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Introduction

Graph theory can be said to have its beginning in

1736 when BLER considered the (general case of

the) Konigsberg bridge problem: Is there a walk- W,C'(/":“:
ing route that crosses each of the seven bridges _

of Konigsberg exactly once? (Solutio Problema- fj\

tis ad geometriam situs pertinenti€ommentarii /<\\\

Academiae Scientiarum Imperialis Petropolitarthe

(1736), pp. 128-140.)
It took 200 years before the first book on graph theory wastewitThis was done by

KONIG in 1936. (“Theorie der endlichen und unendlichen Graph€&elbner, Leipzig, 1936.

Translation in English, 1990.) Since then graph theory f@®&ldped into an extensive and
popular branch of mathematics, which has been applied to paosblems in mathematics,
computer science, and other scientific and not-so-scierditas. For the history of early
graph theory, see

N.L. BiGGs, R.J. LLoYyD AND R.J. WILSON, “Graph Theory 1736 — 1936", Clarendon
Press, 1986.

There seem to be no standard notations or even definitiongrdph theoretical objects.
This is natural, because the names one uses for these ol@fletst the applications. So,
for instance, if we consider a communications network (ayemail) as a graph, then the
computers, which take part in this network, are called nod#ser than vertices or points.
On the other hand, other names are used for molecular stesdtuchemistry, flow charts in
programming, human relations in social sciences, and so on.

These lectures studinite graphsand majority of the topics is included in
J.A. BONDY AND U.S.R. MURTY, “Graph Theory with Applications”, Macmillan, 1978.
R. DIESTEL, “Graph Theory”, Springer-Verlag, 1997.

F. HARARY, “Graph Theory”, Addison-Wesley, 1969.
D.B. WEsT, “Introduction to Graph Theory”, Prentice Hall, 1996.
R.J. WILSON, “Introduction to Graph Theory”, Longman, (3rd ed.) 1985.

In these lectures we studymbinatorial aspectsf graphs. For moralgebraictopics and
methods, see

N. BIGGS, “Algebraic Graph Theory”, Cambridge University Pressid2d.) 1993.
and forcomputational aspectsee

S. BEVEN, “Graph Algorithms”, Computer Science Press, 1979.
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In these lecture notes we mention several open problem$dvatgained respect among
the researchers. Indeed, graph theory has the advantagfectiretains easily formulated open
problems that can be stated early in the theory. Findingutisalto any one of these problems
is on another layer of difficulty.

Sections with a star] in their heading are optional.

Notations and notions

e For afinite setX, | X| denotes its size (cardinality, the number of its elements).
o Let
1,n] ={1,2,...,n},
and in general,
[i,n] ={i,i+1,...,n}
for integersi < n.
e For a real number, thefloor and theceiling of x are the integers

|z] =max{k € Z |k <z} and [z] = min{k € Z | z < k}.
e Afamily { X1, Xo,..., X} of subsetsX; C X of a setX is apartition of X, if

X=[J Xi and X;nX;=0foralldifferenti and; .

e For two setsX andY’,
XxY ={(z,y) [z€X,yeY}

is their Cartesian product.
e For two setsX andY’,
XAY =(X\Y)uU (Y \X)
is theirsymmetric difference HereX \Y ={z |z € X,z ¢ Y'}.
e Two numbersn, k € N (oftenn = |X| andk = |Y| for setsX andY’) have thesame

parity, if both are even, or both are odd, that ispif= k£ (mod 2). Otherwise, they have
opposite parity.

Graph theory has abundant exampledlBfcomplete problems Intuitively, a problem is
in P L if there is an efficient (practical) algorithm to find a satutito it. On the other hand,
a problem is in NP, if it is first efficient to guess a solution and then efficiemtheck that
this solution is correct. It is conjectured (and not knowmattP # NP. This is one of the
great problems in modern mathematics and theoretical ctanguaience. If the guessing in
NP-problems can be replaced by an efficient systematictséara solution, then 2NP. For
any one NP-complete problem, if it is in P, then necessagiNP.

! Solvable — by an algorithm — in polynomially many steps ongize of the problem instances.
2 Solvablenondeterministicallyn polynomially many steps on the size of the problem instanc
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1.1 Graphs and their plane figures

Let V be afinite set, and denote by
E(V) = {{u,0} |u,0 €V, u # v} .

the subsets of of two distinct elements.

DEFINITION. A pair G = (V, E) with E C E(V) is called agraph (on V). The elements
of V' are thevertices and those off the edgesof the graph. The vertex set of a graghis
denoted by; and its edge set b¥. ThereforeG = (Vg, Eg).

In literature, graphs are also callsithple graphsvertices are calledodesor points edges
are calledinesor links. The list of alternatives is long (but still finite).

A pair {u,v} is usually written simply as:v. Notice that theruv = wvu. In order to
simplify notations, we also write € G instead ofv € V.

DEeFINITION. For a graphG, we denote
vg = |Vg| and eg = |Eg| .

The numbew of the vertices is called therder of G, ande( is thesizeof G. For an edge
e = uv € Eg, the vertices, andv are itsends Verticesu andv areadjacentor neighbours
if e =wuv € Eg. Two edges; = uv andey = uw having a common end, assljacent with
each other.

A graphG can be represented as a plane figure by drawing

a line (or a curve) between the pointsandv (representing () (v3) ()
vertices) ife = uv is an edge of7. The figure on the right is '

a drawing of the grapler with Vi = {1, v2, v3,v4, v5, V6 } © @ @)
andEG = {U1U2, V1v3, V2V3, V2V4, U5U6}.

Often we shall omit the identities (hamepof the vertices in our figures, in which case
the vertices are drawn as anonymous circles.

Graphs can be generalized by allowingpswvv andparallel (or multiple) edgeshetween
vertices to obtain anultigraph G = (V, E, ), whereE = {ej,es,...,e,} is a set (of
symbols), andy: E — E(V) U {vv | v € V}is afunction that attaches an unordered pair of
vertices to each € E: i(e) = uv.

Note that we can havg(e;) = 1(ez). This is drawn in the

figure of G by placing two (parallel) edges that connect the ~ ®
common ends. On the right there is (a drawing of) a multi- \
graphG with verticesV' = {a, b, ¢} and edgeg)(e;1) = aa, ‘

P(e2) = ab, P (e3) = be, andip(eq) = be. 0 ©
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Later we concentrate on (simple) graphs.

DEFINITION. We also studydirected graphs or digraphs ?
D = (V,E), where the edges have a direction, that is, the

edges are ordered C V' x V. In this caseuv # vu.

The directed graphs have representations, where the edgdsaan as arrows. A digraph
can contain edgesv andvu of opposite directions

Graphs and digraphs can also be coloured, labelled, andteeig

DEeFINITION. A functiona: Vi — K is avertex colouring of G by a setK of colours. A
functiona: E; — K is anedge colouringof G. Usually, K = [1, k] for somek > 1.

If K C R (often K C N), thena is aweight function or adistance function

Isomorphism of graphs

DEFINITION. Two graphsG and H areisomorphic, denoted byG = H, if there exists a
bijectiona:: V¢ — Vg such that

wv € BEg <= a(u)a(v) € Ey

forall u,v € G.

HenceG and H are isomorphic if the vertices dif are renamings of those @f. Two
isomorphic graphs enjoy the same graph theoretical priepedndthey are often identified
In particular, all isomorphic graphs have the same planadg(excepting the identities of
the vertices). This shows in the figures, where we tend t@oepihe vertices by small circles,
and talk of ‘the graph’ although there are, in fact, infinjtetany of such graphs.

Example 1.1.The following graphs are iso-  (v2) (v3)
morphic. Indeed, the required isomorphism

is given byv; — 1, vo — 3, v3 — 4, m
V4 — 2, V5 — O. @‘@

Isomorphism Problem. Does there exist an efficient algorithm to check whether amy t
given graphs are isomorphic or not?

The following table lists the numbex) of graphs on a given set of vertices, and the
number of nonisomorphic graphs arvertices. It tells that at least for computational purposes
an efficient algorithm for checking whether two graphs apenisrphic or not would be greatly
appreciated.
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n |1]2|3|4] 5| 6 | 7 | 8 \ 9
graphs 1]2]8|64]1024 |32768 | 2097 152 | 268 435456 | 236 > 6 - 1010
nonisomorphicl |2 (4| 11| 34 156 1044 12 346 274668

Other representations

Plane figures catch graphs for our eyes, but if a problem gohgres to bgorogrammedthen
these figures are (to say the least) unsuitable. Matricestefiérs are ideal for computers,
since every respectable programming language has artefstes for these, and computers
are good in crunching numbers.

LetVg = {vy,...,v,} be ordered. Thadjacency matrix

of G is then x n-matrix M with entriesM;; = 1 or M;; =

0 according to whetheo;v; € Eg or not. For instance,
the graphs of Example 1.1 has an adjacency matrix on the
right. Notice that the adjacency matrix is always symmetric
(with respect to its diagonal consisting of zeros).

—_— O = = O
_—— O O =
o= O o
OO == O
[=elel

A graph has usually many different adjacency matrices, onedch ordering of its séf;
of vertices. The following result is obvious from the defimrits.

Theorem 1.1.Two graphsG and H are isomorphic if and only if they have a common ad-
jacency matrix. Moreover, two isomorphic graphs have dydtie same set of adjacency
matrices.

Graphs can also be represented by sets. For thi§ let { X, X»,..., X, } be a fam-
ily of subsets of a sekX, and define théntersection graph G+ as the graph with vertices
X1,..., Xy, and edges\; X for all i andj (i # j) with X; N X; # 0.

Theorem 1.2.Every graph is an intersection graph of some family of suhset
Proof. Let G be a graph, and define, for alle GG, a set
Xy = {{v,u} | vu € Eg}.
ThenX, N X, # 0 if and only if uv € Eg. ]

Let s(G) be the smallest size of a base desuch thatG can be represented as an inter-
section graph of a family of subsets &f, that is,

s(G) = min{|X| | G = G for someX C 2X} .

How small cans(G) be compared to the ordeg; (or the sizez;) of the graph? It was shown
by Kou, STOCKMEYER AND WONG (1976) that it is algorithmically difficult to determine
the number(G) — the problem is NP-complete.
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Example 1.2.As yet another example, let C N be a finite set of natural numbers, and let
G4 = (A, E) be the graph defined dr;, = A such that's € E (= E¢ ,) if and only if

r ands (for r # s) have a common divisar 1. As an exercise, we statall graphs can be
represented in the for& 4 for some setd of natural numbers.

1.2 Subgraphs

Ideally, in a problem the local properties of a graph deteara solution. In such a situation

we deal with (small) parts of the graph (subgraphs), andwdisalcan be found to the problem

by combining the information determined by the parts. Fetance, as we shall see later on,
the existence of an Euler tour is very local, it depends onlyhe number of the neighbours

of the vertices.

Degrees of vertices
DEFINITION. Letv € G be a vertex a grapy'. Theneighbourhoodof v is the set
Ng(v) ={ue G |vu € Eg} .
Thedegreeof v is the number of its neighbours:
da(v) = [NG(v)] -

If di(v) = 0, thenw is said to basolatedin G, and ifd(v) = 1, thenw is aleaf of the graph.
Theminimum degree and themaximum degreeof GG are defined as

d(G) = min{dg(v) |v € G} and A(G)=max{dg(v)|veE G}.

The following lemma, due to E_ER (1736), tells that if several people shake hands, then
the number of hands shaken is even.

Lemma 1.1 (Handshaking lemma)For each graph,
ng(v) :2-8G .
veG

Moreover, the number of vertices of odd degree is even.

Proof. Every edgee € E¢ has two ends. The second claim follows immediately from the
first one. a

Lemma 1.1 holds equally well for multigraphs, whég(v) is defined as the number of
edges that have as an end, and whenloopvv is counted twice.

Note that the degrees of a graphdo not determingZ. Indeed, there are grapli =
(V,Eqg)andH = (V, Ey) on the same set of vertices that a isomorphic, but for which
dg(v) =dg(v) forallv e V.
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DEFINITION. Let G be a graph. A2-switch T :; :;
(u,v;z,y) of G, for uv,zy € Eg anduzx,vy ¢ : :
E¢, replaces the edges andzy by uxz andvy.  ~77 O—@

Before proving Berge’s switching theorem we need the failhgptool.

Lemma 1.2.LetG be a graph of order with a degree sequenek > dy > --- > d,, where
da(v;) = d;. There is a graphG’ which is obtained frond7 by a sequence @ switches such
thatNGv(’Ul) = {’02, . ,Ud1+1}.

Proof. Denoted = A(G) (= d;). Suppose that there exists a vertexvith 2 <7 < d +1
such thatv; ¢ Eq. Sincedg(vi) = d, there exists a;
with j > d + 2 such thawv; € Eq. Hered; > d;, since
j > 4. Sinceviv; € Eg, there exists a; (2 <t < n)
such thawv;v; € E¢, butv;v; ¢ Eq. We can now perform
a 2-switch with respect to the vertices, v;, v;, v;. This
gives a new grapttl, wherev,v; € Ex andviv; ¢ Eg,
and the other neighbours of remain to be its neighbours.
When we repeat this process for all indi¢esith v,v; ¢ E¢ for 2 < i < d+ 1, we obtain
a graphG’ as in the claim. |

Theorem 1.3 BERGE (1973)). Two graphsG and H on a common vertex séf satisfy
da(v) = dg(v) for all v € V if and only if H can be obtained front¥ by a sequence of
2-switches.

Proof. If a graphH is obtained from& by a2-switch, then clearly? has the same degrees
as@.

In the other direction, we use induction on the order Let G and H have the same
degrees, and let = A(G). By Lemma 1.2, there are sequenceg-afvitches that transform
G to G’ and H to H' such thatNg:(vi) = {va,...,v411} = Ngr(v1). Now the graphs
G'—v, and H'—v; have the same degrees. By induction hypothesis,and thus alsdz,
can be transformed t&’ by a sequence df-switches. Finally, we observe th&t’ can be
transformed tdd by the ‘inverse sequence’ @fswitches, and this proves the claim. O

DEFINITION. Letd,ds,...,d, be a descending sequence of nonnegative integers, that is,
di > dy > --- > d,. Such a sequence is said to dr@aphical, if there exists a graptiy =
(V,E) with V' = {vy,v2,...,v,} such thad; = d¢(v;) for all 4.

Using the next result recursively one can decide whetheg@esee of integers is graphical
or not.
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Theorem 1.4 HAVEL (1955),HAKIMI (1962)).A sequencd;,ds, ..., d, (withd; > 1 and
n > 2) is graphical if and only if

dQ - 1, d3 - 1, e ,dd1+1 - 1, dd1+23 dd1+3, e ,dn. (11)
is graphical (when put into nonincreasing order).

Proof. (<) ConsiderG of ordern — 1 with vertices (and degrees)

de(vz) =dg —1,...,dG(vi,+1) = day 41 — 1,

dG(va, +2) = day 12, - - -, dc(vn) = dy,
as in (1.1). Add a new vertex; and the edges,v; for all i € [2,dg, +1]. Then in this new
graphH, dy(v1) = dy, anddy (v;) = d; for all 5.

(=) Assumedg(v;)) = d;. By Lemma 1.2 and Theorem 1.3, we can suppose that
Ng(v1) = {va,...,vq,+1}. But now the degree sequence®fu, is in (1.1). O

Example 1.3.Consider the sequenee= 4,4,4,3,2,1. By Theorem 1.4,
sis graphical < 3,3,2,1,1 is graphical

2,1,1,0 is graphical
0,0, 0 is graphical

The last sequence corresponds to a discrete giaphand
hence also our original sequengés graphical. Indeed, the
graphG on the right has this degree sequence.

Special graphs

DEFINITION. AgraphG = (V, E) istrivial , if it has only one vertex,e., v = 1; otherwise
G is nontrivial .

The graphG = Ky is thecomplete graphon V, if every
two vertices are adjacent = E(V'). All complete graphs
of ordern are isomorphic with each other, and they will be
denoted byk,.

K

The complementof G is the graphG on Vi, whereEz = {e € E(V) | e ¢ E¢}. The
complementss = K of the complete graphs are calldidcrete graphs In a discrete graph
E¢ = (. Clearly, all discrete graphs of orderare isomorphic with each other.

A graphG is said to baegular, if every vertex ofG has the same degree. If this degree is
equal tor, thend is r-regular or regular of degreer.
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Note that a discrete graph is O-regular, and a complete gkgpls (n — 1)-regular. In
particular,e i, = n(n—1)/2, and therefore < n(n—1)/2 for all graphsG that have order
n.

Example 1.4.The graph on the right is theetersen graph
that we will meet several times (drawn differently). It is a
3-regular graph of ordeto0.

Example 1.5.Letk > 1 be an integer, and consider the B&tof all binary strings of lengttk.
For instanceB®> = {000,001,010,100,011,101,110,111}. Let @ be the graph, called the
k-cube, with Vo, = B¥, whereuv € Eq, if and only if the stringsu andw differ in exactly
one place.

The order oQ, isvg, = 2% the number of binary strings of 100,
length k. Also, Q. is k-regular, and so, by the handshaking
lemmaceg, =k - 2k=1 On the right we have th&cube, or
simply the cube.

Example 1.6.Let n > 4 be any even number. We show by induction that there exi8ts a
regular graphZ with v = n. Notice that all3-regular graphs have even order by the hand-
shaking lemma.

If n = 4, then K, is 3-regular. LetG be a 3-regular < 5

graph of order2m — 2, and suppose thatv,uw € FEg. @ é))
Let Vg = Vg U {z,y}, andEg = (Eg \ {uwv,uw}) U \1/
{uz, zv, uy, yw, zy}. ThenH is 3-regular of ordelm.

Subgraphs

DEFINITION. A graphH is asubgraph of a graphG, denoted byH C G, if Vg C Vi and
Ey C Eg. A subgraphH C G spansG (and H is aspanning subgraphof G), if every
vertex ofGisin H, i.e.,Vg = V5.

Also, a subgraplil C G is aninduced subgraph if Ey = Eq N E(Vy). In this case H
isinduced by its setVy of vertices.

In an induced subgrapi C @, the setEy of edges consists of al € E such that
e € E(Vy). To each nonempty subsétC Vi, there corresponds a unique induced subgraph

G[A] = (A, Eg N E(A)) .
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To each subset’ C E of edges there corresponds a unique spanning subgragh of

G[F] = (Va, F) .
subgraph spanning induced

For a sett’ C E¢ of edges, let
G—F = G[Eg \ F]

be the subgraph aff obtained by removing (only) the edgesc F from G. In particular,
G —e is obtained fromG by removinge € Fg.
Similarly, we writeG + F, if eache € F (for F C E(V()) is added td7.

For a subsetd C V; of vertices, we leG—A C G be the subgraph induced B¥; \ A,
that is,
G-A=G[Vg\ 4],

and,e.g, G—uv is obtained fromG by removing the vertex together with the edges that have
v as their end.

Many problems concerning (induced) subgraphs are algoigtily difficult. For instance,
to find a maximal complete subgraph (a subgr#fl) of maximum order) of a graph is un-
likely to be even in NP.

Reconstruction Problem.The famous open problenkelly-Ulam problem or the Recon-
struction Conjecture, states thah graph of order at leas3 is determined up to isomorphism
by its vertex deleted subgraplis—v (v € G): if there exists a bijectiom: Vi — Vi such
thatG—v = H—a(v) for all v, thenG = H.

1.3 Paths and cycles

The most fundamental notions in graph theory are pradgficaiented. Indeed, many graph
theoretical questions ask for optimal solutions to proldesmch as: find a shortest path (in a
complex network) from a given point to another. This kind abfdems can be difficult, or
at least nontrivial, because there are usually choices lbrasich to choose when leaving an
intermediate point.
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Walks

DEFINITION. Lete; = wu;41 € Eg be edges of7 for i € [1,k]. Heree; ande;;q are
compatible in the sense thatis adjacent te;; for all 7 € [1,k — 1]. The sequence

W =eies...ep

is awalk of length & from w; t0 uj. 1.

We write, more informally,

k
W:u1—>uQ—>...—>uk—>uk+1 or W:u1—>uk+1.

Write u = v to say that there is a walk of some length frano v. Here we understand that
W: u = vis always a specific waJf¥V = eje, ... ¢, although we sometimes do not care
to mention the edges it uses. The length of a wall’ is denoted by |.

DEFINITION. LetW = ejes. .. ek (e; = u;u; 1) be a walk.
W isclosed if u1 = ug1.
W is apath, if u; # u; for all 7 # j.
W is acycle if itis closed, and:; # u; fori # j except that; = uj1.
W is atrivial path , if its length is 0. A trivial path has no edges.
ForawalkW: v =u; — ... = ux1 = v, also

Wt V=Ugy] —> ... > U =U
is awalk inG, called theinverse walk of 17/
A vertexwu is anend of a pathP, if P starts or ends im.
Thejoin of two walksW;: u = v andWy: v = w is the walkiW; W5 : v = w. (Here
the endv must be common to the walks.)
PathsP and( aredisjoint, if they have no vertices in common, and theyiagependent
if they can share only their ends.

Clearly, the inverse wall?—! of a pathP is a path (thénverse pathof P). The join of
two paths need not be a path.

A (sub)graph, which is a path (cycle) of length

k — 1 (k, resp.) havingk vertices is denoted

by P, (Cy, resp.). Ifk is even (odd), we say

that the path or cycle isven (odd). Clearly,

all paths of lengthk are isomorphic. The same Ps Cs
holds for cycles of fixed length.

Lemma 1.3.Each walkiW : v -+ v with u # v contains a pathP: v = v, that is, there is
apathP: v = v that is obtained froni/ by removing edges and vertices.
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Proof. Let W: u = u; — ... — w41 = v. Leti < j be indices such that; = u;. If
no suchi andj exist, thenl¥, itself, is a path. Otherwise, iIW = W1 WeoW3: v = u; =
uj — v the portionU; = W W3: u — u; = u; — v is a shorter walk. By repeating this

argument, we obtain a sequeriée Us, ..., U,, of walksu = v with |W| > |U;| > --- >
|U|- When the procedure stops, we have a path as required. €Nb#tin the above it may
very well be thafi#/; or W3 is a trivial walk.) O

DEeFINITION. If there exists a walk (and hence a path) frarto » in G, let
de(u,v) = min{k | u LN v}

be thedistancebetweeru andw. If there are no walks — v, letdg(u, v) = oo by conven-
tion. A graphG is connected if d¢(u,v) < oo forall u, v € G; otherwise, it iglisconnected
The maximal connected subgraphs®fre itsconnected componentsDenote

¢(G) = the number of connected componentg:of

If ¢(G) = 1, then@ is, of course, connected.

The maximality condition means that a subgraphC G is a connected component if and
only if H is connected and there are no edges leavihg.e., for every vertew ¢ H, the
subgraphG[Vy U{v}] is disconnected. Apparently, every connected componemt iisduced
subgraph, and

Ng(v) = {u | da(v,u) < 0o}
istheconnected component 6fthat containg € G. In particular, the connected components
form a partition ofG.

Shortest paths

DEFINITION. Let G be an edge weighted graph, that @ is a graphG together with a
weight functiona: Eq — R on its edges. FoH C G, let
a(H) = )" afe)
eEE‘H

be the (total)weight of H. In particular, if P = ejes...e; is a path, then its weight is
a(P) = Zle a(e;). Theminimum weighted distancebetween two vertices is

d¢i(u,v) = min{a(P) | P: u = v} .

In extremal problems we seek for optimal subgraph§ G satisfying specific conditions.
In practice we encounter situations whéfenight represent

e a distribution or transportation network (say, for mailfyeve the weights on edges are
distancestravelexpensesor rates of flowin the network;

e a system of channels in (tele)communication or computdriteicture, where the weights
present the rate afnreliability or frequency of actiomf the connections;

e a model of chemical bonds, where the weights measure maleattiaction
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In these examples we look for a subgraph with the smalleggiweand which connects
two given vertices, or all vertices (if we want to travel andl On the other hand, if the graph
represents a network of pipelines, the weights are volumesaacities, and then one wants
to find a subgraph with the maximum weight.

We consider the minimum problem. For this, [@tbe a graph with an integer weight
functiona: Eq — N. In this case, callv(uv) thelength of uw.

Theshortest path problent Given a connected graph with a weight functiony: Eg — N,
find d2(u, v) for givenu,v € G.

