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Statistical Multipath Channel 

Models 
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 So far 

 Large scale fading 

 Path loss and shadowing 

 We will model the mobile communications 

channel  

 as a multipath channel  

 with a random time-varying impulse response. 
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 Different paths 

 Arrive at different times (delay) 

 Have different strengths (gain) 

 May have different carrier frequencies due to 

mobility and direction (Doppler) 

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Signal Model 

 Transmitted bandpass signal with equivalent 

lowpass signal 

 

 Communication takes place at 

 Processing takes place at baseband 

 Bandwidth interchangeably by  
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Example: I/Q modulation/demodulation 

with sampling 

D/A A/D 
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 Received signal without noise 
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 Resolvability? 

 

 

 

 

 

 Roughly, pulse duration 

 Interested in pulses since linear modulation 
consists of a train of pulses where each pulse 
carries information on its amplitude/phase. 

 Two paths are resolvable if 

T
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reflector cluster 

Path distances are very 

close. 

t
1 2 3

t
1 2 3

Individual paths are not 

distinguished. => non-resolvable 

B/1~
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Path distances are 

much different. 

t
1 2

Individual paths are observed => resolvable 

B/1~
B/1~



EE728 METU AOY 10 

            a function of path loss and shadowing 

            depends on delay and Doppler 

 Assumption: Two random processes are 

independent. 
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Examples 

 At time t there is no physical reflector with 

multipath delay  

 

 For time-invariant channels 

 

 In particular 
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 Nonstationary channel (channel response 

changes with time, i.e., it is a function of 

time) 

Propose an example scenario! 
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 Delay spread 

 

 

 

 

 

 

 

 If delay spread much smaller than pulse 
duration 

||max 1  n
n

mT

)(c

0
1 2 3

1st path is usually LOS (line-

of-sight) and strong. Hence, 

receiver usually synchronizes 

to the 1st path. 

BTm /1
Non-resolvable paths 

Narrowband fading 
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Narrowband Fading Models 

 Delay associated with the ith multipath has 

BTm /1

t
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 Recall the central limit theorem 

 If number of paths are large 

 channel gain becomes a complex Gaussian r.v.  

 whose amplitude (envelope) is Rayleigh 

distributed. 

 In rich scattering environments, there are 

many paths and thus channel gains are taken 

to be complex Gaussian. 
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 Received power 
variations due to 
constructive/destruct
ive addition of paths 

 These variations 
occur over short 
distances 

 Small-scale 

 on the order of 
wavelength  

 called FADING 

4.0~
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 Large and small scale propagation effects 

together 
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 Example 

 1Ghz carrier, delay of 50ns (a typical value for an 
indoor system) 

 

 

 A small change in delay corresponds to a large 
phase change 

 Even an additional delay of ns (0.3m) corresponds 
to full rotation 

 Hence fading may change considerably 
(depending on carrier frequency) with 
distance. 

15022   ncf
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 Assumption: Phase changes fast               

due to large carrier frequency and hence it is 

uniformly distributed 
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 Similarly, 

            

           is a zero-mean Gaussian process. 

 Derivations based on key assumptions that 

generally apply to propagation scenarios 

without a dominant LOS 

 Assumption: Amplitude, multipath delay, 

Doppler frequency change slowly enough to 

be considered constant over time intervals of 

interest 
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 Autocorrelation for a fixed setting 
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           term changes rapidly w.r.t. other phase 

terms -> uniform dist. 
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 By the derived mean and autocorrelation, 

       is WSS 

             has the same autocorrelation. 

 Cross-correlation 
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 Overall, c(t) is also WSS. 

 

 

 We now need an assumption to evaluate 

autocorrelation. 

 Dense scattering environment => uniform 

scattering 
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 The channel consists of many scatterers 

densely packed in angle 

 It is also assumed that each multipath 

component has the same power 
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 Let’s take the limit as  
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Signal 

decorrelates over 

a distance of ~0.5 

wavelength 

Note: 

Recorrelation 
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 With uniform scattering 

 

 

 Real and imaginary components are 

uncorrelated and thus independent. 

 Power spectral density of fading at baseband 
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 This PSD can be intuitively explained as follows 

 The range of angles for which their cos value around +-1 is 

larger in comparison to other values. 

 This PSD can actually be directly obtained from the pdf      

of               (Woodward Theorem) 

 

 

 

 

 

 

 PSD is useful for generating fading in simulations. 

 Generate white noise 

 Pass the noise through a filter whose square is the desired 

PSD. 

cos
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 Envelope and power distributions 

 Real and imaginary components are Gaussian 

and independent. 

 

 

 Phase uniformly distributed in 

 Amplitude has Rayleigh distribution. 
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 Power has exponential distribution. 
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 There is sometimes a LOS component. 

