct Code-1 and Code-2, we make

use of the greedy code of (15) and the punctured

greedy code of (16) respectively. Fig. 6 exhibits the

BER curves for the repetition scenario with n = 6
transmissions (dashed lines), for NC scenarios with

Code-1 with n = 6 (solid lines) and Code-2 with

n = 5 (dotted lines). The optimal detector of

(10) is utilized for this simulation. Clearly, Code-1

has superior performance with an average network

diversity order of 3. However, the lower rate of

Code-1 (and also repetition coding) in comparison

to Code-2 should also be noted. For Code-2, on the

other hand, bits u2 and u3 observe a diversity order

of 2 while u1 observes an order of 3. With this

unequal protection in mind, the average network

diversity order for Code-2 is 2+2+3

3
≃ 2.33, which

is higher than that of the repetition coding with

order 2. In addition to improved diversity, Code-

2 has also the advantage of increased overall rate

and decreased decoding delay due to usage of 5
slots instead of 6. It is preferable especially for a

network that puts higher priority on u1.
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Fig. 6. BER performance for repetition coding and greedy NC.

C. Performance of the Sum-Product Decoding for

Network Coded Systems

In this section the performance figures for the

SP iterative network decoder described in Section

IV are presented in comparison with the optimal

detection rule of (10), which has an exponential

complexity order. The network coded communica-

tion system of interest is given in (15). The number

of iterations for the SP type decoder is limited to 4
and no early termination is done over parity checks.
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Here, a minimum of 150 bit errors are collected for

each data bit.

In Fig. 7, we identify the fact that the SP decoder

maintains almost the same BER performance as the

optimal decoding rule. The SNR loss due to usage

of the SP decoder is less than 0.1 dB for a BER

value of 10−3 for all data bits. Achieving close-to-

optimal performance with a linear complexity order,

SP type decoding may serve as an ideal method

for the network coded system of (15) despite the

fact that the corresponding Tanner graph contains

cycles. Results demonstrating the good performance

of SP decoding were also reported previously in

[31]–[33] for graphs with cycles. In fact, one may

realize that the length of the shortest cycle in the

corresponding graph is 6, hence the graph is said to

have a girth of 6. In [33] within the context of sparse

intersymbol interference (ISI) channels, it is shown

that for any graph with girth 6, the performance

of the SP algorithm is practically optimal. On the

other hand, one may identify that for the family

of greedy codes for k = 3 users with blocklenghts

larger than 6, the girth of the corresponding graph

will always be 4. Fortunately, it is also given in

[33] that the method of stretching on girth-4 graphs

yields modified girth-6 graphs on which the SP

algorithm evaluates the APPs for the data symbols

with negligible performance loss. Further details on

the girth profile and degree distribution optimization

procedures (like in [34] for a greedy search of

LDPC codes and like in [35] for root-check LDPC

code design) and design of large blocklength MDS

network codes achieving full-diversity under SP

decoding [36] are out of scope of this work.

D. Performance of Selective Network Coding (SNC)

The selective network encoding operation defined

in Section II-C is applied in this section on the Sam-

ple Network-II of Section V-B. The performance

improvement for the selective encoding over the

static (using fixed G with no selection of symbols

to be encoded) encoding method is again shown

using the SP iterative decoder of Section IV. The

instantaneous intermediate node error probabilities

are compared with average error probabilities (dic-

tated by G) and data of the nodes whose error

probabilities are below the corresponding average

values (thresholds) are combined by the intermedi-

ate node. In Fig. 8, we observe that SNC offers an
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Fig. 7. BER curves for the individual MAP decoder of (10) and the

SP iterative decoder

SNR improvement of 0.6 dB for BER set to 10−3

over the static NC method.
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E. Performance of NC under Slow-Fading Channel

Model

All the discussion and the results presented up

until this section rely on the assumption that all

channel gain coefficients related to the observations

at node 0 are independent. Hence a block fading

model over time slots is utilized. However, it is

also possible under many communication scenarios

that the variation of a channel gain coefficient is

not rapid enough for such an assumption. Then it is

also possible that all transmissions from a selected
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source node to node 0 observe the same fading

condition leading to the degradation in BER perfor-

mance due to loss in diversity. Therefore, we finalize

the numerical results by providing the BER curves

of NC and repetition coding under the assumption

that within a round of n transmissions, only the

transmissions from distinct source nodes observe

independent fading, i.e., hj and hm are independent

if vj 6= vm and otherwise hj = hm. In Fig. 9, we

investigate the BER curves for the Sample Network-

II operating under this slower fading assumption.

The repetition coding is represented by (14) and

NC is realized by (15). It is seen that the repetition

coding merely results in a diversity order of 1 for

each symbol as expected. On the other hand, NC

yields an order of 2 via the cooperative diversity

obtained due to intermediate nodes transmitting over

independent channels. The SNR losses incurred

by not utilizing NC are shown to further increase

in great amounts for this slower fading channel

scenario.

2 4 6 8 10 12 14 16 18 20 22
10

−4

10
−3

10
−2

10
−1

E
s
/N

0
 (dB)

B
E

R

 

 

Greedy NC

Repetition Coding

Fig. 9. BER vs. SNR curves for slow fading channel

VI. CONCLUSIONS

We formulated a NC problem for cooperative

unicast transmissions. A generator matrix G and a

scheduling vector v are used to represent the linear

combinations performed at intermediate nodes. We

presented a MAP-based decoding rule utilizing G,

v, and the error probabilities at the intermediate

nodes. A method for obtaining the performance

determining parameter as the diversity order for

individual source nodes is proposed for any givenG

over the corresponding separation vector. Through

simulations we showed that our decoding rule, us-

ing reliability information for the network coded

symbols, avoids the diversity order losses due to

the error propagation effect. We presented design

examples for network codes via greedy block codes,

which may also provide unequal diversity orders to

nodes with proper puncturing. Over given design

examples, we obtained the rate-diversity trade-off

curves and the rate advantage realized by using

NC with respect to the no NC case. Moreover, the

SP iterative network decoder with linear complexity

order is proposed and shown to perform quite close

to the optimal rule. Furthermore, the selective NC

scheme combining only the reliably detected data

at cooperating nodes is shown to yield additional

coding gains. Identifying gains of NC for purely

random G matrices in large networks, studying the

effects of imperfect information on channel gains

and relay error probabilities will be addressed in

future work. Finally, it would be also interesting

to operate suggested wireless NC methods under

asymmetrical channel gains, which can be more

realistic for ad hoc networks.

REFERENCES

[1] A. Sendonaris, E. Erkip, and B. Aazhang, “User cooperation

diversity. part I and II: Implementation aspects and performance

analysis,” IEEE Trans. Commun., vol. 51, no. 11, pp. 1939 –

1948, Nov. 2003.

[2] J. Laneman, D. Tse, and G. Wornell, “Cooperative diversity

in wireless networks: Efficient protocols and outage behavior,”

IEEE Trans. Inf. Theory, vol. 50, no. 12, pp. 3062 – 3080, Dec.

2004.

[3] D. Chen and J. Laneman, “Modulation and demodulation for

cooperative diversity in wireless systems,” IEEE Trans. Wireless

Commun., vol. 5, no. 7, pp. 1785 –1794, Jul. 2006.

[4] F. Onat, A. Adinoyi, Y. Fan, H. Y. kömeroğlu, J. Thompson,
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