Assume that? is a connected graph. Dijkstra’s algorithm solves the mablor every pair
u, v, whereu is a fixed starting point and € G. Let us make the convention thatuv) = oo,
if uv ¢ Eg.

Dijkstra’s algorithm :

(i) Setug = u, t(ug) = 0 andt(v) = oo for all v # wy.
(i) Fori € [0,vg — 1): for eachw ¢ {uy,...,u;},

replacet(v) by min{t(v), t(u;) + a(uv)} .

Letw; 41 & {uq,...,u;} beanyvertex with the least valugw;1).
(i) Conclusion:dy(u,v) = t(v).

Example 1.7.Consider the following weighted grapgh. Apply Dijkstra’s algorithm to the
vertexvy.

e uy = vy, t(ug) = 0, others arex.

e t(v1) = min{oo,2} = 2, t(v2) = min{oo,3} = 3,
others arex. Thusu; = v;.

o t(v2) = min{3, t(u1) + a(uiv2)} = min{3,4} = 3,
t(vs) =2+1=3,t(va) =2+3=5,t(vs) =2+2 =
4. Thus choose, = vs.

e t(v3) = min{3,00} = 3, t(v4) = min{5,3+2} =5,
t(vs) = min{4,3 + 1} = 4. Thus setus = vs.

o t(vy) = min{5,3 + 1} = 4, t(vs) = min{4, 00} = 4. Thus chooser, = v,.
e t(vs) = min{4,4 + 1} = 4. The algorithm stops.

We have obtained:
7f(ful) =2, t(“?) =3, t(’l)g) =3, t(U4) =4, t(US) =4.

These are the minimal weights frowg to eachw;.
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The steps of the algorithm can also be rewritten as a table:

ml| 2 - - - -
v 3 33 - -
v3|loo 3 - - -
vyloo 5 5 4 -
vs oo 4 4 4 4

The correctness of Dijkstra’s algorithm can verified be dg¥is.

Letv € V be any vertex, and le®: ug — u — v be a shortest path fromy to v, where
u IS any vertexu # v on such a path, possibly = uq. Then, clearly, the first part of the path,
ug —— u, is a shortest path from, to «, and the latter patt = v is a shortest path from to
v. Therefore, the length of the pathequals the sum of the weights @f — v andu - v.
Dijkstra’s algorithm makes use of this observation itesly;.



2

Connectivity of Graphs

2.1 Bipartite graphs and trees

In problems such as the shortest path problem we look forrmim solutions that satisfy
the given requirements. The solutions in these cases asdlyusubgraphs without cycles.
Such connected graphs will be called trees, and they are eggdn search algorithms for
databases. For concrete applications in this respect, see

T.H. CorRMEN, C.E. LEISERSON ANDR.L. RIVEST, “Introduction to Algorithms”, MIT
Press, 1993.

Certain structures with operations are representablesas.tr /+\
These trees are sometimes calleohstruction treesde- ) y
composition tregsfactorization treesor grammatical trees / \
Grammatical trees occur especially in linguistics, whgre s z 4+

tactic structures of sentences are analyzed. On the rigtd th / \

is a tree of operations for the arithmetic formuldy+2)+y. Yy z

Bipartite graphs

DEFINITION. A graph( is calledbipartite, if Viz has a partition to two subsef§ andY
such that each edgey € E connects a vertex ok and a vertex ot In this case(X,Y)
is abipartition of G, andG is (X, Y)-bipartite .

A bipartite graphG (as in the above) is eomplete (m, k)-

bipartite graph, if | X| = m, |Y| = k, anduv € E for all

u€ Xandv €Y.

All complete (m, k)-bipartite graphs are isomorphic. Let

K, denote such a graph.

A subsetX C Vi is stable if G[X] is a discrete graph. K
2,3

The following result is clear from the definitions.
Theorem 2.1.A graphd is bipartite if and only ifV; has a partition to two stable subsets.

Example 2.1.Thek-cube@; of Example 1.5 is bipartite for akk. Indeed, consideA = {u |
u has an even number dfs} and B = {u | » has an odd number dfs}. Clearly, these sets
partitionB*, and they are stable if);,.
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Theorem 2.2.A graphG is bipartite if and only if it has no odd cycles.

Proof. (=) Let G be (X,Y)-bipartite. For a cycl&: v; — ... — vxy1 = vy Of lengthk,
v €X implieSUg eY,veX,...,v €Y, V2i4+1 € X. Consequentlyk +1=2m+1is
odd, andk = |C| is even.

(<) Suppose that all cycles i@ are even. First, we observe that it suffices to show the
claim for connected graphs. Indeeddifis disconnected, then each cycle(dfs contained in
one of the connected components,, ..., G, of G. If G; is (X;,Y;)-bipartite, then(X; U
XoU---UX,, Y1 UYU---UY,) is a bipartition ofG.

Assume thus that' is connected. Let € G be a chosen vertex, and define
X ={z|dg(v,z) isever}, Y ={y|dg(v,y) isodd} .

Sinced is connectedl; = X U Y. Also, by the definition of distance{ N Y = 0.

Letwu,w € G be both inX or both inY, and letP: v — » and@: v = w be (among
the) shortest paths fromto » andw.

Assume thatr is the last common vertex dP and@Q: P = PP, Q = (Q1Q2, where
Py: ¢ = wand@s: z = w are independent. Sinde and(@ are shortest path®; and@;
are shortest paths = z. ConsequentlyP; | = |Q1].

So | P,| and |@Q2| have the same parity. Therefore
Q2‘1P2: w > u is an even path. It follows that
u and w are not adjacent inG, since otherwise
Q5 ' Py (uw) would be an odd cycle. Therefof X|
andG[Y] are discrete induced subgraphs, a@nds
bipartite as claimed. O

Checking whether a graph is bipartite is easy. In-
deed, this can be done by using two ‘opposite’
colours, sayl and2. Start from any vertex;, and
colour it by 1. Then colour the neighbours of by

2, and proceed by colouring all neighbours of an al-
ready coloured vertex by an opposite colour.

If the whole graph can be coloured, thé&h is
(X,Y)-bipartite, whereX consists of those vertices
with colour 1, andY of those vertices with colour
2; otherwise, at some point one of the vertices gets
both colours, and in this casé,is not bipartite.

Theorem 2.3 ERDOS (1965)). Each graphG has a bipartite subgraplf C G such that
EH > %6(;.

Proof. Let Vs = X UY be a partition such that the number of edges betwéamdY is as
large as possible. Denote

F=Egn{uw |ueX,veY},
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and letH = G[F]. ObviouslyH is a spanning subgraph, and it is bipartite. By the maximum
condition,

d(v) > %dg(v) ,

since, otherwisey is on the wrong side. (That is, if € X, then the pairX’ = X \ {v},
Y' =Y U {v} does better that the pa¥, Y.) Now

1 1 1 1
veEH veG 0

Bridges

DEFINITION. An edgee € Eg is abridge of the graphG,
if G—e has more connected components tldgrthat is, if
c(G—e) > ¢(Q).

In particular, and most importantly, an edgi a connected
G is a bridge if and only it7—e is disconnected. On the right
the two horizontal lines are bridges. The rest are not.

Theorem 2.4.An edgee € E; is a bridge if and only it is not in any cycle of5.

Proof. First of all, note that = wuw is a bridge if and only ifu andv belong to different
connected components Gf—e.

(=) If there is a cycle inG containinge, then there is a cycl€’ = eP: u — v = u,
whereP: v = w is a path inG—e, and sce is not a bridge.

(«=) Assume that = uw is not a bridge. Hence andv are in the same connected com-
ponent ofG—e. If P: v = w is a path inG—e, theneP: v — v - w is a cycle inG that
containse. O

Lemma 2.1.Lete be a bridge in a connected graydh.

(i) Thenc(G—e) = 2.
(i) Let H be a connected component@f-e. If f € Fy is a bridge ofH, thenf is a bridge
of G.

Proof. For (i), lete = uwv. Sincee is a bridge, the ends andv are not connected it¥—e.
Letw € (. SinceG is connected, there exists a pdth w = v in G. This is a path of7—e,
unlessP: w - u — v containse = ww, in which case the patt — w is a path inG—e.
For (i), if f € Ey belongs to a cycl€' of G, thenC' does not contair (sincee is in no
cycle), and therefor€' is inside H, and f is not a bridge offf. O
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Trees

DEFINITION. A graph is calledacyclic, if it has no cycles. An acyclic graph is also called a
forest. A tree is a connected acyclic graph.

By Theorem 2.4 and the definition of a tree, we have
Corollary 2.1. A connected graph is a tree if and only if all its edges are geisl

Example 2.2.The following enumeration result for trees has many diffiéggroofs, the first
of which was given by @YLEY in 1889:There aren™ 2 trees on a vertex séf of n elements.
We omit the proof.

On the other hand, there are only a few trapgo isomorphism

trees) 1 |1 |1]2]|3)|6 /(11|23

n 9110 | 11| 12 | 13 14 15 16
trees| 47 | 106 | 235 | 551 | 1301 | 3159 | 7741 | 19 320

The nonisomorphic trees of ordéesare:

PRt S A & Blaas Gl

Theorem 2.5.The following are equivalent for a gragh.

() T is atree.
(i) Any two vertices are connected by a unique path.
(i) Tis acyclic andeyr = vp — 1.

Proof. Letvy = n. If n = 1, then the claim is trivial. Suppose thus that 2.

()=(ii) Let T be a tree. Assume the claim does not hold, and’l€p: ©« — v be two
different paths between the same verticesidv. Suppose that?| > |Q|. SinceP # Q, there
exists an edge which belongs taP but not to(). Each edge of’ is a bridge, and therefore
u andwv belong to different connected componentdefe. Hencee must also belong t@; a
contradiction.

(iify=-(iii) We prove the claim by induction on. Clearly, the claim holds fon = 2, and
suppose it holds for graphs of order less thahet 7" be any graph of ordet satisfying (ii).
In particular,T" is connected, and it is clearly acyclic.

Let P: v = v be amaximal pathin 7', that is, there are no edgesfor which Pe oreP is
a path. Such paths exist, becauses finite. It follows thatdr(v) = 1, since, by maximality,
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if vw € Ep, thenw belongs toP; otherwiseP(vw) would be a longer path. In this case,
P:u = w — v, wherevw is the unique edge having an endThe subgrapf"—v is
connected, and therefore it satisfies the condition (ii)irBlction hypothesisr_, = n—2,
and s = ep_, +1 =n — 1, and the claim follows.

(iii) =(1) Assume (iii) holds forT". We need to show th&t is connected. Indeed, let the
connected components &fbeT; = (V;, E;), for i € [1,k]. SinceT is acyclic, so are the
connected graphs;, and hence they are trees, for which we have proved Byat= |V;| — 1.
Now, vy = & |Vi|, ander = 3%, |E;|. Therefore,

k

k
n—l=er=> (Vi|-1)=> [Vi|-k=n—k,
i=1

i=1
which gives thak = 1, that is,T' is connected. O

Example 2.3.Consider a cup tournament ofteams. If during a round there akdeams left
in the tournament, then these are divided ift¢ pairs, and from each pair only the winner
continues. Ifk is odd, then one of the teams goes to the next round withouhddw play.
How many plays are needed to determine the winner?

So if there ard 4 teams, after the first rourititeams continue, and after the second round
4 teams continue, theh So13 plays are needed in this example.

The answer to our problem is — 1, since the cup tournament is a tree, where a play
corresponds to an edge of the tree.

Spanning trees

Theorem 2.6.Each connected graph hasspanning treg that is, a spanning graph that is a
tree.

Proof. Let H C G be a minimal connected spanning subgraph, that is, a cathepanning
subgraph of7 such thatH —e is disconnected for ah € Ey. Such a subgraph is obtained
from G by removing nonbridges:

e To start with, letHy = G.

e Fori > 0, let H;,1 = H;—e;, wheree; is a not a bridge of{;. Sincee; is not a bridge,
H; ., is a connected spanning subgraph®fand thus of7.

e H = H,,when only bridges are left.

By Corollary 2.1,H is a tree. O

Corollary 2.2. For each connected grapfi, e > vg — 1. Moreover, a connected graph
isatreeifandonly itg = vg — 1.

Proof. LetT be a spanning tree @f. Theneg > e = v — 1 = v — 1. The second claim
is also clear. 0O
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Corollary 2.3. Each tre€l” with v > 2 has at least two leaves.

Proof. Let/ be the number of leaves @f. By Corollary 2.2 and the handshaking lemma,

2-vp—2=2-ep =) dr(v)= Y  dr(v)+¢

veT dT(’U)>1
>2-(vp—0)+4L=2-vp— 1,

from which it follows that/ > 2, as required. O

Example 2.4.In Shannon’s switching gamea positive playerP and a negative playeN

play on a graplG with two special vertices: sources and asink . P and N alternate turns

so thatP designates an edge by, and N by —. Each edge can be designated at most once.
It is P’s purpose to designate a path™ r (that is, to designate all edges in one such path),
andN tries to block all paths = r (that is, to designate at least one edge in each such path).
We say that a gam@7, s, ) is

e positive, if P has a winning strategy no matter who begins the game,
e negative if N has a winning strategy no matter who begins the game,
e neutral, if the winner depends on who begins the game.

The game on the right is neutral.

LEHMAN proved in 1964 thaBhannon’s switching ganié, s, r) is positive if and only if
there existd? C G such thatH containss andr and H has two spanning trees with no edges
in common.

In the other direction the claim can be proved along the falg lines. Assume that there
exists a subgrapl# containings andr and that has two spanning trees with no edges in
common. TherP plays as follows. IfN marks by— an edge from one of the two trees, then
P marks by+ an edge in the other tree such that this edge reconnectsdakerbiree. In this
way, P always has two spanning trees for the subgréplith only edges marked by in
common.

In converse the claim is considerably more difficult to prove

There remains the problem to characterize those Shanneithing gamegG, s, r) that
are neutral (negative, respectively).

The connector problem

To build a network connecting nodes (towns, computers, chips in a computer) it is desirabl
to decrease the cost of construction of the links to the minimThis is theconnector prob-
lem. In graph theoretical terms we wish to find gptimal spanning subgraphof a weighted



2.1 Bipartite graphs and trees 22

graph. Such an optimal subgraph is clearly a spanning toeeptherwise a deletion of any
nonbridge will reduce the total weight of the subgraph.

Let thenG® be a graphG together with a weight function: E; — RT (positive reals)
on the edges. Kruskal’s algorithm (also known asdteedy algorithm) provides a solution
to the connector problem.

Kruskal's algorithm : For a connected and weighted graph of ordern:

(i) Let ey be an edge of smallest weight, and ggt= {e; }.

(i) Foreachi =2,3,...,n — 1inthis order, choose an edge¢ E;_; of smallest possible
weight such that; does not produce a cycle when added @, ], and lett; = E; 1 U
{ei}.

The final outcome i§" = (Viz, Ej—1).

By the constructionT’ = (Vi, E,—1) is a spanning tree off, because it contains no
cycles, it is connected and has— 1 edges. We now show thdt has the minimum total
weight among the spanning treesf

Suppose€l is any spanning tree a@¥. Let e, be the first edge produced by the algorithm
that is not inT;. If we adde;, to Ty, then a cycleC' containinge, is created. AlsoC must
contain an edge that is not inT. When we replace by e, in T7, we still have a spanning
tree, sayl’». However, by the constructiony(e;) < «(e), and thereforev(T2) < «(T7). Note
thatT, has more edges in common withthanT.

Repeating the above procedure, we can transfBrito 7' by replacing edges, one by one,
such that the total weight does not increase. We deducetigt< «(T}).

The outcome of Kruskal’s algorithm need not be unique. lddéeere may exist several
optimal spanning trees (with the same weight, of coursej fgraph.

Example 2.5.When applied to the weighted
graph on the right, the algorithm produces the
sequencee; = vaV4, €2 = V4U5, €3 = V3Vg,
e4 = vov3 andes = v1vo. The total weight of the
spanning tree is thus 9.

Also, the selectiore; = wvovs, €9 = v4vs, €3 =
V5V, €4 = V3Vg, €5 = V12 gives another optimal
solution (of weight 9). 3

Problem. Consider tree§” with weight functionsa:: E — N. Each treel” of ordern has
exactly (’2‘) paths. (Why is this soTpoes there exist a weighted tr&&" of ordern such that

the (total) weights of its paths ate 2,..., (5)?
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In such a weighted tre&® different paths have differ-
ent weights, and eache [1, (5)] is a weight of one
path. Also,« must be injective.

No solutions are known for any > 7.

TAYLOR (1977) provedif T of order n exists, then necessarity = k2 or n = k> + 2 for
somek > 1.

Example 2.6.A computer network can be presented as a g@ptvhere the vertices are the
node computers, and the edges indicate the direct link$ &@aputen has araddress:(v),
a bit string (of zeros and ones). Thength of an address is the number of its bits. A message
that is sent ta is preceded by the addresév). The Hamming distance h(a(v), a(u)) of
two addresses of the same length is the number of placesewher and a(u) differ. For
example 2(00010,01100) = 3 andh (10000, 00000) = 1.

It would be a good way to address the vertices so that the Hagndistance of two vertices
is the same as their distanceGh In particular, if two vertices were adjacent, their addess
should differ by one symbol. This would make it easier for @ex@omputer to forward a
message.

A graph G is said to beaddressable if it @
has an addressing such thatdg(u,v) = @.@ @
h(a(u),a(v)). ©

We prove thatvery tre€l is addressable. Moreover, the addresses of the verticExah
be chosen to be of length- — 1.

The proof goes by induction. i < 2, then the claim is obvious. In the cagg = 2, the
addresses of the vertices are simply 0 and 1.

Let thenVp = {vy,...,vk11}, and assume thatr(v,) = 1 (a leaf) andviv, € Er.
By the induction hypothesis, we can address the Tfe@; by addresses of length — 1.
We change this addressing: ket be the address af; in T—wvy, and change it t®a;. Set
the address aof; to 1as. It is now easy to see that we have obtained an addressirg &sr
required.

The triangleK; is not addressable. In order to gain more generality, we fpttk address-
ing for general graphs by introducing a special symbialaddition to 0 and 1. Atar address
will be a sequence of these three symbols. The Hamming distaamains as it was, that is,
h(u,v) is the number of places, wheteandv have a different symbol 0 or 1. The special
symbolx does not affeck (u, v). S0,h(10xx01,0%x101) = 1 andh (1 % xx, 00 % *x) = 0.
We still want to havéi(u, v) = dg(u,v).
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We star address this graph as follows:

a(vy) = 0000, a(vy) =10 %0,

a(vg) =1%01, a(vs) = ** 11.
These addresses have length 4. Can you design a
star addressing with addresses of length 3?

WINKLER proved in 1983 a rather unexpected restite minimum star address length of
a graphG is at mostyg — 1.
For the proof of this, seeAN LINT AND WILSON, “A Course in Combinatorics”.

2.2 Connectivity

Spanning trees are often optimal solutions to problemsyevbest is the criterion. We may
also wish to construct graphs that are as simple as posbkilileshere two vertices are always
connected by at least two independent paths. These proldecus especially in different
aspects of fault tolerance and reliability of networks, vehene has to make sure that a break-
down of one connection does not affect the functionalityhefrietwork. Similarly, in a reliable
network we require that a break-down of a node (computenylghmt result in the inactivity

of the whole network.

Separating sets

DEFINITION. A vertexv € G is acut vertex, if
c¢(G—v) > ¢(G). A subsetd C V; is aseparating
set if G—A is disconnected. We also say thhsep-
aratesverticesu andv, if © andwv belong to different
connected components G A.

If G is connected, thenis a cut vertex if and only i&Z—v is disconnected, that i$p} is
a separating set. We remark also that i€ V; separates andv, then every pat: v = v
visits a vertex ofA.

Lemma 2.2.If a connected graplé has no separating sets, then it is a complete graph.

Proof. If vz < 2, then the claim is clear. Fog; > 3, assume thaty is not complete, and let
uwv ¢ Eg. Now Vg \ {u, v} is a separating set. The claim follows from this. 0

DEFINITION. The {ertex) connectivity number x(G) of G is defined as
k(@) = min{k | k = |A|, G—A disconnected or trivia4d C Vg} .

A graphG is k-connected if k(G) > k.
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In other words,

e k(G)=0,if Gis disconnected,
e k(G)=vg —1,if G isacomplete graph, and
e otherwisex(G) equals the minimum size of a separating set/of

Clearly, if G is connected, then it is 1-connected.

DEFINITION. An edge cutF of G consists of edges so th@t—F is disconnected. Let
k'(G) = min{k | k = |F|, G—F disconnectedF’ C Eg} .

For trivial graphs, let’(G) = 0. A graphG is k-edge connectedf «'(G) > k. A minimal
edge cutF’ C E¢ is abond (F' \ {e} is not an edge cut for any€ F).

Example 2.7.Again, if G is dlsconnected then
k'(G) = 0. On the rightx(G) = 2 andx/(G) =
2. Notice that the minimum degreed$G) = 3

Lemma 2.3.Let G be connected. ¥ = uv is a bridge, then eithe& = K> or one ofu or v
is a cut vertex.

Proof. Assume thaty # K, and thus that > 3, sinceG is connected. Le,, = N/, (u)
andG, = N{_,(v) be the connected components@f-e containingu andv. Now, either
vg, > 2 (andu is a cut vertex) org, > 2 (andv is a cut vertex). O

Lemma 2.4.1f F be a bond of a connected gragh thenc(G—F) = 2.

Proof. SinceG—F is disconnected, anfl is minimal, the subgrapy'—(F'\ {e}) is connected
for eache € F'. Hencee is a bridge inG—(F' \ {e}). By Lemma 2.1G—F has exactly two
connected components. 0

Theorem 2.7 WHITNEY (1932)).For any graphG,

K(G) < K (G) < 8(G) .

Proof. AssumeG is nontrivial. Clearly,x'(G) < §(G), since if we remove all edges with an
endv, we disconnect. If ¥'(G) = 0, thenG is disconnected, and in this case alg6/) = 0.
If x'(G) = 1, thenG is connected and contains a bridge. By Lemma 2.3, either K, or G
has a cut vertex. In both of these cases, alg®) = 1.

Assume then that/(G) > 2. Let F' be an edge cut off with |F| = '(G), and let
e =uv € F. ThenF is a bond, and7—F' has two connected components.
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Consider the connected subgraph al o<~ 7l o<
H=G=(F\{e}) = (G-F) +e, Po 5<:' o o
wheree is a bridge. o<___/o

F

Now for eachf € F'\ {e} choose an end different fromandv. (The choices for different
edges need not be different.) Note that sificg e, either end off is different fromu or v.
Let S be the collection of these choices. TH§$ < |F| — 1 = x'(G) — 1, andG—S does not
contain edges fron# \ {e}.

If G—S is disconnected, thefi is a separating set and 8¢G) < |S| < «/(G) — 1 and
we are done. On the other hand@Gf-S is connected, then eithéf—S = K5 (= e), or either
u or v (or both) is a cut vertex off—S (since H—S = G-, and therefor&7—S C H is
an induced subgraph d@f). In both of these cases, there is a vertexs6fS, whose removal
results in a trivial or a disconnected graph. In conclusigity) < |S| + 1 < k'(G), and the
claim follows. O

Menger’s theorem

Theorem 2.8 MENGER (1927)).Letu, v € G be nonadjacent vertices of a connected graph
G. Then the minimum number of vertices separatiramdw is equal to the maximum number
of independent paths fromto v.

Proof. If a subsetS C Vi separates andv, then every pathy = v of G visits S. Hence
|S| is at least the number of independent paths ftota v.

Conversely, we use induction en = v + £¢ to show that ifS = {wq,we, ..., wi} isa
minimum sefthat is, a subset of the smallest size) that separaterv, thenG has at least
(and thus exactlyk independent paths = v.

The case fok = 1 is clear, and this takes care of the small valuesipfequired for the
induction.

(1) Assume first that: and v have a common neighbous € N¢g(u) N Ng(v). Then
necessarilyw € S. In the smaller grapl¥ —w the setS'\ {w} is a minimum set that separates
u andv, and so the induction hypothesis yields that theretarel independent paths = v
in G—w. Together with the path — w — v, there are: independent paths = v in G as
required.