 Real and imaginary parts are not zero-mean 

in that case. 

 Chi-square distribution 

 

 

 

 Power is not exponential now, it has 

noncentral chi-square distribution. 

 Amplitude then has Rician distribution. 
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 Power distribution 

 

 

 

 

 

 

 

 Rician distribution 
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 Some experimental data does not fit well into 

any of the above distributions. 

 More general fading distributions were 

developed whose parameters can be adjusted 

to fit a variety of empirical measurements. 

 Nakagami-m fading distribution  

 

 

 m=1 => Rayligh fading 

 m=infinity => No fading 

                                      => Rician (approximately) 
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 Level crossing rate and average fade 

duration 

 

 

 

 

 

 HW 

 Fading in time are sometimes probabilistically 

modeled for predicting it. 
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 Finite-State Markov channels (FSMC) 

 Time-varying SNR 

 

 Fading range discretized into regions 

 

 FSMC assumes that     stays in the same region 
for a duration of      and then transitions to another 

 

 

 

 

 

 First order models are deficient 

 Fade duration statistics can be obtained 
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Wideband Fading Models 

 A large spreading of a pulse 

 Multipaths of a pulse interfere with subsequently 
transmitted pulses (Rayleigh fading demo in matlab) 
 Intersymbol interference (ISI) 

narrowband 

wideband 
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 Recall the equivalent lowpass channel 

impulse response function 

 If deterministic, deterministic scattering func. 

 

 

 

 How does a multipath change in time?  

 Doppler characteristics of the channel 
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 In general,          is random due to random 
amplitudes, phases, and delays. 

 Autocorrelation func. 

 

 

 We assume that the channel model is WSS. 

 

 

 In real environments the channel response 
associated with a given multipath of delay       is 
uncorrelated with a multipath at a different delay 
since two multipaths are caused by different 
scatterers. 

 Uncorrelated scattering WSS model (WSSUS) 
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 With WSSUS 

 

 

 

 Scattering function for random channels 

 

 

 Scattering function characterizes avg output 

power associated with the channel as a func. 

of delay       and Doppler        => PSD for  
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 Power delay profile (multipath intensity 

profile) 

 

 

 

 

 Some parameters to quantify delay spread 
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 Time-varying multipath channel in freq. 

domain (channel freq. response at t) 

 

 

 Under WSSUS, autocorrelation of             in 

freq. depends only on the freq. difference. 
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         WSS Gaussian               WSS Gaussian 
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 Example: Two sinusoids transmitted with freq. 

difference of          

 Calculate the cross-correlation of the channel 

response with time difference of        . That 

would be                   . 

 F.T. of power delay profile 

 

 

                                                   is a regular 

autocorrelation func. 

 Correlation between frequencies at a given time 
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f

t






  
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 Channel response approximately 

independent at freq. separations           where  

 

 The freq.          where                  for all              

is called the coherence bandwidth.   

 

 

    typically taken to be the rms delay spread. 

 

f

0)( fRC

cB 0)( fRC cBf 

TffRTR Cc /10)(0)(  for  for  

T
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 Other approximations for coherence 

bandwidth exists. 

 The exact form of delay spread is not that 

important for understanding the general 

impact of delay spread on multipath 

channels, as long as the characterization 

roughly measures multipath distribution. 
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 Flat fading: Fading roughly equal across the 
entire band if                (narrowband) 

 Frequency selective fading: Fading widely 
varying across the band if                      (ISI) 

 A signal with symbol duration 

|)(| fRC )(cR {.}F

f
Channel at a particular band 

cBB 

cBB 

sT

cs BBT /1/1  cBB /1/1 
flat frequency selective 
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 Time variations due to motion 

 

 

 Doppler at a certain frequency 

 

 

            is an autocorrelation func. defining how 

channel response decorrelates over time. 

 Doppler power spectrum              : PSD of the 

channel response as a func. of Doppler freq. 
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 Channel coherence time        

 Time-varying channel decorrelates 

approximately          seconds later.   

 Doppler spread 

|)(| tRC  )(CS

t 

cT

cT

dB
cd TB /1

{.}F
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 Slow fading channel 

 Fast fading channel 

 

 

 Flat fading channel 

 Frequency selective channel 

 

 We almost always employ discrete models to 
study time-varying channels. 

cs TT 

cs TT 

cs BT /1

cs BT /1
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Discrete-Time Model 

 Time-varying impulse response model is too 

complicated in its continuous form 

 

 

 We know that not all paths are resolvable. 

 Combine the paths to clusters whose 

responses will not be resolvable 
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 Resolvability 

 Distributions of            may be different  

 Model 
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