(2) Assume then thaVg(u) N Ng(v) = 0, and denote by, = N._¢(u) andH, =
N¢._¢(v) the connected components @S for u andv.

(2.1) Suppose next th&t ¢ N¢(u) andS & Ng(v).
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Let v be a new vertex, and defir@&, to be the graph on

H,USU{v} having the edges @¥[H, US] together wittvw;

forall i € [1, k]. The graph&,, is connected and it is smaller @\
than@. Indeed, in order folS' to be a minimum separating
set, allw; € S have to be adjacent to some vertexHf. VQZ @—'>@
This shows thatg, < ¢, and, moreover, the assumptio @/

(2.1) rules out the casH, = {v}, and thereforeéH,| > 2
and sovg, < v in the present case.

If S’ is any subset that separatieandv in G,,, thenS’ will separates from all w; € S\ S’
in G. This means tha$’ separates andv in G. Sincek is the size of a minimum separating
set,|S’| > k. We noted that7,, is smaller tharz, and thus by the induction hypothesis, there
arek independent paths = v in G,. This is possible only if there exiét pathsu — w;,
one for each € [1, k], that have only the endin common.

By the present assumption, algas nonadjacent to some vertex 8f A symmetric argu-
ment applies to the grapf, (with a new vertexz) , which is defined similarly t@7,,. This
yields that there arg pathsw; = v that have only the endin common. When we combine
these with the above patlhs— w;, we obtaink independent paths - w; = v in G.

(2.2) There remains the case, where dtirseparating set§ of i elements, eithet C
Ng(u) or S C Ng(v). (Note that then, by (2)$ N Ng(v) =0 or SN Ng(u) = 0.)

Let P = ef() be a shortest path — v in G, wheree = uz, f = zy, andQ: y - v.
Notice that, by the assumption (27| > 3, and soy # v. In the smaller graplé’— f, let S’
be a minimum set that separateandov.

If |S’| > k, then, by the induction hypothesis, there &rimdependent pathg = v in
G—f. But these are paths 6f, and the claim is clear in this case.

If, on the other hand,S’| < k, thenu andw are still connected itz —S’. Indeed, every
pathu = v in G—S’ necessarily travels along the edfje- zy, and saz,y ¢ S'.

Let
S, =S8"u{zr} and S, =S"U{y}.

These sets separateandv in G (by the above fact), and they have sizeBy our current
assumption, the vertices 6§, are adjacent to, since the patlP is shortest and soy ¢ Eq
(meaning that: is not adjacent to all of,). The assumption (2) yields thatis adjacent to
all of S,, sinceuzr € Eq. But now bothu andv are adjacent to the vertices 6f, which
contradicts the assumption (2). O

Theorem 2.9 MENGER (1927)).A graph is k-connected if and only if every two vertices
are connected by at leaktindependent paths.

Proof. If any two vertices are connected byndependent paths, then it is clear thétr) >
k.

In converse, suppose thatG) = k, but thatG has vertices, and v connected by at
mostk — 1 independent paths. By Theorem 2.8, it must be ¢hatuv € E¢g. Consider the
graphG—e. Now » andv are connected by at mokt— 2 independent paths i@ —e, and by
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Theorem 2.8y, andv can be separated ii—e by a setS with |S| = k — 2. Sincevg > k
(because:(G) = k), there exists a € G thatis notinS U {u,v}. The vertexw is separated
in G—e by S from « or from v; otherwise there would be a path-— v in (G—e)—S. Say,
this vertex isu. The setS U {v} hask — 1 elements, and it separaterom w in G, which
contradicts the assumption thatG) = k. This proves the claim. a

We state without a proof the corresponding separation pipf@ edge connectivity.

DEFINITION. Let G be a graph. Auv-disconnecting setis a setF' C FEg such that every
pathu — v contains an edge frorf.

Theorem 2.10.Letu,v € G with u # v in a graphG. Then the maximum number of edge-
disjoint pathsu = v equals the minimum numbérof edges in aiv-disconnecting set.

Corollary 2.4. A graphG is k-edge connected if and only if every two vertices are comaect
by at leastk edge disjoint paths.

Example 2.8.Recall the definition of the cub@;, from Example 1.5. We show that{Qy) =
k.

First of all, x(Qx) < §(Qx) = k. In converse, we show the claim by induction. Extract
from Q. the disjoint subgraphs induced by{0u | « € B*~'} andG; induced by{lu |
u € BF~'}. These are (isomorphic t@);_;, andQy, is obtained from the union af, and
G by adding the*~! edges(0u, 1u) for all u € B¥ 1,

Let S be a vertex cut of);.. Then|S| < k. If both Gyp—S and G;—S were connected,
also@;—S would be connected, since one pdir, 1u) necessarily remains i, —S. So we
can assume thd&t,— S is disconnected. (The case G —S is symmetric.) By the induction
hypothesis,x(Gy) = k — 1, and henceS contains at leask — 1 vertices of Gy (and so
|S| > k —1). If there were no vertices frorf¥; in .S, then, of course(; —S is connected, and
the edgeg0u, 1u) of @, would guarantee thap,—S is connected; a contradiction. Hence
S| > k.

Example 2.9.We haver'(Q) = k for the k-cube. Indeed, by Whitney’s theorem(G) <
k' (G) < 6(@). Sincer(Qy) = k = §(Qy), alsox’(Q) = k.

Algorithmic Problem. The connectivity problems tend to be algorithmically diific In the
disjoint paths problem we are given a setu;, v;) of pairs of vertices for = 1,2,...,k,
and it is asked whether there exist palhs u; — v; that have no vertices in common. This
problem was shown to be NP-complete byrH in 1975. (However, fofixedk, the problem
has a fast algorithm due todBERTSONand SEYMOUR (1986).)
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Dirac’s fans

DEFINITION. Letv € G andS C Vi such thatv ¢ S in
a graphG. A set of paths fromv to a vertex inS is called a L °
(v, S)-fan, if they have onlyy in common. .

Theorem 2.11 DIRAC (1960)).A graphG is k-connected if
and only ifvg > k and for everyw € G and S C Vg with
|S| > k andwv ¢ S, there exists dv, S)-fan of k paths.

J

Proof. Exercise. 0

Theorem 2.12 DIRAC (1960)).Let G be ak-connected graph fok > 2. Then for anyk
vertices, there exists a cycle @fcontaining them.

Proof. First of all, sincex(G) > 2, G has no cut vertices, and thus no bridges. It follows that
every edge, and thus every vertex@belongs to a cycle.

Let S C Vi be such thatS| = k&, and letC be a cycle ofG that contains the maximum
number of vertices of. Let the vertices o6 N Ve bewy, ..., v, listed in order around’ so
that each paifv;, v;11) (with indices modula) defines a path along' (except in the special
case where = 1). Such a path is referred to asegmenbdf C. If C contains all vertices of
S, then we are done; otherwise, suppeose S is not onC.

It follows from Theorem 2.11 that there is(a, V¢ )-fan of at leastmin{k, |V|} paths.
Therefore there are two pati#s: v = » and@: v = w in such a fan that end in the same
segmentv;, v;11) of C. Then the pathV : « = w (orw - u) alongC contains all vertices
of SN V. But now PWQ~! is a cycle ofG that containgy and allv; for i € [1,r]. This
contradicts the choice @, and proves the claim. O
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Tours and Matchings

3.1 Eulerian graphs

The first proper problem in graph theory was the Konigsbeidglerproblem. In general, this
problem concerns about travels around a graph such thatriesetd avoid using the same
edge twice. In practice these eulerian problems occurpi&iance, in optimizing distribution
networks — such as delivering mail, where in order to save gach street should be travelled
only once. The same problem occurs in mechanical graphnotivhere one avoids lifting
the pen off the paper while drawing the lines.

Euler tours

DEFINITION. Awalk W = ejey...e, is atrail , if e; # e; for all ¢ # 5. An Euler trail of
a graphG is a trail that visits every edge once. A connected gr@pk eulerian, if it has a
closed trail containing every edge Gf Such a trail is called aRuler tour .

Notice that ifW = ejes...e, is an Euler tour (and s& = {ej,es,...,e,}), also
eieit+1-..eper ...ej—1 is an Euler tour for ali € [1,n]. A complete proof of the following
Euler's Theorem was first given by HERHOLZER in 1873.

Theorem 3.1 EULER (1736),HIERHOLZER (1873)).A connected graply is eulerian if and
only if every vertex has an even degree.

Proof. (=) Supposé¥V : u = w is an Euler tour. Let (# «) be a vertex that occurstimes
in W. Every time an edge arrives@tanother edge departs framand therefore (v) = 2k.
Also, d¢(u) is even, sincdV starts and ends at

(«) Assume( is a nontrivial connected graph such that(v) is even for allv € G. Let

W =eles...ep:v9g = v, With e =uv;_qv;

be a longest trail irG. It follows that alle = v,w € Eg are among the edges &, for,
otherwise, W could be prolonged tdVe. In particular,vy = v,, that is,I¥ is a closed trail.
(Indeed, if it werew,, # vy andwv,, occursk times inW, thendg (v, ) = 2(k — 1) + 1 and that
would be odd.)

If W is not an Euler tour, then, singg@ is connected, there exists an edge- v;u € Eg
for somei, which is not inl¥. However, now

€it1-.-€ner...ef

isatrail inG, and it is longer thamV’. This contradiction to the choice & proves the claim.
a



3.1 Eulerian graphs 31

Example 3.1.The k-cube(;. is eulerian for even integefs because);, is k-regular.

Theorem 3.2.A connected graph has an Euler trail if and only if it has at irteg vertices
of odd degree.

Proof. If G has an Euler traik = v, then, as in the proof of Theorem 3.1, each vertex
w ¢ {u,v} has an even degree.

Assume then that’ is connected and has at most two vertices of odd degréghHs no
vertices of odd degree then, by Theorem $lhas an Euler trail. Otherwise, by the hand-
shaking lemma, every graph has an even number of vertichsodd degree, and therefore
G has exactly two such vertices, sayndv. Let H be a graph obtained froi@ by adding a
vertexw, and the edgesw andvw. In H every vertex has an even degree, and hence it has an
Euler tour, says — v — w — u. Here the beginning patt = v is an Euler trail ofG. 0O

The Chinese postman

The following problem is due to GAN MEIGU (1962). Consider a village, where a postman
wishes to plan his route to save the legs, but still everyestias to be walked through. This
problem is akin to Euler’s problem and to the shortest patiblpm.

Let G be a graph with a weight functiom: E; — RT. The Chinese postman problem
is to find a minimum weighted tour i@ (starting from a given vertex, the post office).

If G is eulerian then any Euler tour will do as a solution, because such attauerses
each edge exactly once and this is the best one can do. Inafestice weight of the optimal
tour is the total weight of the grapHi, and there is a good algorithm for finding such a tour:

Fleury’'s algorithm:

e Letyy € G be a chosen vertex, and Bf, be the trivial path ony.

e Repeat the following procedure for= 1,2, ... as long as possible: suppose a ti&jl =
eiez ... e; has been constructed, whete= v;_v;.
Choose an edge 1 (# e; for j € [1,4]) so that

(i) e;+1 has an end;, and

(i) e;+1 is not a bridge of7; = G—{ey, ..., e;}, unless there is no alternative.

Notice that, as is natural, the weightée) play no role in the eulerian case.

Theorem 3.3.If GG is eulerian, then any trail o5 constructed by Fleury’s algorithm is an
Euler tour ofG.

Proof. Exercise. 0
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If G is not eulerian the poor postman has to walk at least one street twice. Hpipéns,
e.g, if one of the streets is a dead end, and in general if theresiseat corner of an odd
number of streets. We can attack this case by reducing itet@tterian case as follows. An
edgee = uv will be duplicated, if it is added toG parallel to an existing edgé = uv with

the same weighiy(e’) = a(e).
AN
. @
2 q

N

)
1/\3 1,/ \3
2 o |2

Above we have duplicated two edges. The rightmost multigiaulerian.

There is a good algorithm bydmoNDs AND JOHNSON (1973) for the construction of
an optimal eulerian supergraph by duplications. Unforteiyathis algorithm is somewhat
complicated, and we shall skip it.

3.2 Hamiltonian graphs

In the connector problem we reduced the cost of a spannimndeaits minimum. There are
different problems, where the cost is measured by an actige of the graph. For instance,
in the travelling salesman problema person is supposed to visit each town in his district,
and this he should do in such a way that saves time and mongiouby, he should plan the
travel so as to visit each town once, and so that the overmgtiitftime is as short as possible.
In terms of graphs, he is looking for a minimum weighted Hawmnilcycle of a graph, the
vertices of which are the towns and the weights on the edgetharflight times. Unlike for
the shortest path and the connector problems no efficieablelalgorithm is known for the
travelling salesman problem. Indeed, it is widely belietieat no practical algorithm exists
for this problem.

Hamilton cycles

DEFINITION. A path P of a graphG is aHamilton path,

if P visits every vertex of7 once. Similarly, a cycle” is

a Hamilton cycle, if it visits each vertex once. A graph is
hamiltonian, if it has a Hamilton cycle.

Note that ifC : uy — us — --- — u, is a Hamilton cycle, then so i, — ... u, —
u; — ...u;—1 for eachi € [1,n], and thus we can choose where to start the cycle.

Example 3.2.1t is obvious that eacli,, is hamiltonian whenever > 3. Also, as is easily
seen,K, ,, is hamiltonian if and only ifn. = m > 2. Indeed, letK,, ,,, have a bipartition
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(X,Y), where| X | = n and|Y'| = m. Now, each cycle ik, ,,, has even length as the graph
is bipartite, and thus the cycle visits the s&isY equally many times, sinc& andY are
stable subsets. But then necessdiy = |Y|.

Unlike for eulerian graphs (Theorem 3.1) no good charazaédn is known for hamilto-
nian graphs. Indeed, the problem to determin@ i hamiltonian is NP-complete. There are,
however, some interesting general conditions.

Lemma 3.1.If G is hamiltonian, then for every nonempty subSet Vi,
o(G=S5) < |S].

Proof. Let) # S C Vg, u € S, and letC: u = u be a Hamilton cycle of7. AssumeG—S
has k connected components;, i € [1, k]. The casé = 1 is trivial, and hence suppose that
k > 1. Letu; be the last vertex of’ that belongs td7;, and letv; be the vertex that follows
u; in C. Nowv; € S for eachi by the choice of;, andv; # v, for all j # ¢, because” is a
cycle andu,;v; € E¢; for all 4. Thus|S| > k as required. O

Example 3.3.Consider the graph on the right. @,
c¢(G—-S) = 3 > 2 = |S] for the setS of black ver-
tices. ThereforeG does not satisfy the condition of
Lemma 3.1, and hence it is not hamiltonian. Interest-
ingly this graph is(X, Y')-bipartite of even order with

| X| = |Y]. Itis also3-regular.

Example 3.4.Consider thePetersen graphon the
right, which appears in many places in graph theory as
a counter example for various conditions. This graph
is not hamiltonian, but it does satisfy the condition
c¢(G—S) < |S| for all S # (. Therefore the conclusion
of Lemma 3.1 imot sufficiento ensure that a graph is
hamiltonian.

The following theorem, due to RE, generalizes an earlier result byHAC (1952).
Theorem 3.4 ORE (1962)).Let G be a graph of order > 3, and letu, v € G be such that
de(u) +da(v) > ve .
Thend is hamiltonian if and only if7 + uv is hamiltonian.

Proof. Denoten = vg. Letu,v € G be such thatlg(u) + dg(v) > n. If uv € Eg, then
there is nothing to prove. Assume thus that¢ E.

(=) This is trivial since ifG has a Hamilton cycl€’, thenC' is also a Hamilton cycle of
G + uv.

(«=) Denotee = uv and suppose thé&t + e has a Hamilton cycl€'. If C' does not use the
edgee, then it is a Hamilton cycle off. Suppose thus thatis on C. We may then assume
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thatC: u — v — u. Nowu = v; = v9 — ... — v, = v is a Hamiltonpath of G.
There exists an with 1 < 7 < n such thatuv; € Eg and v;_1v € Eq. For, otherwise,
da(v) < n — dg(u) would contradict the assumption.

s 7 N N
VY1 —V2— 0 — 0 —Vj—1—V; — O — O —Up

Butnowu = v; = vj—1 — vy — Up—1 —> Vi1 — v; — v1 = w IS @ Hamilton cycle in

G. a
Closure

DEeFINITION. For a graph’, define inductively a sequenc&y, G4, . .., G of graphs such
that

Gy =G and Gi+1 =G; +uv,
whereu andv are any vertices such that ¢ E¢, anddg, (u)+dg, (v) > vg. This procedure
stops when no new edges can be adde@tdor somek, that is, inGy, for all u, v € G either

uwv € Eg, ordg, (u) + dg, (v) < vg. The result of this procedure is tiebosure of G, and it
is denoted byl (G) (= Gi) .

In each step of the construction @fG) there are usually alternatives which edgeis to
be added to the graph, and therefore the above proceduré¢ det@sministic. However, the
final resultcl(G) is independent of the choices.

Lemma 3.2.The closure:l(G) is uniquely defined for all graph& of ordervg > 3.

Proof. Denoten = v. Suppose there are two ways to cl@sesay
H=G+{ey,...,e,} and H’ZG+{f1,...,fs},

where the edges are added in the given ordersHyet G + {ei,...,e;} andH, = G +
{f1,..., fi}. For the initial values, we hav® = H, = H|. Lete;, = uv be the first edge
such thaiy, # f; for alli. Thendy, _, (u) +dm,_, (v) > n, sincee, € Ey, , bute, ¢ Ep,_,.
By the choice oky, we haveH;_; C H', and thus alsdy (u) + dg'(v) > n, which means
thate = uv must be inH’; a contradiction. Thereforél C H'. Symmetrically, we deduce
thatH' C H, and hencdd’ = H. O

Theorem 3.5.LetG be a graph of orderg > 3.

() G is hamiltonian if and only if its closurel (G) is hamiltonian.
(i) If ¢l(G) is a complete graph, thefd is hamiltonian.

Proof. First,G C cl(G) andG spansl(G), and thus ifG is hamiltonian, so igl(G).

In the other direction, lef = Gy, G, ...,G = cl(G) be a construction sequence of the
closure ofG. If cl(G) is hamiltonian, then so a&,_4,...,Gy andG, by Theorem 3.4.

The Claim (ii) follows from (i), since each complete grapthamiltonian. O
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Theorem 3.6.Let G be a graph of order; > 3. Suppose that for all nonadjacent vertices
andv, d(u) + de(v) > ve. ThenG is hamiltonian. In particular, if(G) > 1vg, thenG is
hamiltonian.

Proof. Sincedg(u)+dg(v) > v for all nonadjacent vertices, we hasiéGG) = K, forn =
v, and thug? is hamiltonian. The second claim is immediate, since dgw)+dq(v) > va
for all u,v € G whether adjacent or not. O

Chvatal’s condition

The hamiltonian problem of graphs has attracted much &terat least partly because the
problem has practical significance. (Indeed, the first exammere DNA computing was
applied, was the hamiltonian problem.)

There are some general improvements of the previous resfuttés chapter, and quite
many improvements in various special cases, where the graghsomehow restricted. We
become satisfied by two general results.

Theorem 3.7 CHVATAL (1972)).LetG be a graph withVg = {v1,v9,...,v,}, forn > 3,
ordered sothatl; < ds < --- < d,, ford; = dg(v;). If for everyi < n/2,

dZSZ — dn,iZ’n—Z‘, (31)
then@ is hamiltonian.

Proof. First of all, we may suppose thétis closed,G = cl(G), becaus&r is hamiltonian if
and only ifcl(G) is hamiltonian, and adding edges@odoes not decrease any of its degrees,
that is, if G satisfies (3.1), so do&s + e for everye. We show that, in this casé;, = K,,, and
thus@G is hamiltonian.

Assume on the contrary that # K,,, and letuv ¢ E¢ with d(u) < di(v) be such that
da(u)+dg(v) is as large as possible. Becausés closed, we must havg; (u) +dg(v) < n,
and thereforel;(u) =i < n/2.LetA = {w | vw ¢ Eq,w # v}. By our choicedq(w) <1
for all w € A, and, moreover,

Al = (n—1) —dg(v) > dg(u) =1 .

Consequently, there are at leaserticesw with dg(w) <4, and sad; < dg(u) = 1.
Similarly, for each vertex fromB = {w | uw ¢ Eqg,w # u}, dg(w) < dg(v) <
n —dg(u) =n —1,and

1B = (n—1) —da(u) = (n— 1) =i

Also dg(u) < n — i, and thus there are at least— i verticesw with dg(w) < n — 1.
Consequentlyd,, ; < n — 4. This contradicts the obtained boudd < 7 and the condition
(3.12). O

Note that the condition (3.1) is easily checkable for anygigraph.
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3.3 Matchings

In matching problems we are given an availability relatietveen the elements of a set. The
problem is then to find a pairing of the elements so that eaetmexht is paired (matched)
uniguely with an available companion.

A special case of the matching problem is tharriage problem, which is stated as fol-
lows. Given a sefX of boys and a set” of girls, under what condition can each boy marry a
girl who cares to marry him? This problem has many variati@se of them is thgob as-
signment problem, where we are given applicants andn jobs, and we should assign each
applicant to a job he is qualified. The problem is that an applimay be qualified for several
jobs, and a job may be suited for several applicants.

Maximum matchings

DEFINITION. Foragraphs, asubseM C FE¢ is amatchingof G, if M contains no adjacent
edges. The two ends of an edge M arematched underM . A matchingM is amaximum
matching, if for no matchingM’, |[M| < |M'|.

The two vertical edges on the right constitute a matchifig
that isnot a maximum matchinglthough you cannot add
any edges taV to form a larger matching. This matching

is not maximum because the graph has a matching of three
edges.

DEFINITION. A matchingM saturatesv € G, if v is an
end of an edge id/. Also, M saturates A C Vg, if it sat-
urates every € A. If M saturated/;, thenM is aperfect
matching.

It is clear that every perfect matching is maximum.
On the right the horizontal edges form a perfect matching.

DEFINITION. Let M be a matching ofy. An odd pathP =
erey ... et IS M-augmented if
e P alternates betweeR \ M and M
(that is,e9;11 € Eg_p andeg; € M), and
e the ends of? are not saturated.

Lemma 3.3.1f G is connected withA(G) < 2, thenG is a path or a cycle.

Proof. Exercise. O
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We start with a result that states a necessary and sufficeditoon for a matching to
be maximal. One can use the first part of the proof to consaunaximum matching in an
iterative manner starting from any matchiffy and from anyM -augmented path.

Theorem 3.8 BERGE (1957)). A matchingM of G is a maximum matching if and only if
there are noM -augmented paths i@’

Proof. (=) Let a matchingM have anM-augmented patl® = ejey...eg11 IN G. Here
€9,€e4,... o1 € M,e1,€e3,...,e9p11 ¢ M. DefineN C Eq by

N = (M\{es|i€[LE]}) U {enis1]i€[0,k]}.

Now, N is a matching of7, and|N| = |M| + 1. ThereforeM is not a maximum matching.
(<) AssumeN is a maximum matching, bu¥ is not. Hencg N| > |M|. Consider the
subgraphd = G[M A N] for the symmetric differencé/ A N. We havely (v) < 2 for each

v € H, because is an end of at most one edge/Mi and N. By Lemma 3.3, each connected
componentd of H is either a path or a cycle.

Since nav € A can be an end of two edges frakhor from M, each connected component
(path or a cycle) alternates betweeN andM . Now, since|N| > |M]|, there is a connected
componentd of H, which has more edges froi than fromA/. This A cannot be a cycle,
because an alternating cycle is even, and it thus contaimsllggnany edges fromV and
M. HenceA: u = v is a path, which starts and ends with an edge flénBecaused is a
connected component &f, the ends, andv are not saturated by/, and, consequently is
an M-augmented path. This proves the theorem. O

Example 3.5.Consider the:-cubeQ,, for k > 1. Each maximum matching @, has2*~!
edges. Indeed, the matchidg = {(Ou, 1u) | u € B*~'}, has2*~! edges, and it is clearly
perfect.

Hall's theorem

For a subset C Vi; of a graphGG, denote
Ng(S) ={v | uv € E¢ forsomeu € S} .

If G is (X,Y)-bipartite, andS C X, thenNg(S) C Y.

The following result, known as the

Theorem 3.9 HALL (1935)).LetG be a(X, Y)-bipartite graph. Thertz contains a matching
M saturating X if and only if

|S| < |Ng(S)| forall SCX. (3.2)



3.3 Matchings 38

Proof. (=) Let M be a matching that saturatés If |.S| > |N¢(S)| for someS C X, then
not allz € S can be matched with differegte Ng(S).

(<) Let G satisfy Hall's condition (3.2). We prove the claim by indocton|X|.

If |X| = 1, then the claim is clear. Letthé | > 2, and assume (3.2) implies the existence
of a matching that saturates every proper subséf.of

If ING(S)| > |S| + 1 for every nonemptys C X with S # X, then choose an edge €
E¢ with v € X, and consider the induced subgraih= G—{u,v}. ForallS C X \ {u},

INg(S)| > [Na(S)| —1> 5],

and hence, by the induction hypothedif,contains a matching/ saturatingX \ {«}. Now
M U {uv} is a matching saturating’ in G, as was required.

Suppose then that there exists a nonempty sufRsef X with R # X such that
|IN¢(R)| = |R|. The induced subgrapH; = G[R U N¢(R)] satisfies (3.2) (sinc& does),
and hence, by the induction hypothedig, contains a matching/; that saturate® (with the
other ends inVg(R)).

Also, the induced subgrapt, = GV \ 4], for A = RU N (R), satisfies (3.2). Indeed,
if there were a subset C X \ R such thai Ny, (S)| < |S|, then we would have

ING(S U R)| = [N, (S)| + [N (R)| < [S|+ |Na(R)| = [S| + |R| = |SU R

(sinceS N R = (), which contradicts (3.2) fo67. By the induction hypothesigi, has a
matchingM, that saturateX \ R (with the other ends i \ N (R)). Combining the match-
ings for H, and Hs, we get a matching/; U M saturatingX in G. O

Second proof. This proof of the directior{<) uses Menger’s theorem. Léf be the graph
obtained fromG by adding two new vertices, y such thatr is adjacent to each € X andy

is adjacent to each € Y. There exists a matching saturatiigif (and only if) the number of
independent paths = y is equal to| X |. For this, by Menger’s theorem, it suffices to show
that every sef that separates andy in H has at leastX| vertices.

LetS = AU B, whereA C X andB C Y. Now, vertices in@—L_ //@

X\ A are not adjacent to verticesBf\ B, and hence we have | X\4| |Y\B

Ng(X\A) C B,and thus thatX \ A| < |Ng(X\A)| < |B] IESRER

using the condition (3.2).

We conclude thatS| = |A| + |B| > | X|. 0

Corollary 3.1 (FROBENIUS (1917)).1f G is a k-regular bipartite graph witht > 0, thenG
has a perfect matching.

Proof. Let G bek-regular(X,Y )-bipartite graph. By regularity; - | X| = e¢ = k- |Y|, and
hence|X| = |Y|. Let S C X. Denote byE, the set of the edges with an endSh and by
E, the set of the edges with an endWy;(S). Clearly, By C Es. Thereforek - |[Ng(S)| =
|Es| > |Eq| = k-|S|, and sdN¢g(S)| > |S|. By Theorem 3.9¢G has a matching that saturates
X. Since|X| = |Y|, this matching is necessarily perfect. a
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Applications of Hall's theorem

DEFINITION. LetS = {S51,5,,...,S,} be a family of finite nonempty subsets of a set
(S; need not be distinct.) Aransversal (or asystem of distinct representatives of S is a
subsetl’ C S of m distinct elements one from eaéh.

As an example, leS = [1,6], and letS; = Sy = {1,2}, S5 = {2,3} and Sy =
{1,4,5,6}. For8 = {S1,S52,S53,S54}, the setl" = {1,2,3,4} is a transversal. If we add
the setS; = {2, 3} to 8, then it is impossible to find a transversal for this new fgmil

The connection of transversals to the Marriage Theorem fslbsvs. Let S = Y and
X = [1,m]. Form an(X, Y )-bipartite graphGG such that there is an edgg s) if and only if
s € S;. The possible transversdlsof 8 are then obtained from the matchings saturating
X in G by taking the ends ity of the edges of\/.

Corollary 3.2. Let 8 be a family of finite nonempty sets. Thehas a transversal if and only
if the union of any of the subsets); of S contains at leask elements.

Example 3.6.An m xn latin rectangle is anm xn integer matrix)/ with entriesM;; € [1,n]
such that the entries in the same row and in the same colundifi@rent. Moreover, ifn = n,
thenM is alatin square. Note that in an x n latin rectanglelM, we always have that < n.

We show the followingLet M be anm x n latin rectangle (withrn < n). Then M can be
extended to a latin square by the additionnof m new rows.

The claim follows when we show thaf can be extended to dm + 1) x n latin rectangle.
Let A; C [1,n] be the set of those elements that do not occur ir-thecolumn ofM . Clearly,
|A;] = n —m for eachi, and hence _,_; |A;| = |I|(n — m) for all subsetd C [1,n]. Now
|Uier A;| > |I|, since otherwise at least one element from the union woulith lpeore than
n—m of the sets4; with 7 € I. However, each row has all theelements, and therefore eaich
is missing from exactlys — m columns. By Marriage Theorem, the family1, Ao, ..., Ay}
has a transversal, and this transversal can be added as awméw¥/ . This proves the claim.

Tutte’s theorem
The next theorem is a classic characterization of perfettimays.
DEFINITION. A connected component of a graghis said to beodd (even), if it has an odd
(even) number of vertices. Denote hy;q(G) the number of odd connected components in
G.

Denote bym(G) be the number of edges in a maximum matching of a g@ph
Theorem 3.10 (Tutte-Berge Formula) Each maximum matching of a graghhas

VG

(3.3)

elements.
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Note that the condition in (ii) includes the case, whére: (.

Proof. We prove the result for connected graphs. The result théowfslfor disconnected
graphs by adding the formulas for the connected components.
We observe first that holds in (3.3), since, for alt C Vg,
|VG\S| _Codd(G_S) VG+|S| —Codd(G—S)

m(G) < |S| + m(G—S) < |S| + > - ; .

Indeed, each odd component®f .S must have at least one unsaturated vertex.

The proof proceeds by induction og:. If v = 1, then the claim is trivial. Suppose that
vg > 2.

Assume first that there exists a vertexc G such thatv is saturated by all maximum
matchings. Them(G—v) = m(G) — 1. For a subset’ C G—v, denoteS = S" U {v}. By
the induction hypothesis, for afi’ C G—wv,
m(G)—1>

(e = 1) + 18| = coaa(G—(8" U {v}))) = = ((va + IS| — coaa(G—5)))—1.

N | =
N | =

The claim follows from this.

Suppose then that for each vertexthere is a maximum matching that does not saturate
v. We show that each maximum matching leaves exactly onexvensaturated. Suppose to
the contrary, and let/ be a maximum matching having two different unsaturatedogst
andv, and choosé/ so that the distancé; (u, v) is as small as possible. Naw; (u, v) > 2,
since otherwisaw € E¢ could be added td/, contradicting the maximality oM. Let w
be an intermediate vertex on a shortest path v. By assumption, there exists a maximum
matchingN that does not saturate. We can choos&’ such that the intersectiol/ N N is
maximal. Sincelg(u, w) < dg(u,v) anddg(w,v) < dg(u,v), N saturates botl andw.
The (maximum) matchingd andM leave equally many vertices unsaturated, and hence there
exists another vertex # w saturated by but which is unsaturated by. Lete = 2y € Eq
be the edge iV incident withz. If y is also unsaturated by, thenN U {e} is a matching,
contradicting maximality ofV. It also follows thaty # w. Therefore there exists an edge
e/ =yzin N, wherez # z. ButnowN’ = N U {e} \ {€¢’} is a maximum matching that does
not saturatav. However,N N M C N’ N M contradicts the choice a¥. Therefore, every
maximum matching leaves exactly one vertex unsaturaedyi(G) = (vg — 1)/2.

In this case, foiS' = (), the right hand side of (3.3) gets value; — 1)/2, and hence, by
the beginning of the proof, this must be the minimum of thétrigand side. O

For perfect matchings we have the following corollary, sirior a perfect matching we
havem (G) = (1/2)vg.
Theorem 3.11 TUTTE (1947)).Let G be a nontrivial graph. The following are equivalent.

() G has a perfect matching.
(i) For every proper subse$ C Vi, coqq(G—S) < |S].
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Tutte’s theorem does not provide a good algorithm for caoteting a perfect matching,
because the theorem requires ‘too many cases'. Its applisaare mainly in the proofs of
other results that are related to matchings. There is a dgodtam due to EMONDS (1965),
which uses ‘blossom shrinkings’, but this algorithm is sarhat involved.

Example 3.7.The simplest connected graph that has no perfect matchthg fathP,. Here
removing the middle vertex creates two odd components.

The next 3-regular graph (known as tBglvester

graph) does not have a perfect matching, because

removing the black vertex results in a graph with

three odd connected components. This graph is

the smallest regular graph with an odd degree that

has no perfect matching.

Using Theorem 3.11 we can give a short proof affBRSENs result for 3-regular graphs
(1891).

Theorem 3.12 PETERSEN(1891)).If G is a bridgeless3-regular graph, then it has a perfect
matching.

Proof. LetS be a proper subset df;, and letG;, i € [1, ¢], be the odd connected components
of G—S. Denote bym,; the number of edges with one end@h and the other irt. SinceG
is 3-regular,

Y da(w)=3-vg, and Y da(v) =3-|S|.

veG; vES
The first of these implies that
m; = Z dg(v) -2 e
veEG;

is odd. Furthermoremn; # 1, because&? has no bridges, and therefore; > 3. Hence the
number of odd connected components:6f S satisfies

t
1 1

vES

and so, by Theorem 3.1{ has a perfect matching. O

Stable Marriages

DEFINITION. Consider a bipartite grap& with a bipartition (X,Y") of the vertex set. In
addition, each vertex € G supplies an order of preferences of the verticevef{z). We
write v <, v, if z prefersv to u. (Hereu,v € Y, if x € X, andu,v € X,ifz € Y.) A
matchingM of G is said to bestable if for each unmatched pairy ¢ M (with z € X and

y € Y), itis not the case that andy prefer each other better than their matched companions:

zv € M andy <, v, or uy € M andz <, u.
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We omit the proof of the next theorem.

Theorem 3.13.For bipartite graphs@, a stable matching exists for all lists of preferences.

Example 3.8.That was the good news. There is a catch, of
course. A stable matching need not satutdtendY . For
instance, the graph on the right does have a perfect matching
(of 4 edges).

Suppose the preferences are the following:

1:5 2:6<8<7 3:8<5 4:7<5
5:4<1<3 6: 2 7:2< 4 8:3 <2

Then there is no stable matchings of four edges. A stablehmgtof G is the following:
M = {28, 35,47}, which leaved and6 unmatched. (You should check that there is no stable
matching containing the edgés and26.)

Theorem 3.14.LetG = K, , be a complete bipartite graph. Théhhas a perfect and stable
matching for all lists of preferences.

Proof. Let the bipartition bg X,Y"). The algorithm by GLE AND SHAPLEY (1962) works
as follows.

Procedure.
SetMy = 0, andP(z) = 0 forallz € X.
Then iterate the following process until all vertices areisged:
Choose a vertex € X that is unsaturated inf; ;. Lety € Y be the most
preferred vertex fox such thaty ¢ P(z).

(1) Addy to P(z).
(2) If y is not saturated, then s&f; = M;_ U {zy}.
(3)If zy € M;_; andz <, z, then setV; = (M;_1 \ {zy}) U {zy}.

First of all, the procedure terminates, since a vertex X takes part in the iteration at
mostn times (once for each € Y'). The final outcome, say/ = M, is a perfect matching,
since the iteration continues until there are no unsatdregeticesr € X.

Also, the matching/ = M, is stable. Note first that, by (3), ify € M; andzy € M;
for somex # z andi < j, thenz <, z. Assume the thaty € M, buty <, z for some
z € Y. Thenzy is added to the matching at some step,c M;, which means that € P(z)
at this step (otherwise would have ‘proposed?). Hencex took part in the iteration at an
earlier stepMy, k < i (wherez was put to the listP(z), but zz was not added). Thus, for
someu € X, uz € Mj_; andz <, u, and so inM the vertexz is matched to some with
r <, w.

Similarly, if z <, v for somev € X, theny <, z for the vertexz € Y such thatz € M.

|
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Colourings

4.1 Edge colourings

Colourings of edges and vertices of a gradplare useful, when one is interested in classifying
relations between objects.

There are two sides of colourings. In the general case, ehgrawith a colouringa is
given, and we study the properties of this p@it = (G, «). This is the situatione.qg, in
transportation networks with bus and train links, where ¢bkur puss, train of an edge
tells the nature of a link.

In the chromatic theory is first given and then we search for a colouring that thefsedis
required properties. One of the important properties adwahgs is ‘properness’. In a proper
colouring adjacent edges or vertices are coloured diffgren

Edge chromatic number

DEFINITION. A k-edge colouringa: Eg — [1, k] of a graphG is an assignment df colours
to its edges. We writ&'* to indicate thati has the edge colouring.

Avertexv € G and a coloui € [1, k] areincident with each other, ifx(vu) = i for some
vu € Eg. If v € G is not incident with a colout, thens is available for v.

The colouringx is proper, if no two adjacent edges obtain the same colage; ) # a(es)
for adjacent; ande,.

Theedge chromatic numbery’(G) of G is defined as

X' (G) = min{k | there exists a propéredge colouring of7} .

A k-edge colouringy can be thought of as a partitioj¥y, Es, ..., Ex} of Eg, where
E; = {e | a(e) = i}. Note that it is possible thdf; = () for somei. We adopt a simplified
notation

Ga[il,’ig, e ,’it] = G[Ezl UE;, U---U Eit]

for the subgraph ofr consisting of those edges that have a colguis, ..., ori;. That is, the
edges having other colours are removed.

Lemma 4.1.Each colour setF; in a proper k-edge colouring is a matching. Moreover, for
each graph, A(G) < x'(G) < eq.

Proof. This is clear. O
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Example 4.1.The three numbers in Lemma 4.1 can be equal. This happens)stance,
whenG = K, is a star. But often the inequalities are strict.

A star, and a graph with/(G) = 4.

Optimal colourings
We show that for bipartite graphs the lower bound is alwaysrag: x'(G) = A(G).

Lemma 4.2.LetG be a connected graph that is not an odd cycle. Then theresexi8tedge
colouring (that need not be proper), in which both colours gcident with each vertexwith
dg(v) > 2.

Proof. Assume thaty is nontrivial; otherwise, the claim is trivial.

(1) Suppose first tha is eulerian. IfG is an even cycle, then a 2-edge colouring exists
as required. Otherwise, since nd(v) is even for ally, G has a vertex; with dg(v1) > 4.
Letejesy ... e, be an Euler tour of7, wheree; = v;v;41 (andvy 1 = v1). Define

1, if7isodd,
ale;) = o
2, if iiseven.

Hence the ends of the edggdor i € [2,¢— 1] are incident with both colours. All vertices are
among these ends. The conditidn(v;) > 4 guarantees this far;. Hence the claim holds in
the eulerian case.

(2) Suppose then thét is not eulerian. We define a new gra@y by adding a vertexi
to G and connecting, to eachw € G of odd degree.

In G, every vertex has even degree includimg (by
the handshaking lemma), and henGg is eulerian. Let
eper - - . e¢ be an eulerian tour offy, wheree; = v;v;11.
By the previous case, there is a required colourngf G
as above. Nowg restricted toFE¢ is a colouring ofG as
required by the claim, since each vertgxwith odd degree
da(v;) > 3is entered and departed at least once in the tour
by an edge of the original grafgh: e; i e;.

DEFINITION. For ak-edge colouringy of G, let
co(v) = |{i | visincident withi € [1,k]}| .

A k-edge colourings is animprovement of «, if
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205(0) > an(v) )

veG vEG

Also, « is optimal, if it cannot be improved.

Notice that we always have,(v) < dg(v), and if a is proper, there, (v) = dg(v), and
in this casen is optimal. Thus an improvement of a colouring is a changeatd& a proper
colouring. Note also that a grapgh always has an optimal-edge colouring, but it need not
have any propek-edge colourings.

The next lemma is obvious.

Lemma 4.3.An edge colouringy of G is proper if and only ifc, (v) = dg(v) for all vertices
v € G.

Lemma 4.4.Let « be an optimalk-edge colouring of7, and letv € G. Suppose that the
colouri is available forv, and the colouy is incident withv at least twice. Then the connected
componentd of G*[i, j] that containsy, is an odd cycle.

Proof. Suppose the connected componéhis not an odd cycle. By Lemma 4.2 has a
2-edge colouringy: Ex — {i,7}, in which both:; and; are incident with each vertexwith
dy(z) > 2. (We have renamed the coloursand2 to ; andj.) We obtain a recolouring of
G as follows:
Ble) = {7(6), ?f e€ Eny,
ale), fed En.

Sincedy (v) > 2 (by the assumption on the coloyg) and in 8 both colours: and j are
now incident withv, cg(v) = cqo(v) + 1. Furthermore, by the construction 6f we have
cg(u) > cq(u) for all u # v. Therefore) |, . cs(u) > 3, cq calu), Which contradicts the
optimality of o. HenceH is an odd cycle. O

Theorem 4.1 KONIG (1916)).1f G is bipartite, theny'(G) = A(G).

Proof. Let o be an optimalA-edge colouring of a bipartité&’, whereA = A(G). If there
were av € G with ¢, (v) < dg(v), then by Lemma 4.4 would contain an odd cycle. But a
bipartite graph does not contain such cycles. Thereforalfwerticesv, c,(v) = dg(v). By
Lemma 4.3 is a proper colouring, and = x/(G) as required. O

Vizing’s theorem

In general we can havg'(G) > A(G) as one of our examples did show. The following
important theorem, due tol¥?ING, shows that the edge chromatic number of a gi@phisses
A(G) by at most one colour.

Theorem 4.2 {/1zING (1964)).For any graphG, A(G) < X'(G) < A(G) + 1.

Proof. Let A = A(G). We need only to show that (G) < A + 1. Suppose on the contrary
thatx'(G) > A+ 1, and lete be an optimal A + 1)-edge colouring of7.
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We have (trivially)dg(u) < A+1 < x/(G) forallu € G, and so
Claim 1. For eachu € G, there exists an available coloéfu) for w.

Moreover, by the counter hypothesisjs not a proper colouring, and hence there exists a
v € G with ¢, (v) < dg(v), and hence a coloui that is incident withw at least twice, say

a(vuy) =i = a(vz) . 4.1)

Claim 2. There is a sequence of vertices uo, ... such that

Oz(UUj) = ij and ij+1 = b(u]) .

Indeed, letu; be as in (4.1). Assume we have already found the vertiges. ., u;, with
4 > 1, such that the claim holds for these. Suppose, contrarydcockhim, thatv is not
incident withb(u;) = ij41.

We can recolour the edges:, by iy, for £ € [1, ], and Ur

obtain in this way an improvement of Herev gains a new
colouri; ;. Also, eachu, gains a new colouiy,; (and may
loose the colout,). Therefore, for each, either its num-

ber of colours remains the same or it increases by one. ThIS
contradicts the optimality af, and proves Claim 2.

Now, lett be the smallest index such that for some< ¢,
it+1 = ir. Such an index exists, becausé; (v) is finite.

Let 8 be a recolouring of7 such that forl < j < r —1,
B(vu;) = ij41, and for all other edges S(e) = a(e).

ip = it+.1.
Claim 3. 3 is an optimal(A + 1)-edge colouring of7.
Indeed,cg(v) = cqo(v) andcg(u) > cq(u) for all u, since
eachu; (1 < j <r — 1) gains a new colouj;; although it
may loose one of its old colours.

Let then the colouringy be obtained fronB by recolouring
the edgesu; by i;q for r < j <t. Now,vu, is recoloured
by i, = i441.

Claim 4. v is an optimal(A + 1)-edge colouring of.

Indeed, the faci, = i,41 ensures that, is a new colour
incident withu,, and thus that, (u;) > cg(u). For all other
vertices,c, (u) > cg(u) follows as forg.
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By Claim 1, there is a coloup = b(v) that is available for. By Lemma 4.4, the connected
componentsT; of G#ig,i,] and Hy of G"[iy,i,] containing the vertex are cycles, that is,
H, isacycle(vu,_1)P; (u,v) andHs is a cycle(vu, 1) P (ugv), where bothP; : u, 1 = u,
andP,: u,._1 - u; are paths. However, the edgesifand P, have the same colours with
respect tg3 and~ (eitheriqy ori,.). This is not possible, sincB, ends inu, while P, ends in
a different vertexu;. This contradiction proves the theorem. O

Example 4.2.We show thaty’(G) = 4 for the Petersen graph. Indeed, by Vizing’ theorem,
X' (G) = 3 or 4. Suppose} colours suffice. LeC': v; — ... — v5 — vy be the outer cycle
andC’: u; — ... — us — uy the inner cycle of7 such that;u; € E for all .

Observe that every vertex is adjacent to all colourx 3. Now C' uses one colour (sal)
once and the other two twice. This can be done uniquely (ugtmptations):

1 2 3 2 3
V1 — V9 — V3 — V4 — Uy — V1.

2 3 1 1 1 .
Hencev; = w1, v = uo, v3 — U3, V4 — U4, V5 — us. HOwever, this means thatcannot
be a colour of any edge . SinceC’ needs three colours, the claim follows.

Edge Colouring Problem. Vizing's theorem (nor its present proof) does not offer ahgire
acterization for the graphs, for whic (G) = A(G) + 1. In fact, it is one of the famous
open problems of graph theory to find such a characterizalibe answer is known (only)
for some special classes of graphs. BgIMER (1981), the problem whethe/ (G) is A(G)
or A(G) + 1 is NP-complete.

The proof of Vizing’s theorem can be used to obtain a propruwcimg of G with at most
A(G) + 1 colours, when the word ‘optimal’ is forgotten: colour fireetedges as well as you
can (if nothing better, then arbitrarily in two colours) damse the proof iteratively to improve
the colouring until no improvement is possible — then theopsays that the result is a proper
colouring.

4.2 Ramsey Theory

In general, Ramsey theory studies unavoidable patternsrmbimatorics. We consider an
instance of this theory mainly for edge colourings (thattheet be proper). A typical example
of a Ramsey property is the following: given 6 persons eaéhgbavhom are either friends
or enemies, there are then 3 persons who are mutual friendwutal enemies. In graph
theoretic terms this means that each colouring of the edgég avith 2 colours results in a
monochromatic triangle.

Turan’s theorem for complete graphs

We shall first consider the problem of finding a general comdlitor K, to appear in a graph.
It is clear that every graph contai;, and that every nondiscrete graph contdifys
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DEFINITION. A completep-partite graph G
consists of discrete and disjoint induced sub-
graphsGi, Gs,...,G, C G, whereuv € Eg

if and only if uw andv belong to different parts,
G; ande with 7 # 7.

Note that a completg-partite graph is com-
pletely determined by its discrete paffs, i €

[1,p].

Letp > 3,and letd = H,,, be the completép—1)-partite graph of ordet = ¢(p—1)+r,
wherer € [1,p — 1] and¢ > 0, such that there are partsHy, ..., H, of ordert + 1 and
p—1—rpartsH,y,...,H, ; of ordert (whent > 0). (Herer is the positive residue of
modulo(p — 1), and is thus determined hyandp.)

By its definition, K}, ¢ H. One can compute that the numlser of edges off is equal to

T(n,p) = 25)__21)# - g <1 - pi1> . (4.2)

The next result shows that the above boUHd, p) is optimal.

Theorem 4.3 TURAN (1941)). If a graph G of ordern hase; > T(n,p) edges, therG
contains a complete subgrapty,.

Proof. Letn = (p — 1)t +rfor1 <r < p—1and¢ > 0. We prove the claim by induction
ont. If t =0, thenT'(n, p) = n(n — 1)/2, and there is nothing to prove.

Suppose then that> 1, and letG be a graph of ordet such that is maximum subject
to the conditionk, ¢ G.

Now G contains a complete subgragfA] = K,_i, since adding any one edge @
results in akK,,, andp — 1 vertices of thisk), induce a subgrapk,_; C G.

Eachv ¢ A is adjacent to at mogt — 2 vertices ofA; otherwiseG[A U {v}] = K.
FurthermoreK, ¢ G—A,andvg_4 =n—p+1.Becauses —p+1=(t—1)(p—1) +r,
we can apply the induction hypothesis to obtain. 4 < T'(n —p + 1,p). Now

(p—1pp-2)
2

which proves the claim. O

eg<Tn-p+Lp)+(n-—p+1)(p—2)+ =T(n,p),
When Theorem 4.3 is applied to triangl&g, we have the following interesting case.

Corollary 4.1 ( MANTEL (1907)).If a graph G haseg > iug edges, theré contains a
triangle K.
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Ramsey’s theorem

DEFINITION. Let o be an edge colouring aoff. A subgraphH C G is said to be i)
monochromatic, if all edges ofH have the same colour

The following theorem is one of the jewels of combinatorics.

Theorem 4.4 RAMSEY (1930)).Letp, g > 2 be any integers. Then there exists a (smallest)
integer R(p, q) such that for alln > R(p, q), any 2-edge colouring ak,, — [1, 2] contains a
1-monochromatids<, or a 2-monochromatidx,.

Before proving this, we give an equivalent statement. Rebat a subsefX C Vy is
stable, ifG[X] is a discrete graph.

Theorem 4.5.Letp, ¢ > 2 be any integers. Then there exists a (smallest) int&jgt ¢) such
that for alln > R(p, q), any graphG of ordern contains a complete subgraph of orgeor
a stable set of ordey.

Be patient, this will follow from Theorem 4.6. The numh®(p, ¢) is known as th&kam-
sey numberfor p andgq.

It is clear thatR(p,2) = pandR(2,q) = q.

Theorems 4.4 and 4.5 follow from the next result which shanductively) that an upper
bound exists for the Ramsey numbét®, q).

Theorem 4.6 ERDOS and SzeKERES (1935)). The Ramsey numbek(p, ¢q) exists for all
p,q > 2, and

R(p,q) < R(p,q — 1)+ R(p—1,q) .

Proof. We use induction op + ¢. Itis clear thatR(p, q) exists forp = 2 orq = 2, and it is
thus exists fop + ¢ < 5.

It is now sufficient to show that if7 is a graph of ordeR(p,q — 1) + R(p — 1, ¢q), then it
has a complete subgraph of orgeor a stable subset of order

Letv € G, and denote byd = Vi \ (Ng(v) U {v}) the set of vertices that are not
adjacent tow. SinceG hasR(p,q — 1) + R(p — 1,q) — 1 vertices different fromv, either
[NG(v)] > R(p — 1,q) or |A| > R(p,q — 1) (or both).

Assume first thatNg(v)| > R(p—1, q). By the definition of Ramsey numbers[N¢(v)]
contains a complete subgraphof orderp — 1 or a stable subsét of orderq. In the first case,
B U {v} induces a complete subgrapf), in G, and in the second case the same stable set of
orderq is good forG.

If |A| > R(p,q— 1), thenG[A] contains a complete subgraph of orger a stable subset
S of orderq — 1. In the first case, the same complete subgraph of griegood forG, and
in the second casé, U {v} is a stable subset @F of ¢ vertices. This proves the claim. O

A concrete upper bound is given in the following result.
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Theorem 4.7 (ERDOsand SzekerRES(1935)).For all p, g > 2,

R(p,q) < (p;zz2> :

Proof. Forp = 2 or ¢ = 2, the claim is clear. We use induction gy ¢ for the general
statement. Assume thatq > 3. By Theorem 4.6 and the induction hypothesis,

R(p,q) < R(p,q—1)+ R(p—1,q)
< (Pra=3\_ (pta=3)_ (p+tq—2 ,
“\ p-1 p—2 p—1
which is what we wanted. m|

In the table below we give some known values and estimatethéoRamsey numbers
R(p, q). As can be read from the taBlenot so much is known about these numbers.

Pof3[4] 5 ] 6 [ 7 [ 8 [ 9 [ 10 |
3[6|9| 14 | 18 | 23 | 28 | 36 | 4043
49|18 25 |35-41] 49-61 | 55-84 | 60-115] 80-149
5 | 14| 25| 43-49| 58-87| 80-143) 95-216| 121-316| 141-44

The first unknownR(p, p) (wherep = q) is for p = 5. It has been verified that3 <
R(5,5) <49, but to determine the exact value is an open problem.

Generalizations

Theorem 4.4 can be generalized as follows.

Theorem 4.8.Let¢; > 2 be integers fori € [1,k] with & > 2. Then there exists an inte-
ger R = R(q1,42,--.,q;) such that for alln > R, any k-edge colouring ofK,, has an
i-monochromatids,, for somei.

Proof. The proof is by induction o&. The casé& = 2 is treated in Theorem 4.4. Fér> 2,
we show thatR(qy, . .., qx) < R(qu,---,qk—2,p), wherep = R(qx—1,qk)-

Let n = R(qi,...,qx2,p), and leta: Ex, — [1,k] be an edge colouring. Let
B: Eg, — [1,k — 1] be obtained fronax by identifying the colourg: — 1 andk:

_Jale) ifale)<k-1,
/B(e)_{k—l if a(e)=k—1lork.

By the induction hypothesis[{ff has an-monochromatids,, for somel < i < k—2 (and we

are done, since this subgraph is monochromati&’{f) or K% has a(k — 1)-monochromatic
subgraphH? = K,. In the latter case, by Theorem 4H2 and thusK¢ has a(k — 1)-
monochromatic or &-monochromatic subgraph, and this proves the claim. O

L' 5.P. RRDZISZOWSKI, Small Ramsey numbers, Electronic J. of Combin., 2000 oh\tble
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Since for each grapl , H C K,,, for m = vy, we have

Corollary 4.2. Letk > 2andH,, Ho, . .., H;, be arbitrary graphs. Then there exists an inte-
ger R(Hy, Hs, ..., Hy) such that for all complete graph&,, withn > R(H;, H, ..., Hy)
and for all k-edge colouringsy of K,,, K contains ani-monochromatic subgrap#/; for
some;.

This generalization is trivial from Theorem 4.8. Howevée generalized Ramsey num-
bersR(H,, Ho, ..., Hy) can be much smaller than their counter parts (for completpley)
in Theorem 4.8.

Example 4.3.We leave the following statement as an exercis&’ i$ a tree of ordern, then
R(T,K,)=(m—-1)(n-1)+1,

that is, any graplt? of order at leasR(7, K,,) contains a subgraph isomorphic®g or the
complement of7 contains a complete subgrapf, .

Examples of Ramsey numbers

Some exact values are known in Corollary 4.2, even in moremgércases, for some dear
graphs (see RDzISzoOWSsKI's survey). Below we list some of these results for casesfevhe
the graphs are equal. To this end, let

Ri(G) = R(G,G,...,G) (k times@).

The best known lower bound d®,(G) for connected graphs was obtained byRR AND
ERDOS(1976),

(G connectedl

2(G) > {4UG_1J

Here is a list of some special cases:
Ro(Pa) =n + [gJ —1,
6 if n=3o0rn =4,
Ry (Cp)=<2n—-1 if n > 5 andn odd,
3n/2—1 if n>6andn even

Ro(Ki1,) = 2n—1 ifniseven
S if n is odd

Ry(Ka3) = 10, Ry(K3;3) = 18.

The valuesR; (K> 5,) are known forn < 16, and in generalRy (K> ) < 4n — 2. The value
Ry (K5 17) is either65 or 66.

Let W,, denote thavheelon n vertices. It is a cycle”,, 1, where a vertex with degree
n — 1 is attached. Note tha¥y = K4. ThenRy(W5) = 15 and Ry (Ws) = 17.
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For three colours, much less is known. In fact, the only naafrresult for complete
graphs isiR3(K3) = 17. Also, 128 < R3(K4) < 235, and385 < R3(K3), but no nontrivial
upper bound is known faR;3 (K5). For the squar€’y, we know thatR3(Cy) = 11.

Needless to say that no exact values are knowmRfdii,,) for k& > 4 andn > 3.

It follows from Theorem 4.4 that for any complei€,, thereexistsa graphG (well, any
sufficiently large complete graph) such that &gdge colouring ofy has a monochromatic
(induced) subgrapk,,. Note, however, that in Corollary 4.2 the monochromatiagsaph H;
is not required to be induced.

The following impressive theorem improves the results weslmaentioned in this chapter
and it has a difficult proof.

Theorem 4.9 DEUBER, ERDOS HAJNAL, POsA, and RODL (around 1973)).Let H be any
graph. Then there exists a graghsuch that ang-edge colouring ofs has an monochromatic
induced subgrapltt .

Example 4.4.As an application of Ramsey’s theorem, we shortly descritiauBs theorem.
For this, consider the partitiofil, 4,10, 13}, {2,3,11,12}, {5,6,7,8,9} of the setN;3 =
[1,13]. We observe that in no partition class there are three irdegigch thate + y = =.
However, if you try to partitionN;, into three classes, then you are bound to find a class,
wherezx + y = z has a solution.

SCHUR (1916) solved this problem in a general setting. The follmwgives a short proof
using Ramsey'’s theorem.

For eachn > 1, there exists an intege§(n) such that any partitiors, . . ., S, of Ng(,) has
a classS; containing two integers, y such thatz + y € S;.

Indeed, letS(n) = R(3,3,...,3), where3 occursn times, and let’ be a complete on
Ng(n) - For a partitionSs, . .., S, of Ng(,,), define an edge colouring of K by

alij) =k, if |i—j| € S .
By Theorem 4.8K“ has a monochromatic triangle, that is, there are threecesrti < i <

j <t < 8(n)suchthat —j,j —i,t —i € Sy for somek. But (t — j) + (j —i) =t — 1
proves the claim.

There are quite many interesting corollaries to Ramsegsrém in various parts of math-
ematics including not only graph theory, but aleay, geometry and algebra, see

R.L. GRAHAM, B.L. ROTHSCHILD AND J.L. SPENCER “Ramsey Theory”, Wiley, (2nd ed.)
1990.

4.3 Vertex colourings

The vertices of a grapti¥ can also be classified using colourings. These colourinbthse
certain vertices have a common property (or that they ardagitim some respect), if they
share the same colour. In this chapter, we shall concerdrgpeoper vertex colourings, where
adjacent vertices get different colours.
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The chromatic number

DEFINITION. A k-colouring (or ak-vertex colouring) of a graphG is a mappingy: Vg —
[1,k]. The colouringx is proper, if adjacent vertices obtain a different colour: for all €
E¢, we havea(u) # a(v). A colouri € [1,k] is said to beavailable for a vertexw, if no
neighbour ofv is coloured byi.

A graphd is k-colourable, if there is a propek-colouring forG. The (vertex)chromatic
number x(G) of G is defines as

Xx(G) = min{k | there exists a propér-colouring ofG} .

If x(G) = k, then@ is k-chromatic.

Each proper vertex colouring: Vi — [1, k] provides a partitio V1, V3, ..., Vi } of the
vertex sefl, whereV; = {v | a(v) = i}.

Example 4.5.The graph on the right, which is often called a
wheel (of order7), is 3-chromatic.

By the definitions, a grapt¥ is 2-colourable if and only if it
is bipartite.
Again, the ‘names’ of the colours are immaterial:

Lemma 4.5.Leta be a properk-colouring of G, and letr be any permutation of the colours.
Then the colouringg = w« is a properk-colouring ofG.

Proof. Indeed, ifa: Vo — [1,k] is proper, and ifr: [1,k] — [1,k] is a bijection, then
uwv € Eg implies thata(u) # «(v), and hence also thaiv(u) # wa(v). It follows thatra
is a proper colouring. O

Example 4.6.A graph istriangle-free, if it has no subgraphs isomorphic ;. We show
thatthere are triangle-free graphs with arbitrarily large chratic numbers.

The following construction is due to ETZEL: Let G be any triangle-free graph with
Vo = {v1,v9,...,v,}. Let G' be a new graph obtained by addingt+ 1 new vertices» and
u1,us, . . . , u, SUch thatz! has all the edges @ plus the edges;v andu;z for all z € N (v;)
and for alli € [1,n].

Claim. G is triangle-free and it i¢ + 1-chromatic
Indeed, leUUV = {ug,...,u,}. We show first thaG! is triangle-free. Now{/ is stable, and
so a triangle contains at most (and thus exactly) one vestex U. If {u;,v;,v;} induces a
triangle, so doegv;, v;,v;} by the definition ofG*, but the latter triangle is already @&; a
contradiction.
For the chromatic number we notice first thdtz?)

< (k+1). If «is a propef-colouring
of G, extend it by settingv(u;) = a(v;) anda(v) = k + 1.
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Secondly,x(G*) > k. Assume thatv is a properk-colouring of G¢, say witha(v) = k.
Thena(u;) # k. Recolour eachy; by a(u;). This gives a propefk — 1)-colouring toG; a
contradiction. Thereforg(G?) = k + 1.

Now using inductively the above construction starting fribwm triangle-free grapks, we
obtain larger triangle -free graphs with high chromatic bens.

Critical graphs

DEFINITION. A k-chromatic graph? is said to bek-critical, if x(H) < kforall H C G
with H # G.

In a critical graph an elimination of any edge and of any vewdl reduce the chromatic
number:x(G—e) < x(G) andx(G—v) < x(G) for e € Eg andv € G. EachK,, is n-
critical, since inK,,—(uwv) the vertices, andv can gain the same colour.

Example 4.7.The graphK, = P, is the only 2-critical graph. The 3-critical graphs are ex-
actly the odd cycle€’s, 1 for n > 1, since a 3-chromati¢ is not bipartite, and thus must
have a cycle of odd length.

Theorem 4.10.If G is k-critical for & > 2, then it is connected, ant(G) > k — 1.

Proof. Note that for any grapli with the connected componerts, Gs, ..., Gy, x(G) =
max{x(G;) | 7 € [1,m]} . Connectivity claim follows from this observation.

Let thenG be k-critical, butd(G) = dg(v) < k — 2 for v € G. SinceG is critical, there
is a propern(k — 1)-colouring of G—v. Now v is adjacent to only(G) < k — 1 vertices. But
there arek colours, and hence there is an available cofdor v. If we recolourv by 7, then a
proper(k — 1)-colouring is obtained fof7; a contradiction. O

The case (iii) of the next theorem is due toEXERES ANDWILF (1968).

Theorem 4.11.LetG be any graph withk = x(G).

(i) G has ak-critical subgraphH.
(ii) G has at least: vertices of degree> k& — 1.

Proof. For (i), we observe that k-critical subgraphH C G is obtained by removing vertices
and edges frond: as long as the chromatic number remains

For (ii), let H C G be k-critical. By Theorem 4.10d;(v) > k — 1 for everyv € H.
Of course, alsal;(v) > k — 1 for everyv € H. The claim follows, because, clearly, every
k-critical graphH must have at leagt vertices.

For (iii), let H C G bek-critical. By Theorem 4.10y(G) — 1 < 6(H ), which proves this
claim. O
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Lemma 4.6.Letw be a cut vertex of a connected gragh and letA;, for i € [1,m], be the
connected components Gf-v. DenoteGG; = G[A; U {v}]. Theny(G) = max{x(G;) | i €
[1,m]}. In particular, a critical graph does not have cut vertices.

Proof. Suppose eacti; has a propek-colouringa;. By Lemma 4.5, we may take;(v) = 1
for all 7. Thesek-colourings give &-colouring ofG.

Brooks’ theorem

Foredgecolourings we have Vizing’s theorem, but no such stronglteswe known for vertex
colouring.

Lemma 4.7.For all graphs G, x(G) < A(G) + 1. In fact, there exists a proper colouring
a: Vg = [1,A(G) + 1] such thatn(v) < dg(v) + 1 for all verticesv € G.

Proof. We usegreedy colouringto prove the claim. LeV; = {vy,...,v,} be ordered in
some way, and define: Vi; — N inductively as followsa(v,) = 1, and

a(v;) = min{j | a(vy) # j forall t < i with v;u, € Eg} .
Thena is proper, andx(v;) < dg(v;) + 1 for all i. The claim follows from this. ]

Although, we always havg(G) < A(G) + 1, the chromatic numbey(G) usually takes
much lower values — as seen in the bipartite case. Moredemaximum valued (G) + 1 is
obtained only in two special cases as was shown Rp®&<sin 1941.

The next proof of Brook’s theorem is bydvAsz (1975) as modified by BYANT (1996).

Lemma 4.8.Let G be a2-connected graph. Then the following are equivalent:

(i) G is a complete graph or a cycle.
(i) Forall u,v € G, ifuv ¢ E¢, then{u,v} is a separating set.
(iii) For all u,v € G, if dg(u,v) = 2, then{u,v} is a separating set.

Proof. Itis clear that (i) implies (ii), and that (ii) implies (iiiMe need only to show that (jii)
implies (i). Assume then that (iii) holds.

We shall show that eithe® is a complete graph ai;(v) = 2 for all v € G, from which
the theorem follows.

First of all, dg(v) > 2 for all v, sinceG is 2-connected. Letv be a vertex of maximum
degreedq(w) = A(G).

If the neighbourhoodV¢; (w) induces a complete subgraph, thérnis complete. Indeed,
otherwise, sincé is connected, there exists a verie¢ N (w)U{w} such that: is adjacent
to a vertexv € Ng(w). Butthendg(v) > dg(w), and this contradicts the choice of

Assume then that there are different vertieces € Ng(w) such thatuv ¢ Eg. This
means thatl; (u, v) = 2 (the shortest path is — w — v), and by (iii), {u, v} is a separating
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set of G. Consequently, there is a partitidi; = W U {u,v} U U, wherew € W, and all
paths from a vertex diV’ to a vertex of/ go through eithet; or v.

We claim thatW = {w}, and thus thatA(G) = 2 as required. Suppose on the contrary
that|1¥| > 2. Sincew is not a cut vertex (sinc& has no cut vertices), there exists.ag W
with 2 # w such thattu € E¢ or zv € E¢, sayzu € Eg.

Sincew is not a cut vertex, there existsyac U such

thatuy € Eq. Hencedg(z,y) = 2, and by (iii),{z, y} 7@\

is a separating set. Accordingl; = W1U{z, y}UU;, f

where all paths froni¥; to U; pass throughe or y. @ \@
Assume thatv € W, and hence that alsa, v € W;. ~®

(Sinceuw,vw € Ey,_(;.1)-

There exists a vertex € Uy. Note thatl; C W U U. If z € W (or z € U, respectively),
then all paths fronz to « must pass through (or y, respectively), and: (or y, respectively)
would be a cut vertex off. This contradiction, proves the claim. O

Theorem 4.12 (BROOKS (1941)).Let G be connected. Thep(G) = A(G) + 1 if and only
if either G is an odd cycle or a complete graph.

Proof. («<=) Indeed,x(Caor+1) = 3, A(Cory1) = 2, andx(K,) =n, A(K,) =n — 1.

(=) Assume that = x(G). We may suppose that is k-critical. Indeed, assume the
claim holds fork-critical graphs. Lett = A(G) + 1, and letH C G be ak-critical proper
subgraph. Sincg(H) = k = A(G) + 1 > A(H), we must have((H) = A(H) + 1, and
thus H is a complete graph or an odd cycle. Né@inis connected, and therefore there exists
an edgeuv € Eqg withuw € H andv ¢ H. But thendg(u) > di(u), andA(G) > A(H),
sinceH = K,, or H = C,,.

Let thenG be anyk-critical graph fork > 2. By Lemma 4.6, it i2-connected. I{7 is an
evencycle, thenk = 2 = A(G). Suppose now thak is neither complete nor a cycle (odd or
even). We show that(G) < A(G).

By Lemma 4.8, there exist;,ve € G with dg(v1,v2) = 2, sayviw,wvy € Eg with
vivy ¢ Eg, such thatd = G—{v1, vy} is connected. Ordéry = {vs, v4,...,v,} such that
v, = w, and for allz > 3,

d(vi,w) > dg(viy1,w) .

Therefore for each € [1,n — 1], we find at least ong¢ > i such thaw;v; € Eq (possibly
vj = w). In particular, for alll <7 <n,

ING(vi) N {1, 01} < da(vi) < A(G) . (4.3)
Then coloury, vs, . .., v, in this order as followsx(v) = 1 = a(v2) and

a(v;) = min{r | r # a(v;) for allv; € Ng(v;) with j <4} .
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The colouringe is proper.

By (4.3),a(v;) < A(G) foralli € [1,n — 1]. Also, w = v, has two neighbours;; and
v, Of the same colout, and sincev,, has at mostA(G) neighbours, there is an available
colour forv,, and soa(v,) < A(G). This shows that has a properd(G)-colouring, and,
consequentlyy(G) < A(G). a

Example 4.8.Suppose we have objectsV = {v1,...,v,}, some of which are not compati-
ble (like chemicals that react with each other, or worseplgtheorists who will fight during a
conference). In thetorage problemwe would like to find a partition of the s&f with as few
classes as possible such that no class contains two incimhepelements. In graph theoretical
terminology we consider the gragh = (V, E), wherev;v; € E just in casey; andv; are
incompatible, and we would like to colour the verticesbproperly using as few colours as
possible. This problem requires that we fip7).

Unfortunately, no good algorithms are known for deterninitG), and, indeed, the chro-
matic number problem is NP-complete. Already the problem (&) = 3 is NP-complete.
(However, as we have seen, the problem wheif{éf) = 2 has a fast algorithm.)

The chromatic polynomial

A given graphG has many different proper vertex colourings Vi; — [1, k] for sufficiently
large natural numbers. Indeed, see Lemma 4.5 to be certain on this point.

DEeFINITION. Thechromatic polynomial of G is the functionys: N — N, where

xc(k) = |{a | a: Vg — [1, k] a proper colouring| .

This notion was introduced byIBKHOFF (1912), BRKHOFF AND LEWIS (1946), to at-
tack the famoug-Colour Theorem, but its applications have turned out tolbevéhere.

If & < x(G), then clearlyy (k) = 0, and, indeed,

x(G) = min{k | xa (k) # 0} .

Therefore, if we can find the chromatic polynomial @f then we easily compute the chro-
matic numbery(G) just by evaluatingy (k) for & = 1,2,... until we hit a nonzero value.
Theorem 4.13 will give the tools for constructing;.

Example 4.9.Consider the complete gragty, on {v1, vy, v3,v4}. Letk > x(K,) = 4. The
vertex v; can be first given any of thé colours, after whicht — 1 colours are available
for vy. Thenws hask — 2 and finallyvs hask — 3 available colours. Therefore there are
k(k —1)(k — 2)(k — 3) different ways to properly colouk; with % colours, and so

XK, (k) = k(k = 1)(k = 2)(k = 3) .

On the other hand, in the discrete gragh has no edges, and thus dmygolouring is a proper
colouring. Therefore

X?4 (k) = kl4 *
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Remark. The considered method for checking the number of pos$#silio colour a ‘next
vertex' is exceptional, and for more nonregular graphsaudth be avoided.

DEFINITION. Let G be a graphe = wv € Eg, and letz = z(uv) be a newcontracted
vertex. The graphG x e on

Vase = (Vo \ {u,v}) U{z}
is obtained from& by contracting the edge:, when

Ecwe ={f | f € Eg, fhasnoend.orv} U {wz | wu € Eg orwv € Eg} .

Henced « e is obtained by introducing a new

vertexz, and by replacing all edgesu andwwv

by wz, and the vertices andwv are deleted. e
(Of course, no loops or parallel edges are al-
lowed in the new graplis  e.)

Theorem 4.13.LetG be a graph, and let € E. Then

xG (k) = xg—e(k) — XGxe(k).

Proof. Lete = uv. The propefk-colouringsa: Vi — [1, k] of G—e can be divided into two
disjoint cases, which together show thai_.(k) = xg (k) + xgse(k):

(1) If a(u) # a(v), thena corresponds to a unique propexcolouring of G, namelya.
Hence the number of such colouringsyig (k).

(2) If a(u) = a(v), thena corresponds to a unique propeccolouring of G * e, namely
a, when we sety(xz) = «(u) for the contracted vertex = z(uv). Hence the number of such
colourings isyg«e (k). a

Theorem 4.14.The chromatic polynomial is a polynomial.

Proof. The proof is by induction om¢. Indeed,xz (k) = k" for the discrete graph, and
for two polynomialsP; and P, alsoP; — P is a polynomial. The claim follows from Theo-
rem 4.13, since ther@—e andG * ¢ have less edges thah O

The connected components of a graph can be coloured indepiindnd so

Lemma 4.9.Let the graph@ have the connected compone6ts G, ..., G,,. Then

xa(k) = xe (k)xa, (k) - Xa,, (k) -
Theorem 4.15.LetT be a tree of orden. Thenyr(k) = k(k — 1)" L.

Proof. We use induction om. Forn < 2, the claim is obvious. Suppose that> 3, and
lete = vu € Ep, wherev is a leaf. By Theorem 4.13¢7(k) = xr—e(k) — x7+e(k). Here
T * e is atree of orden — 1, and thus, by the induction hypothesig;.. (k) = k(k — 1) 2.
The graphl’—e consists of the isolated and a tree of order — 1. By Lemma 4.9, and the
induction hypothesisyr (k) = k - k(k — 1)"~2. Thereforexr (k) = k(k — 1)L O
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Example 4.10.Consider the grapty of order4 from the above. Then we have the following

reductions.

G=xe

XIAI\I

G—e G—{e f} (G—e)x

Theorem 4.13 reduces the computationyef to the discrete graphs. However, we know
the chromatic polynomials for trees (and complete graphgneexercise), and so there is no
need to prolong the reductions beyond these. In our exampl@éave obtained

XG—e(k) = xG- {e, f}(k) X(G— e)*f(k)
=k(k—12 —k(k-1)2=k(k-1)>*k-2),

and so

xc (k) = Xa—e(k) — Xawe(k) = k(k = 1)*(k — 2) — k(k — 1)(k — 2)
=k(k—1)(k—2)? = k" — 5k + 8% — 4k .

For instance, foB colours, there aré proper colourings of the given graph.

Chromatic Polynomial Problems.lt is difficult to determiney of a given graph, since the
reduction method provided by Theorem 4.13 is time consunfifgp, there is known no char-
acterization, which would tell from any polynomiI(k) whether it is a chromatic polynomial
of some graph. For instance, the polynomkéal— 3k3 + 3k is not a chromatic polynomial
of any graph, but it seems to satisfy the general propetttied &re known or conjectured) of
these polynomials. BeD (1968) conjectured that the coefficients of a chromatic patyial
should first increase and then decrease in absolute vaked RL968) and TTTE (1974)
proved that for eacl¥ of ordervg = n:

e The degree of (k) equalsn.

e The coefficient ok™ equalsl.

e The coefficient ok™ ! equals—eg.

e The constant term i8.

e The coefficients alternate in sign.

e xa(m) < m(m — 1)" — 1 for all positive integersn, whenG is connected.
e xc(z) # 0for all real number$ < z < 1.
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Graphs on Surfaces

5.1 Planar graphs

The plane representations of graphs are by no means unigie=d, a graplir can be drawn
in arbitrarily many different ways. Also, the propertiesaofraph are not necessarily immedi-
ate from one representation, but may be apparent from andthere are, however, important
families of graphs, theurface graphs that rely on the (topological or geometrical) properties
of the drawings of graphs. We restrict ourselves in this trajo the most natural of these,
the planar graphs. The geometry of the plane will be treattdtively.

A planar graph will be a graph that can be drawn in the planbaoio two edges intersect
with each other. Such graphs are used), in the design of electrical (or similar) circuits,
where one tries to (or has to) avoid crossing the wires or lasams. Planar graphs come into
use also in some parts of mathematics, especially in gragrytand topology.

There are fast algorithms (linear time algorithms) foritestvhether a graph is planar or
not. However, the algorithms are all rather difficult to imyplent. Most of them are based on
an algorithm designed by WsLANDER AND PARTER (1961) see Section 6.5 of

S. XIENA, “Implementing Discrete Mathematics: Combinatorics amagh Theory with
Mathematica”, Addison-Wesley, 1990.

Definition

DEFINITION. A graphG is aplanar graph, ifit has

a plane figureP(G), called theplane embedding

of G, where the lines (or continuous curves) corre-
sponding to the edges do not intersect each other ex-
cept at their ends.

The complete bipartite graphi, 4 is a planar graph.

DEFINITION. An edgee = uv € E¢ is subdivided, when it is replaced by a path— = —
v of length two by introducing aewvertexz. A subdivision H of a graphG is obtained from
G by a sequence of subdivisions.
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vV

The following result is clear.

Lemma 5.1.A graph is planar if and only if its subdivisions are planar.

Geometric properties

Itis clear that the graph theoretical propertieg:adre inherited by all of its plane embeddings.
For instance, the way we draw a gra@hin the plane does not change its maximum degree
or its chromatic number. More importantly, there are — as heall see — some nontrivial
topological (or geometric) properties that are shared byptane embeddings.

We recall first some elements of the plane geometry. A_déte anopen setof the plane
R x R, that is, every point: € F has a disk centred at and contained iF. ThenF is a
region, if any two pointsz,y € F' can be joined by a continuous curve the points of which
are all in F. Theboundary 0(F) of a regionF' consists of those points for which every
neighbourhood contains points frofhand its complement.

Let G be a planar graph, anBl(G) one of its plane embeddings. Regard now each edge
e = uwv € E¢ as aline fromu to v. The set(R x R) \ E¢ is open, and it is divided into a
finite number of disjoint regions, called tf@cesof P(G).

DEFINITION. A face of P(G) is aninterior face, if it is bounded.
The (unique) face that is unbounded is calledaRrterior face of
P(G). The edges that surround a faBeconstitute the boundary
J(F) of F. Theexterior boundary is the boundary of the exte-
rior face. The vertices (edges, resp.) on the exterior baxyndre
called exterior vertices exterior edges resp.). Vertices (edges,
resp.) that are not on the exterior boundary iaterior vertices
interior edges resp.).

EmbeddingsP?(G) satisfy some properties that we accepts at face value.

Lemma 5.2.Let P(G) be a plane embedding of a planar gragh

(i) Two different faces; and F» are disjoint, and their boundaries can intersect only on
edges.
(i) P(G) has a unique exterior face.
(iif) Each edgee belongs to the boundary of at most two faces.
(iv) Each cycle of7 surrounds (that is, its interior contains) at least one i face ofP(G).
(v) A bridge ofG belongs to the boundary of only one face.
(vi) An edge that is not a bridge belongs to the boundary oftx&wo faces.
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If P(G) is aplane embedding of a graphthen so is any drawing’ (G) which is obtained
from P(G) by an injective mapping of the plane that preserves contisgarves. This means,
in particular, thatevery planar graph has a plane embedding inside any geoneitile of
arbitrarily small radius, or inside any geometric triangle

Euler's formula

Lemma 5.3.A plane embedding’(G) of a planar graphG has no interior faces if and only
if G is acyclic, that is, if and only if the connected componehis are trees.

Proof. This is clear from Lemma 5.2. O
The next general form dtuler’s formula was proved by EGENDRE(1794).

Theorem 5.1 (Euler’s formula). Let G be a connected planar graph, and B{G) be any of
its plane embeddings. Then
vg—egte=2,

whereyp is the number of faces @t(G).

Proof. We shall prove the claim by induction on the number of faged a plane embedding
P(G). First, notice thatp > 1, since eaclP(G) has an exterior face.

If ¢ = 1, then, by Lemma 5.3, there are no cyclessinand since7 is connected, it is a
tree. In this case, by Theorem 2.5, we haye= v — 1, and the claim holds.

Suppose then that the claim is true for all plane embeddinits less thany faces for
¢ > 2. Let P(G) be a plane embedding of a connected planar graph suclPtidét hase
faces.

Lete € Eg be an edge that is not a bridge. The subgrépke is planar with a plane
embeddingP(G—e) = P(G)—e obtained by simply erasing the edgeNow P(G—e) has
¢ — 1 faces, since the two faces B G) that are separated leyare merged into one face of
P(G—e). By the induction hypothesi$;_. — eg_e + (¢ — 1) = 2, and hence/gz — (e¢ —
1) 4+ (¢ — 1) = 2, and the claim follows. 0

In particular, we have the following invariant property ddupar graphs.

Corollary 5.1. Let G be a planar graph. Then every plane embeddingzoias the same
number of faces:
Yo =¢ta—va+2

Maximal planar graphs

Lemma 5.4.1f G is a planar graph of orders > 3, theneg < 3vg — 6. Moreover, ifG has
no trianglesCs, theneg < 2vg — 4.
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Proof. If G is disconnected with connected componefisfor i € [1, k], and if the claim
holds for these smaller (necessarily planar) graghdhen it holds forG, since

va <

6G:Z€Gi S?)Zygi—ﬁk:?)l/g—ﬁkg?ﬂ/g—ﬁ.
i=1 i=1
It is thus sufficient to prove the claim for connected planapgs.
Also, the case where; < 2is clear. Suppose thus that > 3.
Each faceF' of an embedding”(G) contains at least three edges on its boundidy).

Hence3yp < 2¢q, since each edge lies on at most two faces. The first clairavislifrom
Euler’s formula.

The second claim is proved similarly except that, in thigecaach facé’ of P(G) contains
at least four edges on its boundary (wl@is connected and; > 4). O

An upper bound foh(G) for planar graphs was achieved b¥gkvooD.
Theorem 5.2 HeEawooD (1890)).1f G is a planar graph, ther (G) < 5.

Proof. If vg < 2, then there is nothing to prove. Suppese> 3. By the handshaking lemma
and the previous lemma,

0(G) - va <> da(v) =2eq < bug —12.
veG

It follows thatd(G) < 5. a
DEFINITION. A planar graphG is maximal, if G + e is nonplanar for every ¢ .

Example 5.1.Clearly, if we remove one edge froids, the result is a maximal planar graph.
However, if an edge is removed frof; 3, the result is not maximal!

Lemma5.5.Let F' be a face of a plane embeddidt| G) that has at least four edges on its
boundary. Then there are two nonadjacent vertices on thadeny of F'.

Proof. Assume that the set of the boundary vertice'ohduces a complete subgragt.

The edges oK are either on the boundary of or they are not inditgsince F' is a face.) Add

a new vertexr inside F', and connect the vertices &f to . The result is a plane embedding
of a graphH with Vi = Vo U{z} (that hag7 as its induced subgraph). The induced subgraph
H[K U{z}] is complete, and sincH is planar, we havéK| < 4 as required. a

By the previous lemma, if a face has a boundary of at leastddges, then an edge can
be added to the graph (inside the face), and the graph rermalms planar. Hence we have
proved

Corollary 5.2. If G is a maximal planar graph witlv; > 3, thenG is triangulated, that is,
every face of a plane embeddif{G) has a boundary of exactly three edges.
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Theorem 5.3.For a maximal planar grapl@ of ordervg > 3, e = 3vg — 6 .

Proof. Each faceF' of an embeddind’(G) is a triangle having three edges on its boundary.
Hence3p = 2¢¢, since there are now no bridges. The claim follows from Esifermula.
a

Kuratowski's theorem

Theorem 5.5 will give a simple criterion for planarity of gtes. This theorem (due toURA-
TOwSsKI in 1930) is one of the jewels of graph theory. In fact, the theowas proven earlier
by PONTRYAGIN (1927-1928), and also independently brikk AND SMITH (1930). For
history of the result, see

J.W. KENNEDY, L.V. QUINTAS, AND M.M. SysLO, The theorem on planar grapltéistoria
Math. 12 (1985), 356 — 368.

Theorem 5.4.K5 and K3 3 are not planar graphs.

Proof. By Lemma 5.4, a planar graph of order 5 has at most 9 edged{phts 5 vertices
and 10 edges. By the second claim of Lemma 5.4, a triangéedi@nar graph of order 6 has
at most 8 edges, but’; 3 has 6 vertices and 9 edges. O

The graphsKs and K3 3 are the smallest nonplanar graphs, and, by Lemma 54, if
contains a subdivision &f’5 or K3 3 as a subgraph, thekis not planar. We prove the converse
of this result in what follows. Therefore

Theorem 5.5 KuRATOWSKI (1930)).A graph is planar if and only if it contains no subdivi-
sion of K5 or K3 3 as a subgraph.

We prove this result along the lines oHOMASSEN (1981) using3-connectivity.

Example 5.2.The cubeQ);, is planar only fork = 1,2, 3. Indeed, the graply), contains a
subdivision ofK3 3, and thus by Theorem 5.5 it is not planar. On the other haruth @awith
k > 4 has@4 as a subgraph, and therefore they are nonplanar. The shbgfé), that is a
subdivision ofK3 3 is given below.

0000 1010 1001

7|

1101 0001
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DEFINITION. A graphG is called aKuratowski graph, if it is a subdivision ofK or K3 3.

Lemma 5.6.Let E C E¢ be the set of the boundary edges of a fatim a plane embedding
of G. Then there exists a plane embeddin@7), where the edges @ are exterior edges.

Proof. This is a geometric proof. Choose a circle that containsyepeint of the plane em-
bedding (including all points of the edges) such that thereesf the circle is inside the given
face. Then use geometric inversion with respect to thidecifichis will map the given face as
the exterior face of the image plane embedding. O

Lemma 5.7.LetG be a nonplanar graph without Kuratowski graphs such thais minimal
in this respect. Thef¥ is 3-connected.

Proof. We show first that7 is 2-connected. On the contrary, assume thi a cut vertex of
G, and letd,,.. ., A; be the connected components(®fv.

SinceG is minimal nonplanar with respect tq;, the sub-
graphsG; = G[A; U {v}] have plane embedding3(G;),
wherew is an exterior vertex. We can glue these plane em-
beddings together atto obtain a plane embedding &f and
this will contradict the choice of7.

Assume then that has a separating s8t= {u,v}. Let G; andG, be any subgraphs of
G such thatEg = Eg, U Eg,, S = Vg, N Vg,, and bothG; and G2 contain a connected
component of7—S. SinceG is 2-connected (by the above), there are paths> v in G; and
G4. Indeed, both: andv are adjacent to a vertex of each connected componeHt-df. Let
H; = G; + uwv. (Maybeuv € Eg.)

If both H, andH,, are planar, then, by Lemma 5.6, they have
plane embeddings, whete is an exterior edge. It is now
easy to gluefl; and H, together on the edgev to obtain a
plane embedding af + uwv, and thus of5.

We conclude thakf; or H; is nonplanar, say/;. Nowe g, < e, and so, by the minimality
of G, H; contains a Kuratowski grapl . However, there is a path = v in Hs, since
G5 C H,. This path can be regarded as a subdivisiomgfand thug7 contains a Kuratowski
graph. This contradiction shows th@tis 3-connected. O

Lemma 5.8.LetG be a3-connected graph of ordel; > 5. Then there exists an edges Eq
such that the contractio¥ e is 3-connected.

Proof. On the contrary suppose that for ang E¢, the graphG x e has a separating st
with |S| = 2. Lete = uv, and letr = z(uwv) be the contracted vertex. Necessatilg S, say
S = {z, z} (for, otherwise,S would separat& already). Thereford” = {u,v, 2z} separates
G. Assume that and S are chosen such th&—T has a connected componettwith the
least possible number of vertices.
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There exists a vertey € A with zy € Eqg. (Otherwise
{u,v} would separateg7.) The graphG x* (zy) is not 3- B
connected by assumption, and hence, as in the above, there
exists a vertexv such that? = {z,y, w} separates&. It can A

be thatw € {u,v}, but by symmetry we can suppose that ® 0)

w % u.

Sinceuv € E¢, G—R has a connected compond®such that., v ¢ B. For each) € B,
there exists a patl?: v = 3’ in G—{z, w}, sinceG is 3-connected, and hence thisgoes
throughy. Thereforey’ is connected tg also inG—T, that is,;y’ € A, and soB C A. The
inclusion is proper, sincg ¢ B. Hence|B| < |A|, and this contradicts the choice 4f O

By the next lemma, a Kuratowski graph cannot be created blyations.

Lemma5.9.Let G be a graph. If for some € Es the contractionG * e has a Kuratowski
subgraph, then so do€&s.

Proof. The proof consists of several cases depending on the Kuskigraph, and how the
subdivision is made. We do not consider the details of thases

Let H be a Kuratowski graph off x e, wherexz = z(uv) is the contracted vertex for
e = uv. If dy(z) = 2, then the claim is obviously true. Suppose then thatx) = 3 or 4. If
there exists at most one edgg € Ey such thatuy € Eq (or vy € Eg), then one easily sees
thatG contains a Kuratowski graph.

There remains only one case, whefeis a subdivision ofK5, and bothu andv have3
neighbours in the subgraph Gf corresponding td7. In this case(F contains a subdivision
of K3’3. O

Lemma 5.10.Every3-connected graplds without Kuratowski subgraphs is planar.

Proof. The proof is by induction owg. The only3-connected graph of orddris the planar
graphK,. Therefore we can assume that > 5.

By Lemma 5.8, there exists an edge- uv € E¢ such thatz e (with a contracted vertex
x) is 3-connected. By Lemma 5.9 x e has no Kuratowski subgraphs, and hetitee has a
plane embeddind’(G « e) by the induction hypothesis. Consider the pa(tZ * e)—z, and
let C' be the boundary of the face &G * e)—x containingz (in P(G xe)). HereC'is a cycle
of G (sinced is 3-connected).

Now sinceG—{u,v} = (G x e)—z, P(G x e)—z is a plane embedding ¢f—{u, v}, and
N¢g(u) C Ve U{v}andNg(v) C Ve U{u}. Assume, by symmetry, thdt; (v) < dg(u). Let
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Ng(v) \ {u} = {vi,v2,...,v;} in order along the cycl€'. Let P; ;: v; = v; be the path
alongC from v; to v;. We obtain a plane embedding Gf-« by drawing (straight) edgesy;
forl <i<k.

(1) If Ng(u) \ {v} € P;;y1 (@ + 1 is taken modulat) for somes, then, clearly,G has a
plane embedding (obtained frof(G)—wu by puttingu inside the trianglév, v;, v; 1) and by
drawing the edges with an endnside this triangle).

(2) Assume there arg,z € Ng(u) \ {v} such thaty €
P;j andz ¢ P;; for somei andj, wherey, z ¢ {v;,v;}.
Now, {u, v;, vi41} U {v, z,y} form a subdivision of; 3.

By (1) and (2), we can assume thét: (u)\{v} C Ng(v).
Therefore N (u)\{v} = Ng(v)\{u} by the assumption
dg(’v) < dg(u) Also, by (1),dg(1)) = dg(u) > 3. But
now u, v, v1, V2, v3 give a subdivision oK5. O

Proof of Theorem 5.5. By Theorem 5.4 and Lemma 5.1, we need to show that each nonpla-
nar graphGG contains a Kuratowski subgraph. On the contrary, supp@déstlis a nonplanar
graph that has a minimal size; such thatz does not contain a Kuratowski subgraph. Then,
by Lemma 5.7( is 3-connected, and by Lemma 5.10, it is planar. This contrixtigiroves

the claim. O

Example 5.3.Any graphG can be drawn in the plane so that three of its edges neveséuter
at the same point. Therossing numberx(G) is the minimum number of intersections of its
edges in such plane drawings @Gf ThereforeG is planar if and only ifx(G) = 0, and, for
instance x(K5) = 1.

We show thatx(Kg) = 3. For this we need to show that Ks) > 3. For the equality, one
is invited to design a drawing with exactbycrossings.

Let X (Kg) be a drawing ofKg usingc crossings so that two edges cross at most once.
Add a new vertex at each crossing. This results in a planghgtaon ¢ + 6 vertices and
2c + 15 edges. Now > 3, sincee; = 2¢ + 15 < 3(c + 6) — 6 = 3vg — 6.

5.2 Colouring planar graphs

The most famous problem in the history of graph theory is tfidhe chromatic number of
planar graphs. The problem was known as4f@olour Conjecture for more than 120 years,
until it was solved by &PEL AND HAKEN in 1976: if G is a planar graph, thep(G) < 4.
The4-Colour Conjecture has had a deep influence on the theoryaphgrduring the last 150
years. The solution of thé-Colour Theorem is difficult, and it requires the assistaota
computer.
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The 5-colour theorem
We prove HEAWOOD's result (1890) that each planar graph is propérlyolourable.
Lemma5.11.If G is a planar graph, therny(G) < 6.

Proof. The proof is by induction on¢;. Clearly, the claim holds far; < 6. By Theorem 5.2,
a planar grapltz has a vertex with dg(v) < 5. By the induction hypothesig;(G—v) < 6.
Sinced (v) < 5, there is a colout available forv in the 6-colouring of G—v, and sox (G) <
6. a

The proof of the following theorem is partly geometric inurat
Theorem 5.6 HEawOOD (1890)).1f G is a planar graph, thery(G) < 5.

Proof. Suppose the claim does not hold, andddbe a6-critical planar graph. Recall that for
k-critical graphsH, §(H) > k — 1, and thus there exists a vertexvith dg(v) = §(G) > 5.
By Theorem 5.2d¢(v) = 5.

Let « be a propers-colouring of G—v. Such a colouring
exists, becausé is 6-critical. By assumptiony(G) > 5,
and therefore for each € [1,5], there exists a neighbour
v; € Ng(v) such thatx(v;) = i. Suppose these neighbours
v; of v occur in the plane in the geometric order of the figure.

Consider the subgrapfi[i, j] C G made of colours andj. The vertices); andv; are in
the same connected component#i, j] (for, otherwise we interchange the colodrand j
in the connected component containingo obtain a recolouring off, wherev; andv; have
the same colou#, and then recolous with the remaining colouy).

Let P;;: v; — v; be a path inG[7, j], and letC' = (vvi)Pi3(v3v). By the geometric
assumption, exactly one of, v, lies inside the region enclosed by the cy€leNow, the path
Py, must meetC' at some vertex of, sinceG is planar. This is a contradiction, since the
vertices ofP, are coloured by and4, butC contains no such colours. O

The final word on the chromatic number of planar graphs wasegkdy APPEL AND
HAKEN in 1976.

Theorem 5.7 (4-Colour Theorem)If G is a planar graph, therny(G) < 4.
By the following theorem, each planar graph can be decongpiose two bipartite graphs.

Theorem 5.8.Let G = (V, E) be a4-chromatic graph,x(G) < 4. Then the edges @f can
be partitioned into two subsefs; and E» such that(V, E;) and (V, E») are both bipartite.

Proof. Let V; = o !(i) be the set of vertices coloured byn a proper4-colouringa of G.
The defineFE; as the subset of the edges®@that are between the sdts andVs; Vi andVy;
V3 andV,. Let E5 be the rest of the edges, that is, they are between th&satedV3; V, and
V3; Vo andVy. Itis clear thatV, Ey) and(V, E5) are bipatrtite, since the séttare stable. O
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Map colouring*

The4-Colour Conjecture was originally stated for maps. In ihap-colouring problem we
are given several countries with common borders, and we twisblour each country so that
no neighbouring countries obtain the same colblaw many colours are needed?

A border between two countries is assumed to have a posingth — in particular, coun-
tries that have only one point in common are not allowed imtiag colouring.

Formally, we define anap as a connected planar (embedding of a) graph with no bridges.
The edges of this graph represent the boundaries betweatriesuHence a country is a face
of the map, and two neighbouring countries share a commoe @ty just a single vertex).
We deny bridges, because a bridge in such a map would be adqrgundide a country.

The map-colouring problem is restated as fol-
lows:

How many colours are needed for the faces of a
plane embedding so that no adjacent faces obtain
the same colour.

The illustrated map can kBecoloured, and it can-
not be coloured using onB colours, because ev-
ery two faces have a common border.

Let Fy, Fy,..., F, be the countries of a map/, and define a grapli with Vo =
{vi,v2,...,v,} such thaw;v; € Eg if and only if the countriest; and F; are neighbours.
It is easy to see that is a planar graph. Using this notion of a dual graph, we cae $te
map-colouring problem in new fornwhat is the chromatic number of a planar grapBY
the4-Colour Theorem it is at most four.

Map-colouring can be used in rather generic topologicdirggtwhere the maps are de-
fined by curves in the plane. As an example, consider finitepyrsimple closed curves in
the plane. These curves divide the plane into regidhs.regions ar@-colourable

That is, the graph where the vertices corre-
spond to the regions, and the edges correspond ﬂ

to the neighbourhood relation, is bipartite. To
see this, colour a region Ry if the region is in- Ad
side an odd number of curves, and, otherwise, ) ‘I

colour it by 2.

History of the 4-Colour Theorem

That four colours suffice planar maps was conjectured ard@s® by FRANCIS GUTHRIE,

a student of @ MORGAN at University College of London. During the following 120are
many outstanding mathematicians tried to solve the projdem some of them even thought
that they had been successful.
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In 1879 CayLEY pointed out some difficulties that lie in the conjecture. Bage year
ALFRED KEMPE published a paper, where he claimed a proof of the 4CC. The lakes in
KEMPES argument (known later asempe chainswas the same as later used bgAwvooD
to prove theb-Colour Theorem, (Theorem 5.6).

For more than 10 years BfMPES proof was considered to be valid. For instance|1T
published two papers on the 4CC in the 1880’s that contaihedkicideas, but also some
further errors. In 1890 HAwoOOD showed that lkkmPES proof had serious gaps. As we shall
see in the next chapter,BAwoo0D discovered the number of colours needed for all maps on
othersurfaces than the plane. Also, he proved that if the numbedgés around each region
is divisible by3, then the map ig-colourable.

One cartriangulate any planar grapltz (drawn in the plane), by adding edges to divide
the faces into triangles. IBKHOFF introduced one of the basic notions (reducibility) needed
in the proof of the 4CC. In a triangulation,canfigurationis a part that is contained inside a
cycle. Anunavoidable seis a set of configurations such that any triangulation mustaio
one of the configurations in the set. A configuration is saloki@ducible if it is not contained
in a triangulation of a minimal counter example to the 4CC.

The search for avoidable sets began in 1904 with work afiIMEKE, and in 1922
FRANKLIN showed that the 4CC holds for maps with at mistegions. This number was
increased t@7 by REYNOLDS (1926), to35 by WINN (1940), to39 by ORE AND STEMPLE
(1970), to95 by MAYER (1976).

The final notion for the solution was due te&HscH who in 1969 introducedischarging
This consists of assigning to a vertexthe charge6 — dg(v). From Euler’s formula we see
that for the sum of the charges, we have

> (6 —dg(v)) = 12.

v

Now, a given selS of configurations can be proved to be unavoidable, if forantyulation,
that does not contain a configuration fré8none can ‘redistribute’ the charges so thatuno
comes up with a positive charge.

According to HEEscHone might be satisfied with a set 800 configurations to prove
the 4CC. There were difficulties with his approach that weteesl in 1976 by APEL AND
HAKEN. They based the proof on reducibility using Kempe chainsg, emded up with an
unavoidable set with ovei900 configurations and son880 discharging rules. The proof used
1200 hours of computer time. (&CH assisted with the computer calculations.) A simplified
proof by ROBERTSON SANDERS, SEYMOUR AND THOMAS (1997) use$33 configurations
and32 discharging rules. Because of these simplifications alsacdmputer time is much less
than in the original proof.

The following book contains the ideas of the proof of th€olour Theorem.

T.L. SAATY AND P.C. KAINEN, “The Four-Color Problem”, Dover, 1986.
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List colouring

DEFINITION. Let G be a graph so that each of its verticess given a list (set)A(v) of
colours. A proper colouring:: Vi — [1,m] of G is a (4-)list colouring, if each vertexs gets
a colour from its lista(v) € A(v).

Thelist chromatic number x,(G) is the smallest integér such thatG' has aA-list colour-
ing for all lists of sizek, |[A(v)| = k}. Also, G is k-choosableif x,(G) < k.

Example 5.4.The bipartite graphKs 3 is not 2-
choosable. Indeed, let the bipartition &f; 3 be
(X,Y), where X = {zy,z9,23} and Y =
{y1,y2,y3}. The lists for the vertices shown in the
figure show thaic,(K3.3) > 2.

Obviously x(G) < x¢(G), since proper colourings are special cases of list colgarin
but equality does not hold in general. However, it was prdwe¥1zING (1976) and RDOS,
RUBIN AND TAYLOR (1979) that

xe(G) < A(G) +1.

For planar graphs wdo nothave a 4-list colour theorem’. Indeed, it was shown byo\GT
(1993) that there exists a planar graph wit{GG) = 5. At the moment, the smallest such a
graph was produced by IMzAKHANI (1996), and it is of orde63.

Theorem 5.9 THOMASSEN (1994)).Let G be a planar graph. Theg,(G) < 5.
In fact, THOMASSEN proved a stronger statement:

Theorem 5.10.Let G be a planar graph and le€’ be the cycle that is the boundary of the
exterior face. Letd consist of lists such thati(v)| = 3 for all v € C, and|A(v)| = 5 for all
v ¢ C. ThenG has aA-list colouring c.

Proof. We can assume that the planar graplis connected, and that it is given bynaar-
triangulation ; an embedding, where the interior faces are trianglesh€lboundary of a face
has more thas edges, then we can add an edge inside the face.) This is leeaddisig edges
to a graph can only make the list colouring more difficult. &ltiat the exterior boundary is
unchanged by a triangulation of the interior faces.

The proof is by induction om under the additional constraint that one of the vertices of
C has a fixed colour. (Thus we prove a stronger statement tlz@mexd.) Forvg < 3, the
claim is obvious. Suppose then that > 4.

Let z € C be a vertex, for which we fix a colout(z) € A(z). Letv € C be a vertex
adjacent tar, thatis,C: v — z = v.
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Let Ng(v) = {z,v1,...,v,y}, Wwherey € C, andv;

are ordered such that the faces are triangles as in the (v)
figure. It can be thaftVg(v) = {z,y}, in which case @' ‘9
ry € Eg. @
Consider the subgrapi = G—v. The exterior bound- ®) ©)
ary of H isthe cycler — vy — -+ = v, = y = x.
Since|A(v)| = 3, there are two colours, s € A(v)
that differ froma(z).

We define new lists foff as follows: A'(v;) C A(v;) \ {r, s} such thajA’(v;)| = 3 for
eachi € [1, k], and otherwisel’(z) = A(z).
Now vy = v — 1, and by the induction hypothesis (with(z) still fixed), H has aA’-list
colouringa. For the vertexs, we choosex(v) = r or s such thaiv(v) # «a(y). This gives a
A-list colouring forG. SinceA'(z) C A(z) for all z, we have thatv is a A-list colouring of
G. 0

Straight lines and kissing circle$

We state an interesting result ofAWNER, the proof of which can be deduced from the above
proof of Kuratowski’'s theorem. The result is knownFéy's Theorem.

Theorem 5.11 YWAGNER (1936)).A planar graphG has a plane embedding, where the edges
are straight lines.

This raises a difficult problem:

Integer Length Problem. Can all planar graphs be drawn in the plane such that the edges
straight lines of integer lengths?

We say that two circlekiss in the plane, if they in-
tersect in one point and their interiors do not intersect.
For a set of circles, we draw a graph by putting an edge
between two midpoints of kissing circles.

The following improvement of the above theorem is
due to KOEBE (1936), and it was rediscovered indepen-
dently by ANDREEV (1970) and HURSTON (1985).

Theorem 5.12 KOEBE(1936)).A graph is planar if and only if it is a kissing graph of circles

Graphs can be represented as plane figures in many diffeegtst Wwor this, consider a set
S of curves of the plane (that are continuous between theipeirts). Thestring graph of
Sis the graphG = (S, E), whereuv € FE if and only if the curves, andv intersect. At first
it might seem that every graph is a string graph, but this igshmcase.

It is known that all planar graphs are string graphs (thistisval result).
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Line Segment Problem. A graph is dine segment graphif it is a string graph for a sel of
straight line segments in the plang.every planar graph a line segment graph for some/set
of lines?

Note that there are also nonplanar graphs that are line segmaphs. Indeed, all complete
graphs are such graphs.

The above question remains open even in the case

when the slopes of the lines afd, —1, 0 andoo. +1 -1 | -
A positive answer to thig-slope problem for pla- o—-o

nar graphs would prove thieColour Theorem.

The Minor Theorem*

DEeFINITION. A graphH is aminor of G, denoted byH < G, if H is isomorphic to a graph
obtained from aubgraphof G by successively contracting edges.

A recent result of RBERTSON ANDSEYMOUR (1983-2000) on graph minors is (one of)
the deepest results of graph theory. The proof goes beyaseé thctures. Indeed, the proof of

Theorem 5.13 is around 500 pages long.

G a subgraph a contraction

Note that every subgrapli C G is a minor,H < G.
The following properties of the minor relation are easiltabtished:

) GG,
(i) H<GandG < Himply G =2 H,
(i) H< LandL X Gimply H < G.
The conditions (i) and (iii) ensure that the relatigns aquasi-order, that is, it is reflexive and

transitive. It turns out to bewell-quasi-order, that is, every infinite sequencg,, Go, . .. of
graphs has two graplfs; andG; with ¢ < j such that; < G ;.

Theorem 5.13 (Minor Theorem). The minor order<x is a well-quasi-order on graphs. In
particular, in any infinite familyd of graphs, one of the graphs is a (proper) minor of another.

Each propertyP of graphs defines a family of graphs, namely, the family obéhgraphs
that satisfy this property.
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DerINITION. A family F of graphs is said to bminor closed, if every minor H of a graph
G € Fis also inF. A property? of graphs is said to b@herited by minors, if all minors of
a graphG satisfy? wheneverG does.

The following families of graphs are minor closed: the fanaf (1) all graphs, (2) planar
graphs (and their generalizations to other surfaces),dgjlia graphs.
The acyclic graphs include all trees. However, the familyreés is not closed under taking
subgraphs, and thus it is not minor closed. More importanitlg subgraph order of trees
(Ty C Ty) is nota well-quasi-order.

WAGNER proved a minor version of Kuratowski's theorem:

Theorem 5.14 WAGNER (1937)).A graphG is nonplanar if and only itKs < G or K33 <
G.

Proof. Exercise. O
ROBERTSON ANDSEYMOUR (1998) proved th&Vagner’s conjecture

Theorem 5.15 (Minor Theorem 2).Let? be a property of graphs inherited by minors. Then
there exists dinite setd of graphs such thafy satisfies? if and only if G does not have a
minor fromJ.

One of the impressive application of Theorem 5.15 concemigeeldings of graphs on
surfaces, see the next chapters. By Theorem 5.15, one tdwitbsa fastalgorithm) whether
a graph can be embedded onto a surface.

Every graph can be drawn in tfadimensional space without crossing edges. An old
problem asks if there exists an algorithm that would deteemvhether a graph can be drawn
so that its cycles do not form (nontrivial) knots. This peblis solved by the above results,
since the property ‘knotless’ is inherited by minors: thexestsa fast algorithm to do the job.
However, this algorithm is not known!

Hadwiger's Problem. HADWIGER conjectured in 1943 that for every graph

Kya) <G,

that is,if x(G) > r, thenG has a complete grapf, as its minor The conjecture is trivial
for r = 2, and it is known to hold for alt < 6. The cases for = 5 and6 follow from the
4-Colour Theorem.

5.3 Genus of a graph
A graph is planar, if it can be drawn in the plane without clog®dges. A plane is an im-

portant special case of a surface. In this section we studstlgtdrawing graphs in other
surfaces.
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There are quite many interesting surfaces many of whichaher difficult to draw. We
shall study the ‘easy surfaces’ — those that are compactr@ntable. These are surfaces that
have both an inside and an outside, and can be entirely ¢aerad by the number of holes in
them. This number is thgenusof the surface. There are also non-orientable compactcasfa
such as the Klein bottle and the projective plane.

Background on surfaces

We shall first have a quick look at the general surfaces ariddlassification without going
into the details. Consider the spdake, which has its (usual) distance functid(z,y) € R of
its points.

Two figures (i.e., sets of pointg) andB aretopologically equivalent(or homeomorphic)
if there exists a bijectiorf : A — B such thatf and its inversef ~!: B — A are continuous.
In particular, two figures are topologically equivalent ifeocan be deformed to the other by
bending, squeezing, stretching, and shrinking withouinigdt apart or gluing any of its parts
together. All these deformations should be such that theypbeaundone.

A set of pointsX is asurface, if X is connected (there is a continuous line inskiée-
tween any two given points) and every painE X has a neighbourhood that is topologically
equivalent to an open planar digka) = {z | dist(a,z) < 1}.

We deal with surfaces of the real space, and in this case acsuxf is compact, if X is
closed and bounded. Note that the plane is not compact, giitaeot bounded. A subset of
a compact surfac& is atriangle if it is topologically equivalent to a triangle in the plane.
A finite set of trianglesl;, ¢ = 1,2,...,m, is atriangulation of X if X = U",T; and any
nonempty intersectioff; N 7 with ¢ # j is either a vertex or an edge.

The following is due to RDO (1925).

Theorem 5.16.Every compact surface has a triangulation.

Each triangle of a surface can be oriented by choosing am todits vertices up to cyclic
permutations. Such a permutation induces a direction foetlges of the triangle. A triangu-
lation is said to beriented if the triangles are assigned orientations such that conedges
of two triangles are always oriented in reverse directidnsurface isorientable if it admits
an oriented triangulation.

Equivalently, orientability can be described as follows.

Theorem 5.17.A compact surfaceX is orientable if and only if it has no subsets that are
topologically equivalent to the Mébius band.

In the M6bius band (which itself is not a surface according
the above definition) one can travel around and return to the
starting point with left and right reversed.

A connected sumX#Y of two compact surfaces is obtained by cutting an open disk
off from both surfaces and then gluing the surfaces togetimerg the boundary of the disks.
(Such a deformation is not allowed by topological equiveéen

The next result is known as tldassification theorem of compact surfaces
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Theorem 5.18 DEHN AND HEEGAARD (1907)).Let X be a compact surface. Then

(i) if X is orientable, then it is topologically equivalent to a sghé = S, or a connected
sum of tori: S, = S1#S1# ... #S; for somen > 1, whereS; is a torus.

(i) if X is nonorientable, theX is topologically equivalent to a connected sum of projectiv
planes:P, = P#P+#...#P for somen > 1, whereP is a projective plane.

It is often difficult to imagine how a figure (say, a graph) candoawn in a surface. There
is a helpful, and difficult to prove, result due toaRO (1920), stating that every compact
surface (orientable or not) has a description Ipfeane model| which consists of a polygon in
the plane such that

e each edge of the polygon is labelled by a letter,
e each letter is a label of exactly two edges of the polygon, and
e each edge is given an orientation (clockwise or counterkelise).

Given a plane model/, a compact surface is obtained by gluing together the edadad
the same label in the direction that they have.

Q Q a Q
a b b b b b a b
b a a b
Sphere Torus Klein bottle Projective plane

From a plane model one can easily determine if the surfaceeisted or not. It is nonori-
ented if and only if, for some label, the edges labelled hy have the same direction when
read clockwise. (This corresponds to the Mébius band.)

A plane model, and thus a compact surface, can also be repgddsy a (circular) word
by reading the model clockwise, and concatenating the dalvith the convention thai—!
is chosen if the direction of the edge is counter clockwisen¢¢, the sphere is represented
by the wordabb~'a~", the torus byuba~'b~!, the Klein bottle byaba~'b and the projective
plane byabb'a.

These surfaces, as do the other surfaces, have many
other plane models and representing words as well. A
word representing a connected sum of two surfaces,
represented by wordd’; andWW,, is obtained by con-
catenating these words W, W,. By studying the rela-
tions of the representing words, Theorem 5.18 can be
proved.

Klein bottle
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Drawing a graph (or any figure) in a surface can be elaboraiathared to drawing in a
plane model, where a line that enters an edge of the polygat ecoatinue by the correspond-
ing point of the other edge with the same label (since thesdgare identified when we glue
the edges together).

Example 5.5.0n the right we have drawAj

in the Klein bottle. The black dots indicate,

where the lines enter and leave the edges of they “* '81‘
b

1p)

plane model. Recall that in the plane model for | “*1 >

el €3

the Klein bottle the vertical edges of the square
have the same direction.

Sphere

DEFINITION. In general, ifS is a surface, then a grapgh has anS-embedding if G can be
drawn inS without crossing edges.

Let Sy be (the surface of) sphere According to the next
theorem a sphere has exactly the same embeddings as do
the plane. In the one direction the claim is obvious? iis

a planar graph, then it can be drawn in a bounded area of
the plane (without crossing edges), and this bounded area
can be ironed on the surface of a large enough sphere.

Clearly, if a graph can be embedded in one sphere, then iteamibedded in any sphere —
the size of the sphere is of no importance. On the other h&igtlis embeddable in a sphere
So, then there is a small area of the sphere, where there areims pb the edges. We then
puncture the sphere at this area, and stretch it open ulttdks like a region of the plane. In
this process no crossings of edges can be created, and Géagzanar.

Another way to see this is to use projection
of the sphere to a plane:

Theorem 5.19.A graphG has anSy-embedding if and only if it is planar.

Therefore instead of planar embeddings we can equally wellyssmbeddings of graphs
in a sphere. This is sometimes convenient, since the sphelasied and it has no boundaries.
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Most importantly, a planar graph drawn in a sphere has neiexface — all faces are bounded
(by edges).

If a sphere is deformed by pressing or stretching, its emddatity properties will remain
the same. In topological terms the surface has been didtbyta continuous transformation.

Torus

Consider next a surface which is obtained from the sphere

Sp by pressing a hole in it. This istarus S; (or anori- .
entable surface of genud). TheS;-embeddable graphs

are said to havgenusequal to 1.

Sometimes it is easier to consider handles than holes: a $graan be deformed (by a con-
tinuous transformation) into sphere with a handle

© @

If a graphG is S1-embeddable, then it can be drawn in any one of the abovecggrigithout

crossing edges.

Example 5.6.The smallest nonplanar graptfs;
andK3 3 have genus. Also, K7 has genug as can

be seen from the plane model (of the torus) on the
right.

Genus

Let S, (n > 0) be a sphere witln holes in it. The drawing of a$, can already be quite
complicated, because we do not put any restrictions on teeplof the holes (except that we
must not tear the surface into disjoint parts). Howevergamgain anS,, can be transformed
(topologically) into a sphere with handles.
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Q

DEFINITION. We define thegenusg(G) of a graphG as the smallest integer, for which G
is S,,-embeddable.

For planar graphs, we havgG) = 0, and, in particularg(K,) = 0. For K5, we have
g(K5) = 1, sinceKs is nonplanar, but is embeddable in a torus. Algdys 3) = 1.
The next theorem states that any grépban be embedded in some surfagewith n. > 0.

Theorem 5.20.Every graph has a genus.

This result has an easy intuitive verification. Indeed,
consider a grapliz and any of its plane (or sphere)
drawing (possibly with many crossing edges) such that

no three edges cross each other in the same point (such
a drawing can be obtained). At each of these crossing
points create a handle so that one of the edges goes be-

low the handle and the other uses the handle to cross
over the first one.

We should note that the above argument does not deter-

mine g(G), only thatG can be embedded in sonsg. N
However, clearlyg(G) < n, and thus the genugG)

of G exists. %
The same handle can be utilized by several edges. {

Euler's formula with genus*

The drawing of a planar gragh in a sphere has the advantage that the faces of the embedding
are not divided into internal and external. The externat faloG becomes an ‘ordinary face’
after G has been drawn ifj.

In general, daceof an embedding of7 in S,, (with g(G) = n) is a region ofS,, surrounded
by edges of7. Let againp denote the number of faces of an embedding af S,,. We omit
the proof of the next generalization of Euler’s formula.

Theorem 5.21.If G is a connected graph, then

vg —eq +ypa =2—29(G) .
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If G is a planar graph, thes(G) = 0, and the above formula is the Euler’s formula for
planar graphs.

DEFINITION. A face of an embeddin@(G) in a surface is &-cell, if every simple closed
curve (that does not intersect with itself) can be contislypdeformed to a single point.

The complete graplk, can be embedded in a torus such that it has a face that is no¢lh 2-
But this is because(K,) = 0, and the genus of the torus is We omit the proof of the
general condition discovered byOYNGS

Theorem 5.22 Y oUNGS (1963)). The faces of an embedding of a connected grépim a
surface of genug(G) are 2-cells.

Lemma 5.12.For a connecteds with vz > 3 we have3pg < 2¢q.

Proof. If v; = 3, then the claim is trivial. Assume thus that > 4. In this case we need the
knowledge thatp; is counted in a surface that determines the genus @nd in no surface
with a larger genus). Now every face has a border of at leest thdges, and, as before, every
nonbridge is on the boundary of exactly two faces. O

Theorem 5.23.For a connected with v > 3,

1 1
g(G) Z 686‘ — 5(1/6‘ — 2) .
Proof. By the previous lemma&pa < 2e¢, and by the generalized Euler’s formulag =
eq —va + 2 — 2¢9(G). Combining these we obtain thad; — 3v; + 6 — 69(G) < 2e¢, and
the claim follows. O

By this theorem, we can compute lower bounds for the geiiGy without drawing any
embeddings. As an example, Bt= Kjg. In this case/g = 8, e = 28, and sog(G) > g
Since the genus is always an integgiz) > 2. We deduce thaks cannot be embedded in
the surfaces; of the torus.

If H C G, then clearlyg(H) < ¢g(G), sinceH is obtained from& by omitting vertices
and edges. In particular,

Lemma 5.13.For a graphG of ordern, ¢(G) < g(Ky).
For the complete graph’,, a good lower bound was found early.

Theorem 5.24 Heawoo0D (1890)).1f n > 3, then

(n—3)(n—4)
i) > L=,

Proof. The number of edges iR, is equal tee; =
9(Kn) 2 (1/6)eq — (1/2)(n — 2) = (1/12)(n - 3)

(n—1). By Theorem 5.23, we obtain

mn
(n—4). a
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This result was dramatically improved to obtain
Theorem 5.25 RINGEL AND YOUNGS(1968)).1f n > 3, then

oy = [0 =0

Thereforeg(Kg) = [3-2/12] = [1/2] = 1. Also, g(K7) = 1, butg(K3) = 2.
By Theorem 5.25,

Theorem 5.26.For all graphsG of ordern > 3,
(n—3)(n—4)
< | 7.
9(G) [ D

Also, we know the exact genus for the complete bipartite fysap

Theorem 5.27 (RINGEL (1965)).For the complete bipartite graphs,

)= [222022)

Chromatic numbers*

For the planar graph&, the proof of the4-Colour Theoremy(G) < 4, is extremely long
and difficult. This in mind, it is surprising that the genézation of the4-Colour Theorem for
genus> 1 is much easier. HAwooD proved a hundred years ago:

Theorem 5.28 HeawoOD). If g(G) = g > 1, then

< |1/

Notice that forg = 0 this theorem would be thé-colour theorem. lHAwWOOD proved it
‘only’ for g > 1.

Using the result of RNGEL AND YOUNGS and some elementary computations we can
prove that the above theorem is the best possible.

Theorem 5.29.For eachg > 1, there exists a grapli’ with genusy(G) = ¢ so that

x©) = |

If a nonplanar grapltz can be embedded in a torus, thgt?) = 1, andx(G) < [(7 +
V1+48g)/2] = 7. Moreover, forG = K; we have thak(K7) = 7 andg(K7) = 1.
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Three dimensiong

Every graph can be drawn without crossing edges ir3tdanensional space. Such a drawing

is calledspatial embeddingof the graph. Indeed, such an embedding can be achieved by
putting all vertices of7 on a line, and then drawing the edges in different planesctvatiin

the line. Alternatively, the vertices @ can be put in a sphere, and drawing the edges as
straight lines crossing the sphere inside.

A spatial embedding of a gragh is said to havéinked cycles if two cycles ofG form a
link (they cannot be separated in the space). Bn@AY and GORDONIN 1983 every spatial
embedding ofKs contains linked cycles.

It was shown by RBERTSON SEYMOUR AND THOMAS (1993) that there is a set Gf
graphs such that a grapgh has a spatial embedding without linked cycles if and onlg if
does not have a minor belonging to this set.

This family of forbidden graphs was originally found by&4s (without proof), and it
containsK and the Petersen graph. Every graph in the sel haslges, which is curious.

For further results and proofs concerning graphs in susfasee

B. MOHAR AND C. THOMASSEN, “Graphs on Surfaces”, Johns Hopkins, 2001.
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Directed Graphs

6.1 Digraphs

In some problems the relation between the objects is not |
symmetric. For these cases we need directed graphs, whersD I
the edges are oriented from one vertex to another. o e
As an example consider a map of a small town. Can you | D L] D C I
L]
||

make the streets one-way, and still be able to drive from one
house to another (or exit the town)?

Definitions

DEFINITION. A digraph (or adirected graph) D = (Vp, Ep) consists of the verticeBp
and (directed) edgeB, C Vp x Vp (without loopsvv). We still write uv for (u, v), but note
that nowuv # vu. For each paie = uv define thanverseof e ase™! = vu (= (v, u)).

Note thate € Ep doesnotimply e ! € Ep.

DEFINITION. LetD be adigraph. Thed is its

e subdigraph, if V4 C Vp andE, C Ep,
¢ induced subdigraph, A = D[X],if V4 = X andE4 = Ep N (X x X).

Theunderlying graph U (D) of a digraphD

is the graph orV/p such that ife € Ep, then

the undirected edge with the same ends is i é
U(D).

A digraphD is anorientation of a graphG, if G = U(D) ande € Ep impliese™! ¢ Ep.
In this case D is said to be amriented graph.

DEFINITION. Let D be a digraph. Awalk?V = ejey...ex: u = v of U(D) is adirected
walk, if e; € Ep foralli € [1, k]. Similarly, we definalirected pathsanddirected cyclesas
directed walks and closed directed walks without repetitiof vertices.

The digraphD is di-connected if, for all v # v, there exist directed paths = v and
v = u. The maximal induced di-connected subdigraphs areiteemponentsof D.
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Note that a graptG = U(D) might be connected, although the digraphis not di-
connected.

DEFINITION. Theindegreeand theoutdegreeof a vertex are defined as follows

dh(v) = {e € Ep | e = zv}|, d9 () =|{e€ Ep | e =vz}|.

We have the followindghandshaking lemma (You offer and accept a handshake.)

Lemma 6.1.Let D be a digraph. Then
Y dp(v) = |Ep| = dp(v).

veED veED

Directed paths

The relationship between paths and directed paths is in gen
eral rather complicated. This digraph has a path of length
five, but its directed paths are of length one. &
There is a nice connection between the lengths of directét jgad the chromatic number
x(D) = x(U(D)).

Theorem 6.1 Roy (1967)GALLAI (1968)). A digraph D has a directed path of length
x(D) — 1.

Proof. Let A C Ep be a minimal set of edges such that the subdigrBphA contains no
directed cycles. Let be the length of the longest directed pathiin-A.

For each vertex € D, assign a colour(v) = 4, if a longest directed path from has
lengthi — 1in D—A. Herel <i <k +1.

First we observe thatiP = ejey ... e, (r > 1) is any directed path = v in D—A, then
a(u) # a(v). Indeed, ifa(v) = i, then there exists a directed p&h v — w of lengthi —1,
and P(Q is a directed path, sincB— A does not contain directed cycles. Sime@: u — w,
a(u) # 1 = a(v). In particular, ife = uv € Ep_4, thena(u) # a(v).

Consider then an edge = vu € A. By the minimality of A, (D—A) + e contains a
directed cycleC': v = v — u, where the part. = v is a directed path iD— A, and hence
a(u) # a(v). This shows thatv is a proper colouring o/ (D), and therefore¢(D) < k + 1,
thatis,k > x(D) — 1. a

The boundy (D) — 1 is the best possible in the following sense:

Theorem 6.2.Every graphG has an orientationD, where the longest directed paths have
lengthsy (G) — 1.
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Proof. Letk = x(G) and leta be a propek-colouring of G. As usual the set of colours is
[1,k]. We orient each edgev € E¢ by settinguv € Ep, if a(u) < a(v). Clearly, the so
obtained orientatioD has no directed paths of lengthk — 1. O

DEFINITION. An orientation D of an undirected grapky is acyclic, if it has no directed
cycles. Leta(G) be the number of acyclic orientations Gf

The next result is charming, singe;(—1) measures the number of proper colourings of
G using—1 colours!

Theorem 6.3 STANLEY (1973)).LetG be a graph of order.. Then the number of the acyclic
orientations ofG is

a(G) = (=1)"xa(-1) ,
wherey is the chromatic polynomial d@f.

Proof. The proof is by induction ong. First, if G is discrete, thety (k) = k", anda(G) =
1= (=1)"(=1)" = (=1)"x¢c(—1) as required.

Now x (k) is a polynomial that satisfies the recurrencg(k) = xg—e(k) — XGse (k). TO
prove the claim, we show tha{G) satisfies the same recurrence.

Indeed, if
a(G) = a(G—e) + a(G x e) (6.1)

then, by the induction hypothesis,

a(G) = (=1)"Xg-e(=1) + (=1)"""XGse(=1) = (=1)"xc(~1) -

For (6.1), we observe that every acyclic orientatiortzofives an acyclic orientation @¥—e.
On the other hand, ib is an acyclic orientation off —e for e = ww, it extends to an acyclic
orientation of G by puttinge;: u — v orey: v — wu. Indeed, if D has no directed path
u = v, we choosees, and if D has no directed pathh = u, we choose;. Note that since
D is acyclic, it cannot have both ways— v andv = w.

We conclude that(G) = a(G—e) + b, whereb is the number of acyclic orientatiord3 of
G—e that extend in both ways, andes. The acyclic orientation® that extend in both ways
are exactly those that contain

neitheru = v norv = u as a directed path. (6.2)

Each acyclic orientation af * e corresponds in a natural way to an acyclic orientafibn
of G—e that satisfies (6.2). Therefobe= a(G * e), and the proof is completed. O

One-way traffic

Every graph can be oriented, but the result may not be diexed. In theone-way traffic
problem the resulting orientation should be di-connected, for mtige someone is not able
to drive home. RBBINS' theorem solves this problem.
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DEFINITION. A graphG is di-orientable, if there is a di-connected oriented graphsuch
thatG = U(D).

Theorem 6.4 ROBBINS (1939)).A connected graply is di-orientable if and only itz has
no bridges.

Proof. If G has a bridge:, then any orientation off has at least two di-components (both
sides of the bridge).

Suppose then tha¥ has no bridges. Hena@ has a cycle’, and a cycle is always di-
orientable. Let thedd C G be maximal such that it has a di-orientatioh;. If H = G, then
we are done.

Otherwise, there exists an edge= vu € E¢g such that

u € H butv ¢ H (because? is connected). The edgeis am
not a bridge and thus there exists a cycle pl P Q/

C'=ePQ:v—u-—>w->v

in G, wherew is the last vertex insidéf .

In the di-orientationD ;7 of H there is a directed path’: © = w. Now, we orient: v —
u and the edges d@ in the direction): w — v to obtain a directed cycleP'Q: v — u =
w = v. In conclusion,G[Vy U V] has a di-orientation, which contradicts the maximality
assumption ol . This proves the claim. O

Example 6.1.Let D be a digraph. Adirected Euler tour of D is a directed closed walk that
uses each edge exactly onceditected Euler trail of D is a directed walk that uses each
edge exactly once.

The following two results are left as exercises.

(1) Let D be a digraph such thd (D) is connected. TheP has a directed Euler tour if and
only if d}, (v) = d%(v) for all verticesv.

(2) Let D be a digraph such thdl’ (D) is connected. TheP has a directed Euler trail if and
only if d,(v) = d$(v) for all verticesv with possibly excepting two verticesy for which
|dp(v) —dP(v)] = 1.

The above results hold equally well forultidigraphs that is, for directed graphs, where
we allow parallel directed edges between the vertices.

Example 6.2.The following problem was first studied byd1CHINSON AND WILF (1975)
with a motivation from DNA sequencing. Consider words oveatphabetd = {a1,aq,...,a,}
of n letters, that is, each word is a sequence of letters. In the case of DNA, the let-
ters ared, T, C, G. In a problem instance, we are given nonnegative integeasdr;; for
1 <i,j5 < n, and the question is: does there exist a worth which each letten; occurs
exactlys; times, andy; is followed bya; exactlyr;; times.

For instance, ifh = 2,51 = 3,andry; = 1, 72 = 2,791 = 1, 7990 = 0, then the word
a1asa1a1a3 1S @ solution to the problem.
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Consider a multidigraptD with Vp = A for which there are;; edgesa;a;. It is rather
obvious that a directed Euler trail & gives a solution to the sequencing problem.

Tournaments

DEFINITION. A tournament T is an orientation of a complete graph.

Example 6.3.There are four tournaments of four vertices that are not @phic with each
other. (Isomorphism of directed graphs is defined in themls/ivay.)

XX XX

Theorem 6.5 REDEI (1934)).Every tournament has a directed Hamilton path.

Proof. The chromatic number &, is x(K,) = n, and hence by Theorem 6.1, a tournament
T of ordern has a directed path of length— 1. This is then a directed Hamilton path visiting
each vertex once. 0

The vertices of a tournament can be easily reached from atexy@sometimes called the
king).

Theorem 6.6 L AUDAU (1953)).Letwv be a vertex of a tournamefit of maximum outdegree.
Then for allu, there is a directed path = « of length at most two.

Proof. Let T be an orientation of,,, and letd?.(v) = d be the maximum outdegree .
Suppose that there exists anfor which the directed distance fromto z is at least three.
It follows thatzv € Epr andzu € Er for all v with vu € Ep. But there arel vertices in
A ={y | vy € Er}, and thusi + 1 vertices i{y | zy € Er} = A U {v}. It follows that the
outdegree of is d + 1, which contradicts the maximality assumption madeufor O

Problem. Adam’s conjecturestates thain every digraphD with a directed cycle there exists
an edgeuwv the reversal of which decreases the number of directed gyElere the new
digraph has the edge: instead ofuv.

Example 6.4.Consider a tournament af teams that play once against each other, and sup-
pose that each game has a winner. The situation can be mésent tournament, where the
vertices correspond to the teamys and there is an edggv;, if v; won v; in their mutual
game.

DEFINITION. A teamu isawinner (there may be more than one winner)y ifomes out with
the most victories in the tournament.
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Theorem 6.6 states that a winnerither defeated a team or v defeated a team that
defeated..

A ranking of a tournament is a linear ordering of the teams > v;, > --- > v;,
that should reflect the scoring of the teams. One way of rgn&itournament could be by a
Hamilton path: the ordering can be obtained from a directathiton pathP: v;, — v;, —

. — v;, . However, a tournament may have several directed Hamilédhsp and some of
these may do unjust for the ‘real’ winner.

Example 6.5.Consider a tournament of six teams
1,2,...,6, and letT be the scoring digraph as in N

\

the figure. Herd — 2 —4 — 5 — 6 — 3is adi-
rected Hamilton path, but this extends to a directed
Hamilton cycle (by adding — 1)! So for every "‘
team there is a Hamilton path, where it is a winner,

and in another, it is a looser.

Letsi () = d2(j) be thewinning number of the teamy (the number of teams beaten by
7). In the above tournament,

81(1) = 4, 81(2) = 3, 81(3) = 3, 81(4) = 2, 81(5) = 2, 81(6) =1.

So, is team 1 the winner? If so, is 2 or 3 next? Definestheond-level scorindor each team
by
s2() = Y s1(d) .
jieET

This tells us how good teamjsbeat. In our example, we have
82(1) == 8, 82(2) == 5, 82(3) == 9, 82(4) == 3, 82(5) == 4, 32(6) =3.

Now, it seems that 3 is the winner,but 4 and 6 have the same.sd continue by defining
inductively themth-level scoring by

sm(J) = Z sm—1(7) -

JiebET

It can be proved (using matrix methods) that for a di-cored:eburnament with at least four
teamsthe level scorings will eventually stabilize in a rankinglué tournamentthere exits an
m for which themth-level scoring gives the same ordering as do(thet k)th-level scorings
forall £ > 1. If T is not di-connected, then the level scoring should be choig with respect
to the di-components.

In our example the level scoring givés— 3 — 2 — 5 — 4 — 6 as the ranking of the
tournament.
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6.2 Network Flows

Various transportation networks or water pipelines arevepigently represented by weighted
directed graphs. These networks usually possess also siafiieaal requirements. Goods are
transported from specific places (warehouses) to finalitmesi{marketing places) through a
network of roads. In modeling a transportation network bygaaghh, we must make sure that
the number of goods remains the same at each crossing ofatie. rbhe problem setting for
such networks was proposed by T.E. Harris in the 1950s. Theeamion toKirchhoff’'s Cur-
rent Law(1847) is immediate. According to this law, in every elegtinetwork the amount
of current flowing in a vertex equals the amount flowing out treatex.

Flows

DEFINITION. A network N consists of

e anunderlying digraph D = (V, E),

e two distinct verticess andr, called thesourceand 5
thesink of N, and G

e acapacity functiona: V xV — R, (nonnegative
real numbers), for which(e) =0, if e ¢ E.

DenoteVy = V andEy = E.

Let A C Vi be a set of vertices, anfl: Viy x Vy — R any function such thaft(e) = 0,
if e ¢ En. We adopt the following notations:

[A,A]={e€ Eple=uv,u€ A, v¢ A},
A= Y f@ and A= Y fle).

ec[A,A] e€[A,A]

In particular,

fr)=3" fluw) and f=(u)=1" f(ou).

vEN vEN
DerFINITION. A flow in a networkN is a functionf: Vy x Vy — Ry such that
0< f(e) <ale) forall e, and f~(v)=f"(v) forall v¢ {s,r}.

Example 6.6.The valuef(e) can be taught of as the rate at which transportation actually
happens along the channelvhich has the maximum capacity(e). The second condition
states that there should be no loss.
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If N = (D,s,r,a) is a network of water
pipes, then the valuer(e) gives the capacity
(z m?/min) of the pipee.

The previous network has a flow that is indicated
on the right.

A flow f in N is something that the network can handieg, in the above figure the
source should not try to feed the network the full capacity:¢.* /min) of its pipes, because
the junctions cannot handle this much water.

DEFINITION. Every networkN has azero flow defined byf(e) = 0 for all e. For a flow f
and each subset C Vy, define thaesultant flow from A and thevalue of f as the numbers

val(fa) = f7(A) - f (A) and  val(f) =val(f;) (= f(s) = f (5)) -
A flow f of a network N is amaximum flow, if there does not exist any flof/ such that

val(f) < val(f’).

The valueval(f) of a flow is the overall number of goods that are (to be) trariepo
through the network from the source to the sink. In the abaeengle,val(f) = 9.
Lemma6.2.Let N = (D, s,r, «) be a network with a flovy.

(i) If AC N\ {s,r}, thenval(f4) = 0.
(i) val(f) = —val(f,).
Proof. LetA C N\ {s,r}. Then

0= (fr@) = f ) =D ) =D F () = fH(A) = f7(A) = val(fa),

vEA vEA vEA
where the third equality holds since the values of the edgesith u, v € A cancel each out.
The second claim is also clear. a

Improvable flows

Let f be a flow in a networkV, and letP = eje, . . . e, be anundirectedpath in N where an
edgee; isalong P, if e; = v;v;11 € En, andagainstP, if e; = v;11v; € En.
We define a nonnegative numh¢P) for P as follows:

ale) — f(e) if eisalongP ,

t(P) =min.(e),  whereu(e) = {f(e) if e is againstP.

€i

DEFINITION. Let f be a flow in a networkvV. A
pathP: s = ris (f-)improvable, if .(P) > 0.

On the right, the bold path has valug®) = 1,
and therefore this path is improvable.
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Lemma 6.3.Let N be a network. Iff is a maximum flow ofV, then it has no improvable
paths.

Proof. Define
f(e) +(P) if eisalong P,
f'(e) =< f(e) —«(P) if eis against P
f(e) if eis notin P.

Then f' is a flow, since at each intermediate ver-
texv ¢ {s,r}, we have(f')~(v) = (/)" (v),
and the capacities of the edges are not exceeded.
Now val(f") = val(f)+.(P), sinceP has exactly
one edgesv € Ey for the sources. Hence, if
t(P) > 0, then we can improve the flow.

Max-Flow Min-Cut Theorem

DEFINITION. LetN = (D, s, r,«) be anetwork. For a subs8tC Vy with s € Sandr ¢ S,
let thecut by S be

[S]=1[S,5] (={w € Ex|uecSv¢S}.

The capacity of the cut[S] is the sum

A cut [S] is aminimum cut, if there is no cufR]
with a[R] < a[S].

Example 6.7.In our original network the capac-
ity of the cut for the indicated vertices is equal G
to 10.

Lemma 6.4.For a flow f and a cut[S] of N,

val(f) = val(fs) = f*(S) — f7(S) .

Proof. Let St = S\ {s}. Nowval(S7) = 0 (sinceS; C N \ {s,r}), andval(f) = val(fs).
Hence

val(fs) =val(fs) = > f(sv) + > f(vs)

vEST vEST

Fval(fs) + 3 flsv) = 3 f(vs)

vEST vEST

—val(f,) = val(f) .
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Theorem 6.7.For a flow f and any cu{S] of N, val(f) < «[S]. Furthermore, equality holds
if and only if for eachu € S andv ¢ S,

(i) if e = uv € En, thenf(e) = a(e),
(i) if e=wvu € En, thenf(e) = 0.

Proof. By the definition of a flow,

andf~(S) > 0. By Lemma 6.4yal(f) = val(fs) = fT(S) — f~(5), and henceal(f) <
a[S], as required. Also, the equalityl(f) = «[S] holds if and only if

(1) f1(S) = a[S] and (2)f~(S) = 0. This holds if and only iff (¢) = «a(e) for all e € [5]
(sincef(e) < afe)), and
(2)f(e) =0foralle =vuwithu € S,v ¢ S.

This proves the claim. O
In particular, if f is a maximum flow andlS] a minimum cut, then
val(f) < alS] .

Corollary 6.1. If f is a flow and S| a cut such thatal(f) = «[S], thenf is a maximum flow
and[S] a minimum cut.

The following main result of network flows was proved indegently by BIAS, FEIN-
STEIN, SHANNON, by FORD AND FULKERSON, and by ROBACKERin 1955 —56. The present
approach is due to Ford and Fulkerson.

Theorem 6.8.A flow f of a networkN is maximum if and only if there are nGimprovable
paths inN.

Proof. By Lemma 6.3, a maximum flow cannot have improvable paths.
Conversely, assume that contains ngf -improvable paths, and let

S ={u € N | for some pathP: s = u, +(P) > 0} .

SetS = Sr U {s}.

Consider an edge = uv € Ey, Whereu € S andv ¢ S. Sinceu € S, there exists a
pathP: s = u with .(P) > 0. Moreover, since ¢ S, .(Pe) = 0 for the pathPe: s = v.
Therefores(e) = 0, and sof (e) = «a(e).

By the same argument, for an edge- vu € Ey withv ¢ S andu € S, f(e) = 0.

By Theorem 6.7, we haveal(f) = «[S]. Corollary 6.1 implies now thaf is a maximum
flow (and[S] is @ minimum cut). a
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Theorem 6.9.Let N be a network, where the capacity function V' x V' — N has integer
values. TherV has a maximum flow with integer values.

Proof. Let f; be the zero flowfy(e) = 0 foralle € V' x V. A maximum flow is constructed
using Lemma 6.3 by increasing and decreasing the valueg afdhes by integers only. O

The proof of Theorem 6.8 showed also

Theorem 6.10 (Max-Flow Min-Cut). In a networkN, the valueval(f) of a maximum flow
equals the capacity[S] of a minimum cut.

Applications to graphs*

The Max-Flow Min-Cut Theorem is a strong result, and manywfgmrevious results follow
from it.

We mention a connection to the Marriage Theorem, TheoremFR2B0this, letG be a
bipartite graph with a bipartitiofiX,Y’), and consider a network with vertices{s,r} U
X UY. Let the edges (with their capacities) bec En (a(sz) = 1), yr € Ey (a(yr) = 1)
forall z € X,y € Y together with the edgesy € En (a(zy) = |X|+ 1), if zy € E¢ for
x € X,y € Y. ThenG has a matching that saturat&sif and only if N has a maximum flow
of value|X|. Now Theorem 6.10 gives Theorem 3.9.

Next we apply the theorem tmnit networks, where the capacities of the edges are equal
to one (e) = 1 for all e € E). We obtain results for (directed) graphs.

Lemma 6.5.Let N be a unit network with sourceand sinkr.

() The valueval( f) of a maximum flow equals the maximum number of edge-disjioéuted
pathss = r.

(i) The capacity of a minimum cUii] equals the minimum number of edges whose removal
destroys the directed connections™— r from s to r.

Proof. Exercise. 0

Corollary 6.2. Letu andv be two vertices of a digrap®. The maximum number of edge-
disjoint directed paths = v equals the minimum number of edges, whose removal destroys
all the directed connections = v from D.

Proof. A network NV with sources and sinkr is obtained by setting the capacities equal.to
The claim follows from Lemma 6.5 and Corollary 6.10. O

Corollary 6.3. Let u and v be two vertices of a graplk¥. The maximum number of edge-
disjoint pathsu =+ v equals the minimum number of edges, whose removal desttdhis a
connections: = v from D.

Proof. Consider the digrapl® that is obtained frond7 by replacing each (undirected) edge
uv € FEg by two directed edgesv € Fp andvu € Ep. The claim follows then easily from
Corollary 6.2. O
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The next corollary isMenger's Theoremfor edge connectivity.

Corollary 6.4. A graphG is k-edge connected if and only if any two distinct vertice§ afre
connected by at leagtindependent paths.

Proof. The claim follows immediately from Corollary 6.3. O

Seymour’s 6-flows

DEFINITION. A k-flow (H, «) of an undirected graply is an orientationH of G together
with an edge colouring:: Ey — [0,k — 1] such that for all vertices € V,

Yooale)= D> alf), (6.3)
e—vucFEy f=uveEy

that is, the sum of the incoming values equals the sum of thgommg values. Ak-flow is
nowhere zerq if a(e) # 0foralle € Ey.

In the k-flows we do not have any source or sink. For convenielatey(e ') = —a(e)
for all e € E in the orientationH of G so that the condition (6.3) becomes
Z ale) =0. (6.4)
e=vu€EFpy

Example 6.8.A graph with a nowhere zerg-flow.

The condition (6.4) generalizes to the subséts Vi in a natural way,

Z ale) =0, (6.5)

e€[A,A]

since the values of the edges insidle@ancel out each other. In particular,
Lemma 6.6.If G has a nowhere zerb-flow for somek, thenG has no bridges.

Tutte’'s Problem. It was conjectured by UTTE (1954) thatevery bridgeless graph has a
nowhere zer®-flow. The Petersen graph has a nowhere Zefliow but does not have any
nowhere4-flows, and s is the best one can think of. Tutte’s conjecture resembled-th
Colour Theorem, and indeed, the conjecture is known to twlthie planar graphs. The proof
of this uses thd-Colour Theorem.

In order to fully appreciate Seymour’s result, Theorem pwld mention that it was proved
as late as 1976 (bya&GER) that every bridgeles& has a nowhere zerb-flow for some
integerk.

SEYMOUR'’s remarkable result reads as follows:



6.2 Network Flows 95

Theorem 6.11 SEYMOUR’s (1981)).Every bridgeless graph has a nowhere zéfbow.

Proof. Omitted. O

DerINITION. Theflow number f(G) of a bridgeless grap&' is the least integet for which
G has a nowhere zerio-flow.

Theorem 6.12.A connected graplr has a flow numbef (G) = 2 if and only if it is eulerian.

Proof. Suppose is eulerian, and consider an Euler tdlir of G. Let D be the orientation
of G corresponding to the direction & . If an edgeuv € Ep, leta(e) = 1. SincelV arrives
and leaves each vertex equally many times, the funetia nowhere zerd-flow.
Conversely, letx be a nowhere zer2-flow of an orientationD of G. Then necessarily the
degrees of the vertices are even, andrss eulerian. a

Example 6.9.For each3-regular bipartite graplz, we havef(G) < 3. Indeed, letG be
(X,Y)-biparte. By Corollary 3.1, &-regular graph has a perfect matchif{. Orient the
edges € M from X toY, and setx(e) = 2. Orient the edges ¢ M from Y to X, and set
a(e) = 1. Since eaclr € X has exactly one neighboyi € Y such thatry; € M, and two
neighbourgys, y3 € Y such thatcy,, zys ¢ M, we have thaff (G) < 3.

Theorem 6.13.We havef(K,) = 4, and ifn > 4, then

2 ifnisodd,
3 ifniseven

f(Kn) = {

Proof. Exercise. O
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